
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3461–3474
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3461

Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems

Fei Mi1*, Liangwei Chen1, Mengjie Zhao2, Minlie Huang3* and Boi Faltings1

1LIA, EPFL, Lausanne, Switzerland
2CIS, LMU, Munich, Germany

3CoAI, DCST, Tsinghua University, Beijing, China
{fei.mi,liangwei.chen,boi.faltings}@epfl.ch
mzhao@cis.lmu.de, aihuang@tsinghua.edu.cn

Abstract

Natural language generation (NLG) is an es-
sential component of task-oriented dialog sys-
tems. Despite the recent success of neural ap-
proaches for NLG, they are typically devel-
oped in an offline manner for particular do-
mains. To better fit real-life applications where
new data come in a stream, we study NLG
in a “continual learning” setting to expand its
knowledge to new domains or functionalities
incrementally. The major challenge towards
this goal is catastrophic forgetting, meaning
that a continually trained model tends to for-
get the knowledge it has learned before. To
this end, we propose a method called ARPER
(Adaptively Regularized Prioritized Exemplar
Replay) by replaying prioritized historical ex-
emplars, together with an adaptive regulariza-
tion technique based on Elastic Weight Consol-
idation. Extensive experiments to continually
learn new domains and intents are conducted
on MultiWoZ-2.0 to benchmark ARPER with
a wide range of techniques. Empirical results
demonstrate that ARPER significantly outper-
forms other methods by effectively mitigating
the detrimental catastrophic forgetting issue.

1 Introduction

As an essential part of task-oriented dialog systems
(Wen et al., 2015b; Bordes et al., 2016), the task of
Natural Language Generation (NLG) is to produce
a natural language utterance containing the desired
information given a semantic representation (so-
called dialog act). Existing NLG models (Wen
et al., 2015c; Tran and Nguyen, 2017; Tseng et al.,
2018) are typically trained offline using annotated
data from a single or a fixed set of domains. How-
ever, a desirable dialog system in real-life applica-
tions often needs to expand its knowledge to new
domains and functionalities. Therefore, it is crucial
to develop an NLG approach with the capability

* Correspondence Author

of continual learning after a dialog system is de-
ployed. Specifically, an NLG model should be able
to continually learn new utterance patterns without
forgetting the old ones it has already learned.

The major challenge of continual learning lies
in catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999). Namely, a neural model
trained on new data tends to forget the knowledge it
has acquired on previous data. We diagnose in Sec-
tion 4.4 that neural NLG models suffer such detri-
mental catastrophic forgetting issues when continu-
ally trained on new domains. A naive solution is to
retrain the NLG model using all historical data ev-
ery time. However, it is not scalable due to severe
computation and storage overhead.

To this end, we propose storing a small set of rep-
resentative utterances from previous data, namely
exemplars, and replay them to the NLG model each
time it needs to be trained on new data. Methods
using exemplars have shown great success in differ-
ent continual learning (Rebuffi et al., 2017; Castro
et al., 2018; Chaudhry et al., 2019) and reinforce-
ment learning (Schaul et al., 2016; Andrychowicz
et al., 2017) tasks. In this paper, we propose a
prioritized exemplar selection scheme to choose
representative and diverse exemplar utterances for
NLG. We empirically demonstrate that the priori-
tized exemplar replay helps to alleviate catastrophic
forgetting by a large degree.

In practice, the number of exemplars should be
reasonably small to maintain a manageable mem-
ory footprint. Therefore, the constraint of not for-
getting old utterance patterns is not strong enough.
To enforce a stronger constraint, we propose a reg-
ularization method based on the well-known tech-
nique, Elastic Weight Consolidation (EWC (Kirk-
patrick et al., 2017)). The idea is to use a quadratic
term to elastically regularize the parameters that are
important for previous data. Besides the wide appli-
cation in computer vision, EWC has been recently

3462

applied to the domain adaptation task for Neural
Machine Translation (Thompson et al., 2019; Saun-
ders et al., 2019). In this paper, we combine EWC
with exemplar replay by approximating the Fisher
Information Matrix w.r.t. the carefully chosen ex-
emplars so that not all historical data need to be
stored. Furthermore, we propose to adaptively ad-
just the regularization weight to consider the dif-
ference between new and old data to flexibly deal
with different new data distributions.

To summarize our contribution, (1) to the best of
our knowledge, this is the first attempt to study the
practical continual learning configuration for NLG
in task-oriented dialog systems; (2) we propose a
method called Adaptively Regularized Prioritized
Exemplar Replay (ARPER) for this task, and bench-
mark it with a wide range of state-of-the-art contin-
ual learning techniques; (3) extensive experiments
are conducted on the MultiWoZ-2.0 (Budzianowski
et al., 2018) dataset to continually learn new tasks,
including domains and intents using two base
NLG models. Empirical results demonstrate the
superior performance of ARPER and its ability
to mitigate catastrophic forgetting. Our code is
available at https://github.com/MiFei/
Continual-Learning-for-NLG

2 Related Work

Continual Learning. The major challenge for
continual learning is catastrophic forgetting (Mc-
Closkey and Cohen, 1989; French, 1999), where
optimization over new data leads to performance
degradation on data learned before. Methods de-
signed to mitigate catastrophic forgetting fall into
three categories: regularization, exemplar replay,
and dynamic architectures. Methods using dy-
namic architectures (Rusu et al., 2016; Maltoni
and Lomonaco, 2019) increase model parameters
throughout the continual learning process, which
leads to an unfair comparison with other methods.
In this work, we focus on the first two categories.

Regularization methods add specific regulariza-
tion terms to consolidate knowledge learned be-
fore. Li and Hoiem (2017) introduced the knowl-
edge distillation (Hinton et al., 2015) to penalize
model logit change, and it has been widely em-
ployed in Rebuffi et al. (2017); Castro et al. (2018);
Wu et al. (2019); Hou et al. (2019); Zhao et al.
(2019). Another direction is to regularize param-
eters crucial to old knowledge according to vari-
ous importance measures (Kirkpatrick et al., 2017;

Zenke et al., 2017; Aljundi et al., 2018).
Exemplar replay methods store past samples,

a.k.a exemplars, and replay them periodically.
Instead of selecting exemplars at random, Re-
buffi et al. (2017) incorporated the Herding tech-
nique (Welling, 2009) to choose exemplars that
best approximate the mean feature vector of a class,
and it is widely used in Castro et al. (2018); Wu
et al. (2019); Hou et al. (2019); Zhao et al. (2019);
Mi et al. (2020a,b). Ramalho and Garnelo (2019)
proposed to store samples that the model is least
confident. Chaudhry et al. (2019) demonstrated the
effectiveness of exemplars for various continual
learning tasks in computer vision.

