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Abstract

We propose the Graph2Graph Transformer
architecture for conditioning on and predicting
arbitrary graphs, and apply it to the challenging
task of transition-based dependency parsing.
After proposing two novel Transformer models
of transition-based dependency parsing as
strong baselines, we show that adding the
proposed mechanisms for conditioning on
and predicting graphs of Graph2Graph Trans-
former results in significant improvements,
both with and without BERT pre-training.
The novel baselines and their integration
with Graph2Graph Transformer significantly
outperform the state-of-the-art in traditional
transition-based dependency parsing on
both English Penn Treebank, and 13 lan-
guages of Universal Dependencies Treebanks.
Graph2Graph Transformer can be integrated
with many previous structured prediction
methods, making it easy to apply to a wide
range of NLP tasks.

1 Introduction

In recent years, there has been a huge amount of
research on applying self-attention models to NLP
tasks. Transformer (Vaswani et al., 2017) is the most
common architecture, which can capture long-range
dependencies by using a self-attention mechanism
over a set of vectors. To encode the sequential struc-
ture of sentences, typically absolute position embed-
dings are input to each vector in the set, but recently a
mechanism has been proposed for inputting relative
positions (Shaw et al., 2018). For each pair of vec-
tors, an embedding for their relative position is input
to the self-attention function. This mechanism can
be generalised to input arbitrary graphs of relations.

We propose a version of the Transformer
architecture which combines this attention-based
mechanism for conditioning on graphs with an
attention-like mechanism for predicting graphs
and demonstrate its effectiveness on syntactic
dependency parsing. We call this architecture

Graph2Graph Transformer. This mechanism for
conditioning on graphs differs from previous pro-
posals in that it inputs graph relations as continuous
embeddings, instead of discrete model structure (e.g.
(Henderson, 2003; Henderson et al., 2013; Dyer
et al., 2015)) or predefined discrete attention
heads (e.g. (Ji et al., 2019; Strubell et al., 2018)).
An explicit representation of binary relations is sup-
ported by inputting these relation embeddings to the
attention functions, which are applied to every pair
of tokens. In this way, each attention head can easily
learn to attend only to tokens in a given relation, but
it can also learn other structures in combination with
other inputs. This gives a bias towards attention
weights which respect locality in the input graph but
does not hard-code any specific attention weights.

We focus our investigation on this novel graph
input method and therefore limit our investigation
to models which predict the output graph one
edge at a time, in an auto-regressive fashion. In
auto-regressive structured prediction, after each
edge of the graph has been predicted, the model
must condition on the partially specified graph
to predict the next edge of the graph. Thus, our
proposed Graph2Graph Transformer parser is
a transition-based dependency parser. At each
step, the model predicts the next parsing decision,
and thereby the next dependency relation, by
conditioning on the partial parse structure specified
by the previous decisions. It inputs embeddings
for the previously specified dependency relations
into the Graph2Graph Transformer model via
the self-attention mechanism. It predicts the next
dependency relation using only the vectors for the
tokens involved in that relation.

To evaluate this architecture, we also propose two
novel Transformer models of transition-based de-
pendency parsing, called Sentence Transformer, and
State Transformer. Sentence Transformer computes
contextualised embeddings for each token of the in-
put sentence and then uses the current parser state to
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identify which tokens could be involved in the next
valid parse transition and uses their contextualised
embeddings to choose the best transition. For State
Transformer, we directly use the current parser state
as the input to the model, along with an encoding
of the partially constructed parse graph, and choose
the best transition using the embeddings of the
tokens involved in that transition. Both baseline
models achieve competitive or better results than
previous state-of-the-art traditional transition-based
models, but we still get substantial improvement by
integrating Graph2Graph Transformer with them.
We also demonstrate that, despite the modified
input mechanisms, this Graph2Graph Transformer
architecture can be effectively initialised with stan-
dard pre-trained Transformer models. Initialising
the Graph2Graph Transformer parser with pre-
trained BERT (Devlin et al., 2018) parameters leads
to substantial improvements. The resulting model
significantly improves over the state-of-the-art in
traditional transition-based dependency parsing.
This success demonstrates the effectiveness of
Graph2Graph Transformers for conditioning on
and predicting graph relations. This architecture
can be easily applied to other NLP tasks that have
any graph as the input and need to predict a graph
over the same set of nodes as output.
In summary, our contributions are:
e We propose Graph2Graph Transformer for
conditioning on and predicting graphs.
e We propose two novel Transformer models of
transition-based dependency parsing.
e We successfully integrate pre-trained BERT
initialisation in Graph2Graph Transformer.
e We improve state-of-the-art accuracies for tra-
ditional transition-based dependency parsing. '

2 Transition-based Dependency Parsing

Our transition-based parser uses arc-standard
parsing sequences (Nivre, 2004), which makes
parsing decisions in bottom-up order. The main
data structures for representing the state of an
arc-standard parser are a buffer of words and a stack
of partially constructed syntactic sub-trees. At each
step, the parser chooses between adding a leftward
or rightward labelled arc between the top two words
on the stack (LEFT—-ARC (I) or RIGHT-ARC (I),
where [ is a dependency label) or shifting a word
from the buffer onto the stack (SHIFT). To handle

'Our implementation is available at:
//github.com/alirezamshi/G2GTr

https:

non-projective dependency trees, we allow the
SWAP action proposed in Nivre (2009), which shifts
the second-from-top element of the stack to the
front of the buffer, resulting in the reordering of the
top two elements of the stack.