Catastrophic Forgetting in NLP. The catas-
trophic forgetting issue in NLP tasks has raised
increasing attention recently (Mou et al., 2016;
Chronopoulou et al., 2019). Yogatama et al. (2019);
Arora et al. (2019) identified the detrimental catas-
trophic forgetting issue while fine-tuning ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019).
To deal with this issue, He et al. (2019) proposed
to replay pre-train data during fine-tuning heavily,
and Chen et al. (2020) proposed an improved Adam
optimizer to recall knowledge captured during pre-
training. The catastrophic forgetting issue is also
noticed in domain adaptation setups for neural ma-
chine translation (Saunders et al., 2019; Thompson
et al., 2019; Varis and Bojar, 2019) and the reading
comprehension task (Xu et al., 2019).

Lee (2017) firstly studied the continual learning
setting for dialog state tracking in task-oriented
dialog systems. However, their setting is still a one-
time adaptation process, and the adopted dataset is
small. Shen et al. (2019) recently applied progres-
sive network (Rusu et al., 2016) for the semantic
slot filling task from a continual learning perspec-
tive similar to ours. However, their method is based
on a dynamic architecture that is beyond the scope
of this paper. Liu et al. (2019) proposed a Boolean
operation of “conceptor” matrices for continually
learning sentence representations using linear en-
coders. Li et al. (2020) combined continual learn-
ing and language systematic compositionality for
sequence-to-sequence learning tasks.

Natural Language Generation (NLG). In this
paper, we focus on NLG for task-oriented dialog
systems. A series of neural methods have been
proposed to generate accurate, natural, and diverse
utterances, including HLSTM (Wen et al., 2015a),

https://github.com/MiFei/Continual-Learning-for-NLG
https://github.com/MiFei/Continual-Learning-for-NLG

3463

SCLSTM (Wen et al., 2015c), Enc-Dec (Wen et al.,
2015b), RALSTM (Tran and Nguyen, 2017), SC-
VAE (Tseng et al., 2018).

Recent works have considered the domain adap-
tation setting. Tseng et al. (2018); Tran and Nguyen
(2018b) proposed to learn domain-invariant repre-
sentations using VAE (Kingma and Welling, 2013).
They later designed two domain adaptation crit-
ics (Tran and Nguyen, 2018a). Recently, Mi et al.
(2019); Qian and Yu (2019); Peng et al. (2020)
studied learning new domains with limited training
data. However, existing methods only consider a
one-time adaptation process. The continual learn-
ing setting and the corresponding catastrophic for-
getting issue remain to be explored.

3 Model

In this section, we first introduce the background of
neural NLG models in Section 3.1, and the contin-
ual learning formulation in Section 3.2. In Section
3.3, we introduce the proposed method ARPER.

3.1 Background on Neural NLG Models
The NLG component of task-oriented dialog sys-
tems is to produce natural language utterances con-
ditioned on a semantic representation called dialog
act (DA). Specifically, the dialog act d is defined as
the combination of intent I and a set of slot-value
pairs S(d) = {(si, vi)}pi=1:

d = [I︸︷︷︸
Intent

, (s1, v1), . . . , (sp, vp)︸ ︷︷ ︸
Slot-value pairs

], (1)

where p is the number of slot-value pairs. In-
tent I controls the utterance functionality, while
slot-value pairs contain information to express.
For example, “There is a restaurant called [La
Margherita] that serves [Italian] food.” is an utter-
ance corresponding to a DA “[Inform, (name=La
Margherita, food=Italian)]”

Neural models have recently shown promising
results for NLG tasks. Conditioned on a DA, a neu-
ral NLG model generates an utterance containing
the desired information word by word. For a DA
d with the corresponding ground truth utterance
Y = (y1, y1, ..., yK), the probability of generating
Y is factorized as below:

fθ(Y,d) =
K∏
k=1

pyk =

K∏
k=1

p(yk|y<k,d, θ), (2)

where fθ is the NLG model parameterized by θ,
and pyk is the output probability (i.e. softmax of

Data1 Data2 Data3

NLG Model NLG Model NLG Model …...

Attraction Restaurant Hotel

Figure 1: An example for a NLG model to continually
learn new domains. The model needs to perform well
on all domains it has seen before. For example fθ3
needs to deal with all three previous domains (Attrac-
tion, Restaurant, Hotel).

logits) of the ground truth token yk at position k.
The typical objective function for an utterance Y
with DA d is the average cross-entropy loss w.r.t.
all tokens in the utterance (Wen et al., 2015c,b;
Tran and Nguyen, 2017; Peng et al., 2020):

LCE(Y,d, θ) = − 1

K

K∑
k=1

log(pyk) (3)

3.2 Continual Learning of NLG
In practice, an NLG model needs to continually
learn new domains or functionalities. Without loss
of generality, we assume that new data arrive task
by task (Rebuffi et al., 2017; Kirkpatrick et al.,
2017). In a new task t, new data Dt are used to
train the NLG model fθt−1 obtained till the last task.
The updated model fθt needs to perform well on
all tasks so far. An example setting of continually
learning new domains is illustrated in Figure 1. A
task can be defined with different modalities to
reflect diverse real-life applications. In subsequent
experiments, we consider continually learning new
domains and intents in Eq. (1).

We emphasize that the setting of continual learn-
ing is different from that of domain adaptation.
The latter is a one-time adaptation process, and the
focus is to optimize performance on a target do-
main transferred from source domains but without
considering potential performance drop on source
domains (Mi et al., 2019; Qian and Yu, 2019; Peng
et al., 2020). In contrast, continual learning re-
quires a NLG model to continually learn new tasks
in multiple transfers, and the goal is to make the
model perform well on all tasks learned so far.

3.3 Adaptively Regularized Prioritized
Exemplar Replay (ARPER)

We introduce the proposed method (ARPER) with
prioritized exemplar replay and an adaptive regu-

3464

larization technique to further alleviate the catas-
trophic forgetting issue.

3.3.1 Prioritized Exemplar Replay
To prevent the NLG model catastrophically forget-
ting utterance patterns in earlier tasks, a small sub-
set of a task’s utterances are selected as exemplars,
and exemplars in previous tasks are replayed to the
later tasks. During training the NLG model fθt for
task t, the set of exemplars in previous tasks, de-
noted as E1:t−1 = {E1, . . . ,Et−1}, is replayed by
joining with the data Dt of the current task. There-
fore, the training objective with exemplar replay
can be written as:

LER(θt) =
∑

{Y,d}∈Dt∪E1:t−1

LCE(Y,d, θt). (4)

The set of exemplars of task t, referred to as Et,
is selected after fθt has been trained and will be
replayed to later tasks.

The quality of exemplars is crucial to preserve
the performance on previous tasks. We propose
a prioritized exemplar selection method to select
representative and diverse utterances as follows.

Representative utterances. The first criterion is
that exemplars Et of a task t should be representa-
tive of Dt. We propose to select Et as a priority
list from Dt that minimize a priority score:

U(Y,d) = LCE(Y,d, θt) · |S(d)|β, (5)

where S(d) is the set of slots in Y, and β is a
hyper-parameter. This formula correlates the repre-
sentativeness of an utterance to its LCE . Intuitively,
the NLG model fθt trained on Dt should be confi-
dent with representative utterances of Dt, i.e., low
LCE . However, LCE is agnostic to the number of
slots. We found that an utterance with many com-
mon slots in a task could also have very low LCE ,
yet using such utterances as exemplars may lead to
overfitting and thus forgetting of previous general
knowledge. The second term |S(d)|β controls the
importance of the number of slots in an utterance to
be prioritized as exemplars. We empirically found
in Appendix A.1 that the best β is greater than 0.

Diverse utterances. The second criterion is that
exemplars should contain diverse slots of the task,
rather than being similar or repetitive. A drawback
of the above priority score is that similar or dupli-
cated utterances containing the same set of frequent
slots could be prioritized over utterances w.r.t. a

Algorithm 1 select exemplars: Prioritized exem-
plar selection procedure of ARPER for task t

1: procedure select exemplars(Dt, fθt ,m)
2: Et ← new Priority list()
3: Dt ← sort(Dt, key = U, order = asc)
4: while |Et| < m do
5: Sseen ← new Set()
6: for {Y,d} ∈ Dt do
7: if S(d) ∈ Sseen then continue
8: else
9: Dt.remove({Y,d})

10: Et.insert({Y,d})
11: Sseen.insert(S(d))
12: if |Et| == m then
13: return Et

diverse set of slots. To encourage diversity of se-
lected exemplars, we propose an iterative approach
to add data from Dt to the priority list Et based on
the above priority score. At each iteration, if the set
of slots of the current utterance is already covered
by utterances in Et, we skip it and move on to the
data with the next best priority score.

Algorithm 1 shows the procedure to select m
exemplars as a priority list Et from Dt. The outer
loop allows multiple passes through Dt to select
various utterances for the same set of slots S(d).

3.3.2 Reducing Exemplars in Previous Tasks

Algorithm 1 requires the number of exemplars to
be given. A straightforward choice is to store the
same and fixed number of exemplars for each task
as in Castro et al. (2018); Wu et al. (2019); Hou
et al. (2019). However, there are two drawbacks
in this method: (1). the memory usage increases
linearly with the number of tasks; (2) it does not
discriminate tasks with different difficulty levels.

To this end, we propose to store a fixed num-
ber of exemplars throughout the entire continual
learning process to maintain a bounded memory
footprint as in Rebuffi et al. (2017). As more tasks
are continually learned, exemplars in previous tasks
are gradually reduced by only keeping the ones in
the front of the priority list1, and the exemplar size
of a task is set to be proportional to the training data
size of the task to differentiate the task’s difficulty.
To be specific, suppose M exemplars are kept in

1the priority list implementation allows reducing exem-
plars in constant time for each task

3465

total. The number of exemplars for a task is:

|Ei| = M · |Di|∑t
j=1 |Dj |

, ∀i ∈ 1, . . . , t, (6)

where we choose 250/500 for M in experiments.

3.3.3 Constraint with Adaptive Elastic
Weight Consolidation

Although exemplars of previous tasks are stored
and replayed, the size of exemplars should be rea-
sonably small (M � |D1:t|) to reduce memory
overhead. As a consequence, the constraint we
have made to prevent the NLG model catastrophi-
cally forgetting previous utterance patterns is not
strong enough. To enforce a stronger constraint,
we propose a regularization method based on the
well-known Elastic Weight Consolidation (EWC,
Kirkpatrick et al., 2017) technique.

Elastic Weight Consolidation (EWC). EWC
utilizes a quadratic term to elastically regularize
parameters important for previous tasks. The loss
function of using the EWC regularization together
with exemplar replay for task t can be written as:

LER EWC(θt) = LER(θt)+λ

N∑
i

Fi(θt,i−θt−1,i)
2

(7)
whereN is the number of model parameters; θt−1,i

is the i-th converged parameter of the model trained
till the previous task; Fi = ∇2L

E1:t−1

CE (θt−1,i) is
the i-th diagonal element of the Fisher Informa-
tion Matrix approximated w.r.t. the set of previous
exemplars E1:t−1. Fi measures the importance
of θt−1,i to previous tasks represented by E1:t−1.
Typical usages of EWC compute Fi w.r.t. a uni-
formly sampled subset from historical data. Yet,
we propose to compute Fi w.r.t. the carefully cho-
sen E1:t−1 so that not all historical data need to
be stored. The scalar λ controls the contribution
of the quadratic regularization term. The idea is
to elastically penalize changes on parameters im-
portant (with large Fi) to previous tasks, and more
plasticity is assigned to parameters with small Fi.

Adaptive regularization. In practice, new tasks
have different difficulties and similarities compared
to previous tasks. Therefore, the degree of need
to preserve the previous knowledge varies. To this
end, we propose an adaptive weight (λ) for the
EWC regularization term as follows:

λ = λbase
√
V1:t−1/Vt, (8)

Algorithm 2 learn task: Procedure of ARPER to
continually learn task t

1: procedure learn task(Dt,E1:t−1, fθt−1 ,M)
2: θt ← θt−1

3: while θt not converged do
4: θt ← update(LER EWC(θt))

5: m←M · |Dt|
Σt

j=1|Dj |
6: Et ← select exemplars(Dt, fθt ,m)
7: for j = 1 to t− 1 do
8: Ej ← Ej .top(M · |Dj |

Σt
j=1|Dj |

)

9: return fθt ,Et

where V1:t−1 is the old word vocabulary size in
previous tasks, and Vt is the new word vocabulary
size in the current task t; λbase is a hyper-parameter.
In general, λ increases when the ratio of the size of
old word vocabularies to that of new ones increases.
In other words, the regularization term becomes
more important when the new task contains fewer
new vocabularies to learn.