3 Graph2Graph Transformer

We propose a version of the Transformer which
is designed for both conditioning on graphs and
predicting graphs, which we call Graph2Graph
Transformer (G2GTr), and show how it can be
applied to transition-based dependency parsing.
G2GTr supports arbitrary input graphs and arbitrary
edges in the output graph. But since the nodes of
both these graphs are the input tokens, the nodes
of the output graph are limited to the set of nodes
in the input graph.

Inspired by the relative position embeddings of
Shaw et al. (2018), we use the attention mechanism
of Transformer to input arbitrary graph relations.
By inputting the embedding for a relation label into
the attention functions for the related tokens, the
model can more easily learn to pass information
between graph-local tokens, which gives the model
an appropriate linguistic bias, without imposing
hard constraints.

Given that the attention function is being used
to input graph relations, it is natural to assume
that graph relations can also be predicted with an
attention-like function. We do not go so far as to
restrict the form of the prediction function, but we
do restrict the vectors used to predict graph relations
to only the tokens involved in the relation.

3.1 Original Transformer

Transformer (Vaswani et al., 2017) is an encoder-
decoder model, of which we only use the encoder
component. A Transformer encoder computes
an output embedding for each token in the input
sequence through stacked layers of multi-head
self-attention. Each attention head takes its input
vectors (x1,...,£5) and computes its output attention
vectors (21,...,2,). Bach z; € R is a weighted sum
of transformed input vectors z; € R™:

zi:Zaij(:chV) (1)
J

with the attention weights o;; = % and
k=1 ke

_ (@W)(;WE)
€ij = Nz

2
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(b) SentTr+G2GTr.

Figure 1: The State Transformer and Sentence Transformer parsers with Graph-to-Graph Transformer integrated.

where WY, WQ WK ¢ R™*4 are the trained
value, query and key matrices, m is the embedding
size, and d is the attention head size.

3.2 Graph Inputs

Graph2Graph Transformer extends the architecture
of the Transformer to accept any arbitrary graph as
input. In particular, we input the dependency tree
as its set of dependency relations. Each labelled
relation (z;,2;,0") is input by modifying Equation
2 as follows:
_ (@WO) (2, WX +p; W)
€ij = 3)
Vd
where p;; € {0, 1} is a one-hot vector which
specifies the type I’ of the relation between z; and
z;, discussed below, and W' € RF*4 is a matrix
of learned parameters. We also modify Equation 1
to transmit information about relations to the output
of the attention layer:
2=y aij(z; WY +p; Wy) )
J
where WzL € RF*4 are learned parameters.

In this work, we consider graph input for only
unlabelled directed dependency relations I’, so p;;
has only three dimensions (k=3), for leftward,
rightward and none. This choice was made
mostly to simplify our extension of the Transformer,
as well as to limit the computational cost of this
extension. The dependency labels are input as label
embeddings added to the input token embeddings
of the dependent word.

3.3 Graph Outputs

The graph output mechanism of Graph2Graph
Transformer predicts each labelled edge of the

graph using the output embeddings of the tokens
that are connected by that edge. Because in this
work we are investigating auto-regressive models,
this prediction is done one edge at a time. See
(Mohammadshahi and Henderson, 2020) for an
investigation of non-autoregressive models using
our G2GTr architecture.

In this work, the graph edges are labelled
dependency relations, which are predicted as part of
the actions of a transition-based dependency parser.
In particular, the Relation classifier uses the output
embeddings of the top two elements on the stack
and predicts the label of their dependency relation,
conditioned on its direction. There is also an Exist
classifier, which uses the output embeddings of the
top two elements on the stack and the front of the
buffer to predict the type of parser action, SHIFT,
SWAP, RIGHT-ARC, or LEFT-ARC.

at = EX]St([_giQ 7.9?91 7.glt)1 ])

5
¢ =Relation(gf, o', ][a")

where g%, g%, , and g; are the output embeddings
of top two tokens in the stack and the front of buffer,
respectively. The Exist and Relation classifiers
are MLPs with one hidden layer.

For the transition-based dependency parsing task,
the chosen parser action and dependency label are
used both to update the current partial dependency
structure and to update the parser state.