Algorithm 2 summarizes the continual learning
procedure of ARPER for task t. θt is initialized
with θt−1, and it is trained with prioritized exem-
plar replay and adaptive EWC in Eq. (7). After
training θt, exemplars Et of task t are computed
by Algorithm 1, and exemplars in previous tasks
are reduced by keeping the most prioritized ones to
preserve the total exemplar size.

4 Experiments

4.1 Dataset
We use the MultiWoZ-2.0 dataset 2 (Budzianowski
et al., 2018) containing six domains (Attraction,
Hotel, Restaurant, Booking, Taxi and Train) and
seven DA intents (“Inform, Request, Select, Rec-
ommend, Book, Offer-Booked, No-Offer”). The
original train/validation/test splits are used. For
methods using exemplars, both training and valida-
tion set are continually expanded with exemplars
extracted from previous tasks.

To support experiments on continual learning
new domains, we pre-processed the original dataset
by segmenting multi-domain utterances into single-
domain ones. For instance, an utterance “The ADC
Theatre is located on Park Street. Before I find
your train, could you tell me where you would like
to go?” is split into two utterances with domain

2extracted for NLG at https://github.com/
andy194673/nlg-sclstm-multiwoz

https://github.com/andy194673/nlg-sclstm-multiwoz
https://github.com/andy194673/nlg-sclstm-multiwoz

3466

Figure 2: Venn diagram visualizing intents in different
domains. The number of utterances of each domain
(bold) and intents (italic) is indicated in parentheses.

“Attraction” and “Train” separately. If multiple
sentences of the same domain in the original utter-
ance exist, they are still kept in one utterance after
pre-processing. In each continual learning task, all
training data of one domain are used to train the
NLG model, as illustrated in Figure 1. Similar pre-
processing is done at the granularity of DA intents
for experiments in Section 4.6. The statistics of
the pre-processed MultiWoZ-2.0 dataset is illus-
trated in Figure 2. The resulting datasets and the
pre-processing scripts are open-sourced.

4.2 Evaluation Metrics

Following previous studies, we use the slot error
rate (SER) and the BLEU-4 score (Papineni et al.,
2002) as evaluation metrics. SER is the ratio of
the number of missing and redundant slots in a
generated utterance to the total number of ground
truth slots in the DA.

To better evaluate the continual learning abil-
ity, we use two additional commonly used metrics
(Kemker et al., 2018) for both SER and BLEU-4:

Ωall =
1

T

T∑
i=1

Ωall,i, Ωfirst =
1

T

T∑
i=1

Ωfirst,i

where T is the total number of continual learning
tasks; Ωall,i is the test performance on all the tasks
after the ith task has been learned; Ωfirst,i is that
on the first task after the ith task has been learned.
Since Ω can be either SER or BLEU-4, both Ωall

and Ωfirst have two versions. Ωall evaluates the

overall performance, while Ωfirst evaluates the
ability to alleviate catastrophic forgetting.

4.3 Baselines

Two methods without exemplars are as below:

• Finetune: At each task, the NLG model is ini-
tialized with the model obtained till the last task,
and then fine-tuned with the data from the cur-
rent task.

• Full: At each task, the NLG model is trained
with the data from the current and all historical
tasks. This is the “upper bound” performance
for continual learning w.r.t. Ωall.

Several exemplar replay (ER) methods trained
with Eq. (4) using different exemplar selection
schemes are compared:

• ERherding (Welling, 2009; Rebuffi et al., 2017):
This scheme chooses exemplars that best ap-
proximate the mean DA vector over all training
examples of this task.

• ERrandom: This scheme selects exemplars at
random. Despite its simplicity, the distribution
of the selected exemplars is the same as the dis-
tribution of the current task in expectation.

• ERprio: The proposed prioritized scheme (c.f.
Algorithm 1) to select representative and diverse
exemplars.

Based on ERprio, four regularization methods
(including ours) to further alleviate catastrophic
forgetting are compared:

• L2: A static L2 regularization by setting Fi = 1
in Eq. (7). It regularizes all parameters equally.

• KD (Rebuffi et al., 2017; Wu et al., 2019; Hou
et al., 2019): The widely-used knowledge distil-
lation (KD) loss (Hinton et al., 2015) is adopted
by distilling the prediction logit of current model
w.r.t. the prediction logit of the model trained
till the last task. More implementation details
are included in Appendix A.1.

• Dropout (Mirzadeh et al., 2020): Dropout Hin-
ton et al. (2012) is recently shown by (Mirzadeh
et al., 2020) that it effectively alleviates catas-
trophic forgetting. We tuned different dropout
rates assigned to the non-recurrent connections.

• ARPER (c.f. Algorithm 2): The proposed
method using adaptive EWC with ERprio.

We utilized the well-recognized semantically-
conditioned LSTM (SCLSTM Wen et al., 2015c) as

3467

250 exemplars in total 500 exemplars in total
Ωall Ωfirst Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4 SER% BLEU-4 SER% BLEU-4
Finetune 64.46 0.361 107.27 0.253 64.46 0.361 107.27 0.253
ERherding 16.89 0.535 9.89 0.532 12.25 0.555 4.53 0.568
ERrandom 10.93 0.552 6.96 0.553 8.36 0.569 4.41 0.572
ERprio 9.67?? 0.578 5.28?? 0.578 7.48?? 0.597 3.59? 0.620
ERprio+L2 14.94 0.579 5.31?? 0.587 10.51 0.596 4.28?? 0.605
ERprio+KD 8.65?? 0.586 6.87 0.601 7.37?? 0.596 4.89 0.617
ERprio+Dropout 7.15?? 0.588 5.53?? 0.594 6.09? 0.595 4.51?? 0.616
ARPER 5.22 0.590 2.99 0.624 5.12 0.598 2.81 0.627
Full 4.26 0.599 3.60 0.616 4.26 0.599 3.60 0.616

Table 1: Average performance of continually learning 6 domains using 250/500 exemplars. Best Performance
excluding “Full” are in bold in each column. In each column , ? indicates p < 0.05 and ?? indicates p < 0.01 for
a one-tailed t-test comparing ARPER to the three top-performing competitors except Full.

1 2 3 4 5 6 7 8 9 10
Epoch

0%

10%

20%

30%

40%

50%

60%

S
E
R
fir
st

Full
APRER
ERprio

ERrandom

Finetune

1 2 3 4 5 6 7 8 9 10
Epoch

0.2

0.3

0.4

0.5

0.6

B
LE

U
-4

fir
st

Full
APRER
ERprio

ERrandom

Finetune

Figure 3: Diagnose the catastrophic forgetting issue
in NLG. SER (Left) and BLEU-4 (Right) on the test
data of “Attraction” at different epochs when a model
pre-trained on the “Attraction” domain is continually
trained on another “Train” domain.

the base NLG model fθ 3 with one hidden layer of
size 128. Dropout is not used by default, which is
evaluated as a separate regularization technique (c.f.
ERprio+Dropout). For all the above methods, the
learning rate of Adam is set to 5e-3, batch size is set
to 128, and the maximum number of epochs used
to train each task is set to 100. Early stop to avoid
over-fitting is adopted when the validation loss does
not decrease for 10 consecutive epochs. To fairly
compare different methods, they are trained with
the identical configuration on the first task to have
a consistent starting point. Hyper-parameters of
different methods are included in Appendix A.1.

4.4 Diagnose Forgetting in NLG
Before proceeding to our main results, we first
diagnose whether the catastrophic forgetting issue
exists when training an NLG model continually. As

3Comparisons based on other base NLG models are in-
cluded in Section 4.9.

an example, a model pre-trained on the “Attraction”
domain is continually trained on the “Train” do-
main. We present test performance on “Attraction”
at different epochs in Figure 3 with 250 exemplars.

We can observe: (1) catastrophic forgetting in-
deed exists as indicated by the sharp performance
drop of Finetune; (2) replaying carefully chosen
exemplars helps to alleviate catastrophic forgetting
by a large degree, and ERprio does a better job
than ERrandom; and (3) ARPER greatly mitigates
catastrophic forgetting by achieving similar or even
better performance compared to Full.

4.5 Continual Learning New Domains

In this experiment, the data from six domains are
presented sequentially. We test 6 runs with dif-
ferent domain order permutations. Each domain
is selected as the first task for one time, and the
remaining five domains are randomly ordered 4.
Results averaged over 6 runs using 250 and 500
total exemplars are presented in Table 1. Several
interesting observations can be noted:

• All methods except Finetune perform worse on
all seen tasks (Ωall) than on the first task (Ωfirst).
This is due to the diverse knowledge among dif-
ferent tasks, which increases the difficulty of
handling all the tasks. Finetune performs poorly
in both metrics because of the detrimental catas-
trophic forgetting issue.

• Replaying exemplars helps to alleviate the catas-
trophic forgetting issue. Three ER methods sub-
stantially outperform Finetune. Moreover, the
proposed prioritized exemplar selection scheme
is effective, indicated by the superior perfor-

4Exact domain orders are provided in Appendix A.2

3468

1 2 3 4 5 6
Number of Domains

2%

5%

8%

10%

12%

15%

18%
S

E
R

Model
ERprio
ERprio+Dropout
ARPER
Full
Metric

_all
_first

Figure 4: SER on all seen domains (solid) and on the
first domain (dashed) when more domains are continu-
ally learned using 250 exemplars.

mance of ERprio over ERherding and ERrandom.

• ARPER significantly outperforms three ER meth-
ods and other regularization-based baselines.
Compared to the three closest competitors,
ARPER is significantly better with p-value <
0.05 w.r.t SER.

• The improvement margin of ARPER is signifi-
cant w.r.t SER that is critical for measuring an
output’s fidelity to a given dialog act. Different
methods demonstrate similar performance w.r.t
BLEU-4, where several of them approach Full,
thus are very close to the upper bound perfor-
mance.

• ARPER achieves comparable performance w.r.t
to the upper bound (Full) on all seen tasks (Ωall)
even with a very limited number of exemplars.
Moreover, it outperforms Full on the first task
(Ωfirst), indicating that ARPER better mitigates
forgetting the first task than Full, and the latter
is still interfered by data in later domains.

Dynamic Results in Continual Learning In
Figure 4, several representative methods are com-
pared as more domains are continually learned.
With more tasks continually learned, ARPER per-
forms consistently better than other methods on
all seen tasks (solid lines), and it is comparable to
Full. On the first task (dashed lines), ARPER out-
performs all the methods, including Full, at every
continual learning step. These results illustrate the
advantage of ARPER through the entire continual
learning process.

4.6 Continual Learning New DA Intents
It is also essential for a task-oriented dialog system
to continually learn new functionalities, namely,
supporting new DA intents. To test this ability,

Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4
Finetune 49.94 0.382 44.00 0.375
ERherding 13.96 0.542 8.50 0.545
ERrandom 8.58 0.626 5.53 0.618
ERprio 8.21 0.684 5.20 0.669
ERprio+L2 6.87 0.693 4.92 0.661
ERprio+KD 10.59 0.664 10.87 0.649
ERprio+Dropout 6.32 0.689 5.55 0.658
ARPER 3.63 0.701 3.52 0.685
Full 3.08 0.694 2.98 0.672

Table 2: Performance of continually learning 7 DA in-
tents using 250 exemplars. Best Performance exclud-
ing “Full” are in bold.

Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4
ARPER 4.82 0.592 3.88 0.569
w/o ER 6.41 0.584 5.85 0.559
w/o PE 5.53 0.587 5.85 0.562
w/o AR 5.57 0.587 4.57 0.563

Table 3: Ablation study for ARPER. ER / PE / AR
stands for the Exemplar Replay loss / Prioritized Ex-
emplars / Adaptive Regularization, respectively.

the data of seven DA intents are presented sequen-
tially in the order of decreasing data size, i.e., “In-
form, Request, Book, Recommend, Offer-Booked,
No-Offer, Select”. Results using 250 exemplars are
presented in Table 2. We can observe that ARPER
still largely outperforms other methods, and similar
observations for ARPER can be made as before.
Therefore, we conclude that ARPER is able to learn
new functionalities continually.

Compared to previous experiments, the perfor-
mance of ERprio+KD degrades, while the perfor-
mance of ERprio+L2 improves due to the very large
data size in the first task (“Inform”), which means
that they are sensitive to task orders.

4.7 Ablation Study
In Table 3, we compare several simplified versions
of ARPER to understand the effects of different
components. Comparisons are based on continu-
ally learning 6 domains staring with “Attraction”.
We can observe that: (1). LER is beneficial be-
cause dropping it (“w/o ER”) degrades the perfor-
mance of ARPER. (2). Using prioritized exemplars
is advantageous because using random exemplars
(“w/o PE”) for ARPER impairs its performance. (3).
Adaptive regularization is also effective, indicated
by the superior performance of ARPER compared
to using fixed regularization weights (“w/o AR”).

3469

Recommend (Addr=regent street, Fee=free, Name=Downing College)
Reference [Downing College] is my favorite. It’s located on [regent street] and it’s [free] to

get in.

ERprio+Dropout
[Downing College] is located in the city and it’s located in the [regent street]. it’s
located at located at! it’s located in the [Slot-Hotel-Area]. (missing: Fee=fre)

ARPER
I would recommend [Downing College]. It is located at [regent street] and has a
entrance fee of [free]. (correct)

Recommend (Area=centre of town, Name=saints church, Type=architecture destination)

Reference
There is a [saints church] that is an [architecture destination] in the [centre of
town], would you like that?

ERprio+Dropout
I recommend [saints church] in the [centre of town]. it is a nice. it is a guest house
in a in a [Slot-Restaurant-Food]. (missing: Type=architecture destination)

ARPER [saints church] is a [architecture destination] in the [centre of town]. (correct)

Table 4: Sample utterances generated for the first domain (“Attraction”) after the NLG is continually trained on all
6 domains using 250 exemplars. Redundant and missing slots are colored in orange and blue respectively. Obvious
grammar mistakes (redundant repetitions) are colored in purple.

SCVAE GPT-2

Ωall Ωfirst Ωall Ωfirst
Finetune 60.83 98.86 28.69 31.76
ERherding 17.95 11.48 11.95 10.48
ERrandom 9.31 7.52 9.87 8.85
ERprio 8.92 6.16 8.72 8.20
ERprio+L2 12.47 6.67 10.51 9.20
ERprio+KD 6.32 6.09 8.41 8.09
ERprio+Dropout 8.01 8.77 7.60 7.72
ARPER 4.45 4.04 5.32 5.05
Full 3.99 4.03 4.75 4.53

Table 5: SER in % of using SCVAE and GPT-2 as fθ.
Best Performance excluding “Full” are in bold.

4.8 Case Study

Table 4 shows two examples generated by ARPER
and the closest competitor (ERprio+Dropout) on the
first domain (“Attraction”) after the NLG model is
continually trained on all 6 domains starting with
“Attraction”. In both examples, ERprio+Dropout
fails to generate slot “Fee” or “Type”, instead, it
mistakenly generates slots belonging to later do-
mains (“Hotel” or “Restaurant”) with several ob-
vious redundant repetitions colored in purple. It
means that the NLG model is interfered by ut-
terance patterns in later domains, and it forgets
some old patterns it has learned before. In contrast,
ARPER succeeds in both cases without forgetting
previously learned patterns.

4.9 Results using Other NLG Models

In this experiment, we changed the base NLG
model From SCLSTM to SCVAE (Tseng et al.,
2018) and GPT-2 (Radford et al., 2019). For GPT-

2, we used the pre-trained model with 12 layers and
117M parameters. As in Peng et al. (2020), exact
slot values are not replaced by special placeholders
during training as in SCLSTM and SCVAE. The
dialog act is concatenated with the corresponding
utterance before feeding into GPT-2. More details
are included in Appendix A.1.

Results of using 250 exemplars to continually
learn 6 domains starting with “Attraction” are pre-
sented in Table 5. Thanks to the large-scale pre-
trained language model, GPT-2 suffers less from
the catastrophic forgetting issue because of the bet-
ter performance of Finetune. In general, the rela-
tive performance patterns of different methods are
similar to that we observed in Section 4.5 and 4.6.
Therefore, we can claim that the superior perfor-
mance of ARPER can generalize to different base
NLG models.

5 Conclusion

In this paper, we study the practical continual learn-
ing setting of language generation in task-oriented
dialog systems. To alleviate catastrophic forget-
ting, we present ARPER which replays representa-
tive and diverse exemplars selected in a prioritized
manner, and employs an adaptive regularization
term based on EWC (Elastic Weight Consolida-
tion). Extensive experiments on MultiWoZ-2.0 in
different continual learning scenarios reveal the
superior performance of ARPER . The realistic con-
tinual learning setting and the proposed technique
may inspire further studies towards building more
scalable task-oriented dialog systems.

3470

References
Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-

seiny, Marcus Rohrbach, and Tinne Tuytelaars.
2018. Memory aware synapses: Learning what (not)
to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 139–154.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. 2017. Hindsight experience replay.
In Advances in neural information processing sys-
tems, pages 5048–5058.

Gaurav Arora, Afshin Rahimi, and Timothy Baldwin.
2019. Does an lstm forget more than a cnn? an em-
pirical study of catastrophic forgetting in nlp. In
Proceedings of the The 17th Annual Workshop of
the Australasian Language Technology Association,
pages 77–86.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2016. Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasic. 2018. Multiwoz-a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026.

Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás
Guil, Cordelia Schmid, and Karteek Alahari. 2018.
End-to-end incremental learning. In Proceedings
of the European Conference on Computer Vision
(ECCV), pages 233–248.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, Thalaiyasingam Ajanthan, Puneet K Doka-
nia, Philip HS Torr, and Marc’Aurelio Ranzato.
2019. Continual learning with tiny episodic mem-
ories. arXiv preprint arXiv:1902.10486.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. arXiv preprint arXiv:2004.12651.

Alexandra Chronopoulou, Christos Baziotis, and
Alexandros Potamianos. 2019. An embarrassingly
simple approach for transfer learning from pre-
trained language models. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2089–2095.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in Cognitive Sciences,
pages 128–135.

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing
Liu, James Glass, and Fuchun Peng. 2019. Mix-
review: Alleviate forgetting in the pretrain-finetune
framework for neural language generation models.
arXiv preprint arXiv:1910.07117.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang,
and Dahua Lin. 2019. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 831–839.

Ronald Kemker, Marc McClure, Angelina Abitino,
Tyler L Hayes, and Christopher Kanan. 2018. Mea-
suring catastrophic forgetting in neural networks. In
Thirty-second AAAI conference on artificial intelli-
gence.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Sungjin Lee. 2017. Toward continual learn-
ing for conversational agents. arXiv preprint
arXiv:1712.09943.

Yuanpeng Li, Liang Zhao, Kenneth Church, and Mo-
hamed Elhoseiny. 2020. Compositional continual
language learning.

Zhizhong Li and Derek Hoiem. 2017. Learning with-
out forgetting. IEEE transactions on pattern analy-
sis and machine intelligence, 40(12):2935–2947.

Tianlin Liu, Lyle Ungar, and João Sedoc. 2019. Contin-
ual learning for sentence representations using con-
ceptors. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3274–3279.

3471

Davide Maltoni and Vincenzo Lomonaco. 2019. Con-
tinuous learning in single-incremental-task scenar-
ios. Neural Networks, 116:56–73.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. El-
sevier.

Fei Mi, Minlie Huang, Jiyong Zhang, and Boi Faltings.
2019. Meta-learning for low-resource natural lan-
guage generation in task-oriented dialogue systems.
In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 3151–3157.
AAAI Press.

Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and
Boi Faltings. 2020a. Generalized class incremental
learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
Workshops, pages 240–241.

Fei Mi, Xiaoyu Lin, and Boi Faltings. 2020b. Ader:
Adaptively distilled exemplar replay towards contin-
ual learning for session-based recommendation. In
Fourteenth ACM Conference on Recommender Sys-
tems, pages 408–413.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, and Has-
san Ghasemzadeh. 2020. Dropout as an implicit
gating mechanism for continual learning. arXiv
preprint arXiv:2004.11545.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 479–489.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xi-
ujun Li, Jinchao Li, Michael Zeng, and Jian-
feng Gao. 2020. Few-shot natural language gen-
eration for task-oriented dialog. arXiv preprint
arXiv:2002.12328.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Kun Qian and Zhou Yu. 2019. Domain adaptive dialog
generation via meta learning. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2639–2649.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Tiago Ramalho and Marta Garnelo. 2019. Adaptive
posterior learning: few-shot learning with a surprise-
based memory module. In International Conference
on Learning Representations (ICLR)).

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. 2017.
icarl: Incremental classifier and representation
learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2001–2010.

Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and
Michele Franceschini. 2019. Scalable recollections
for continual lifelong learning. In AAAI, volume 33,
pages 1352–1359.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Danielle Saunders, Felix Stahlberg, Adrià de Gispert,
and Bill Byrne. 2019. Domain adaptive inference
for neural machine translation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 222–228.

Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. 2016. Prioritized experience replay.

Yilin Shen, Xiangyu Zeng, and Hongxia Jin. 2019.
A progressive model to enable continual learning
for semantic slot filling. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1279–1284.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. 2017. Continual learning with deep generative
replay. In Advances in Neural Information Process-
ing Systems, pages 2990–2999.

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah,
Kevin Duh, and Philipp Koehn. 2019. Overcoming
catastrophic forgetting during domain adaptation of
neural machine translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 2062–2068.

Van-Khanh Tran and Le-Minh Nguyen. 2017. Natural
language generation for spoken dialogue system us-
ing rnn encoder-decoder networks. In Proceedings
of the 21st Conference on Computational Natural
Language Learning, pages 442–451.

3472

Van-Khanh Tran and Le-Minh Nguyen. 2018a. Adver-
sarial domain adaptation for variational neural lan-
guage generation in dialogue systems. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1205–1217.

Van-Khanh Tran and Le-Minh Nguyen. 2018b. Dual
latent variable model for low-resource natural lan-
guage generation in dialogue systems. In Proceed-
ings of the 22nd Conference on Computational Nat-
ural Language Learning, pages 21–30.

Bo-Hsiang Tseng, Florian Kreyssig, Paweł
Budzianowski, Iñigo Casanueva, Yen-chen Wu,
Stefan Ultes, and Milica Gasic. 2018. Variational
cross-domain natural language generation for
spoken dialogue systems. In 19th Annual SIG-
dial Meeting on Discourse and Dialogue, pages
338–343.

Dusan Varis and Ondřej Bojar. 2019. Unsupervised
pretraining for neural machine translation using elas-
tic weight consolidation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 130–135.

Max Welling. 2009. Herding dynamical weights to
learn. In Proceedings of the 26th International
Conference on Machine Learning, pages 1121–1128.
ACM.

Tsung-Hsien Wen, Milica Gašic, Dongho Kim, Nikola
Mrkšic, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic language generation in di-
alogue using recurrent neural networks with convo-
lutional sentence reranking. In 16th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, page 275.

Tsung-Hsien Wen, Milica Gašic, Nikola Mrkšic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2015b. Toward multi-
domain language generation using recurrent neural
networks. In NIPS Workshop on Machine Learn-
ing for Spoken Language Understanding and Inter-
action.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015c.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711–1721.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng
Ye, Zicheng Liu, Yandong Guo, and Yun Fu. 2019.
Large scale incremental learning. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 831–839.

Ying Xu, Xu Zhong, Antonio Jose Jimeno Yepes, and
Jey Han Lau. 2019. Forget me not: Reducing catas-
trophic forgetting for domain adaptation in reading
comprehension. arXiv preprint arXiv:1911.00202.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, et al. 2019. Learning and evaluat-
ing general linguistic intelligence. arXiv preprint
arXiv:1901.11373.

Friedemann Zenke, Ben Poole, and Surya Ganguli.
2017. Continual learning through synaptic intelli-
gence. In Proceedings of the 34th International
Conference on Machine Learning, pages 3987–3995.
JMLR. org.

Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang,
and Shutao Xia. 2019. Maintaining discrimination
and fairness in class incremental learning. arXiv
preprint arXiv:1911.07053.

3473

Appendix
A Reproducibility Checklist

A.1 Model Details and Hyper-parameters
We first elaborate implementation details of the
knowledge distillation (KD) baseline compared in
our paper. We used the below loss term:

LKD(Y,d, fθt−1 , fθt) = −
K∑
k=1

|L|∑
i=1

p̂k,i · log(pk,i)

where L is the vocabulary that appears in previous
tasks but not in task t. At each position k of Y,
[p̂k,1, . . . , p̂k,|L|] is the predicted distribution5 over
L given by fθt−1 , and [pk,1, . . . , pk,|L|] is the dis-
tribution given by fθt . LKD penalizes prediction
changes on the vocabularies specific to earlier tasks.
For all {Y,d} ∈ Dt ∪E1:t−1, LKD is linearly in-
terpolated with LER by LER + η · LKD, with the
η tuned as a hyper-parameter .

Hyper-parameters of SCVAE reported in
Section 4.9 are set by default according to https:
//github.com/andy194673/nlg-scvae,
except that the learning rate is set to 2e-3. For
GPT-2, we used the implementation pipeline
from https://github.com/pengbaolin/
SC-GPT. We pre-processed the dialog act d into
the format of : d′ = [I (s1 = v1, . . . , sp = vp)],
and the corresponding utterance Y is appended to
be Y′ with a special start token [BOS] and an end
token [EOS]. d′ and Y′ are concatenated before
feeding into GPT-2. The learning rate of Adam
optimizer is set to 5e-5 without weight decay. As
GPT-2 converges faster, we train maximum 10
epochs for each task with early stop applied to 3
consecutive epochs.

Hyper-parameters of different methods are tuned
to maximize SERall using grid search, and the opti-
mal settings of different methods in various experi-
ments are summarized in Table 6.

A.2 Domain Order Permutations
In Table 7, we provide the exact domain order per-
mutations of the 6 runs used in the experiments in
Table 1 and Figure 4.

A.3 Computation Resource
All experiments are conducted using a single GPU
(GeForce GTX TITAN X). In Table 8, we com-
pared the average training time of one epoch using

5The temperature in (Hinton et al., 2015) is set to 1 due to
its minimum impact based on our experiments.

Domains DA Intents
ERprio (β) 0.5/0.5/0.5/0.5 0.5
L2 (weight on L2) 1e-3/1e-3/1e-3/5e-4 1e-2
KD (weight on LKD) 2.0/3.0/2.0/0.5 5.0
Dropout (rate) 0.25/0.25/0.25/0.1 0.25
ARPER (λbase) 300k/350k/200k/30k 100k

Table 6: Optimal hyper-parameters of methods experi-
mented in this paper. Four different values in the col-
umn “Domains” correspond to using 250 exemplars in
both Table 1 and Table 2 / 500 exemplars in Table 1 /
using SCVAE / GPT-2 as f(θ) in Table 5, respectively.

Run 1 0 5 2 1 3 4
Run 2 1 4 0 5 3 2
Run 3 2 0 3 1 4 5
Run 4 3 2 4 0 1 5
Run 5 4 2 1 5 0 3
Run 6 5 3 2 0 1 4

Table 7: Each row corresponds to a domain order
permutation. The mapping from domain to id is:
{“Attraction”: 0, “Booking’‘: 1, “Hotel”: 2, “Restau-
rant”: 3, “Taxi”: 4, “Train”: 5.}

Finetune ERprio L2 KD Dropout ARPER Full
17.5s 18.5s 19.5s 24.6s 15.5s 39.5s 242.5s

Table 8: Average training time of one epoch at the last
task when continually learning 6 domains starting with
“Attraction” using 250 exemplars. Methods other than
Finetune and Full are applied on top of ERprio.

different methods. Full spends more than 200s of
extra computation overhead per epoch than other
methods using bounded exemplars. ARPER takes
a slightly longer time to train than the methods ex-
cept for Full. Nevertheless, considering its superior
performance, we contend that ARPER achieves de-
sirable resource-performance trade-off. In addition,
250 exemplars are less than 1% of historical data
at the last task, and the memory usage to store a
small number of exemplars is trivial.

B Supplementary Empirical Results

B.1 Comparison to Pseudo Exemplar Replay

Instead of storing raw samples as exemplars,
Shin et al. (2017); Riemer et al. (2019) generate
“pseudo‘’ samples akin to past data. The NLG
model itself can generate pseudo exemplars. In this
experiment, we replace the 500 raw exemplars of
ERrandom, ERprio, and ARPER by pseudo samples
generated by the continually trained NLG model
using the dialog acts of the same raw exemplars

https://github.com/andy194673/nlg-scvae
https://github.com/andy194673/nlg-scvae
https://github.com/pengbaolin/SC-GPT
https://github.com/pengbaolin/SC-GPT

3474

0 16 32 48 64 80 96 11
2

12
8

Attraction->Train

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512 0 16 32 48 64 80 96 11

2

12
8

Train->Hotel

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
5120.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0 16 32 48 64 80 96 11
2

12
8

Attraction->Train

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512 0 16 32 48 64 80 96 11

2

12
8

Train->Hotel

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
5120.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5: An visualization of the change of SCLSTM’s hidden layer weights obtained from two consecutive tasks
of ARPER (Top) and ERprio+Dropout (Bottom). Two sample task transitions (“from Attraction” to “Train”, and
then from “Train” to “Hotel”) are shown. High temperature areas of ARPER is highlighted by red bounding boxes
for better visualization.

Ωall Ωfirst

SER% BLEU-4 SER% BLEU-4
ERrandom 9.82 0.495 8.64 0.405
Pseudo-ERrandom 9.26 0.551 6.88 0.519
ERprio 7.84 0.573 6.20 0.523
Pseudo-ERprio 8.87 0.557 6.37 0.521
ARPER 4.43 0.597 3.40 0.574
Pseudo-ARPER 5.07 0.590 3.51 0.570

Table 9: Comparison with Pseudo Exemplar Replay.

as input. Result comparing using pseudo or raw
exemplars to continually learn 6 domains starting
with “Attraction” are illustrated in Table 9. We can
see that using pseudo exemplars performs better
for ERrandom, but worse for ERprio and ARPER. It
means that pseudo exemplars are better when exem-
plars are chosen randomly, while carefully chosen
exemplars (c.f. algorithm 1) is better than pseudo
exemplars. Explorations on utilizing pseudo exem-
plars for NLG is orthogonal to our work, and it is
left as future work.

B.2 Flow of Parameters Update
To further understand the superior performance
of ARPER, we investigated the update of param-
eters throughout the continual learning process.
Specifically, we compared SCLSTM’s hidden layer
weights obtained from consecutive tasks, and the
pairwise L1 difference of two sample transitions is
shown in Figure 5.

We can observe that ERprio+Dropout tends
to update almost all parameters, while ARPER
only updates a small fraction of them. Further-
more, ARPER has different sets of important pa-
rameters for distinct tasks, indicated by different
high-temperature areas in distinct weight updat-
ing heat maps. In comparison, parameters of
ERprio+Dropout seem to be updated uniformly in
different task transitions. The above observations
verify that ARPER indeed elastically allocates dif-
ferent network parameters to distinct NLG tasks to
mitigate catastrophic forgetting.