4 Parsing Models

In this section, we define two Transformer-based
models for transition-based dependency parsing,
and integrate the Graph2Graph Transformer
architecture with them, as illustrated in Figure 1.
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4.1 State Transformer

We propose a novel attention-based architecture,
called State Transformer (StateTr), which computes
a comprehensive representation for the parser state.
Inspired by Dyer et al. (2015), we directly use the
parser state, meaning both the stack and buffer
elements, as the input to the Transformer model.
We additionally incorporate components that have
proved successful in Dyer et al. (2015). In the
remaining paragraphs, we describe each component
in more detail.

4.1.1 Input Embeddings

The Transformer architecture takes a sequence of
input tokens and converts them into a sequence
of input embedding vectors, before computing its
context-dependent token embeddings. For the State
Transformer model, the sequence of input tokens
represents the current parser state, as illustrated in
Figure 1a.

Input Sequence: The input symbols include the
words of the sentence 2 = (w1,w3,...,w, ) with their
associated part-of-speech tags (PoS) (aq,a,...,cu,).
Each of these words can appear in the stack or
buffer of the parser state. Besides, there is the ROOT
symbol, for the root of the dependency tree, which
is always on the bottom of the stack. Inspired by the
input representation of BERT (Devlin et al., 2018),
we also use two special symbols, CLS and SEP,
which indicate the different parts of the parser state.
The sequence of input tokens starts with the CLS
symbol, then includes the tokens on the stack from
bottom to top. Then it has a SEP symbol, followed
by the tokens on the buffer from front to back so that
they are in the same order in which they appeared in
the sentence. Given this input sequence, the model
computes a sequence of vectors which are input to
the Transformer network. Each vector is the sum
of several embeddings, which are defined below.

Input Token Embeddings: The embedding of
each token (w;) is calculated as:

T, =Emb(w;)+Emb(a;) (6)

where Emb(w;), Emb(a;) € R™ are the word
and PoS embeddings respectively. For the word
embeddings, we use the pre-trained word vectors
of the BERT model. During training and evaluation,
we use the pre-trained embedding of first sub-word
as the token representation of each word and discard
embeddings of non-first sub-words due to training

det
compound

An Investment Firm

compound Investment Firm

|

det An ¢!

! ! l
e g oo

Figure 2: An Example of Composition model.

efficiency.’
parameters.

The PoS embeddings are trained

Composition Model: As an alternative to our
proposed graph input method, previous work has
shown that complex phrases can be input to a
neural network by using recursive neural networks
to recursively compose the embeddings of sub-
phrases (Socher et al., 2011, 2014, 2013; Hermann
and Blunsom, 2013; Tai et al., 2015). We extend the
proposed composition model of Dyeretal. (2015) by
applying a one-layer feed-forward neural network
as a composition model and adding skip connec-
tions to each recursive step.® Since a syntactic head
may contain an arbitrary number of dependents, we
compute new token embeddings of head-dependent
pairs one at a time as they are specified by the parser,
as shown in Figure 2. At each parser step ¢, we
compute each new token embedding C? of token 4
by inputting to the composition model, its previous
token embedding C’;f*l and the embedding of the
most recent dependent with its associated depen-
dency label, where j is the position of token 7 in the
previous parser state. Att =0, C? is set to the initial
token embedding 7),,. More mathematical and
implementation details are given in Appendix B.

Position and Segment Embeddings: To distin-
guish the different positions and roles of words in

2Using embeddings of first sub-word for each word results
in better performance than using the last one or averaging all of
them as also shown in previous works (Kondratyuk and Straka,
2019; Kitaev et al., 2019).

3These skip connections help address the vanishing gra-
dient problem, and preliminary experiments indicated that they
were necessary to integrate pre-trained BERT (Devlin et al.,
2018) parameters with the model (discussed in Section 4.4 and
Appendix A.A).
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the parser state, we add their embeddings to the
token embeddings. Position embeddings (3; encode
the token’s position in the whole sequence.* Seg-
ment embeddings ; encode that the input sequence
contains distinct segments (e.g. stack and buffer).

Total Input Embeddings: Finally, at each step ¢,
we sum the outputs of the composition model with
the segment and position embeddings and consider
them as the sequence of input embeddings for our
State Transformer model.

zt=Cl+~;+B; (7

4.1.2 History Model

We define a history model similar to Dyer et al.
(2015), to capture the information about previously
specified transitions. The output A of the history
model is computed as follows:

Bt =LSTM((R~ L") at+1)  (8)

where a' and [! are the previous transition and its
associated dependency label, and h!~! and ¢!~!
are the previous output vector and cell state of the
history model. The output of the history model is
input directly to the parser action classifiers in (5).

4.2 Sentence Transformer

We propose another attention-based architecture,
called Sentence Transformer (SentTr), to compute a
representation for the parser state. This model first
uses a Transformer to compute context-dependent
embeddings for the tokens in the input sentence.
Similarly to Cross and Huang (2016), a separate
stack and buffer data structure is used to keep track
of the parser state, as shown in Figure 1b, and
the context-dependent embeddings of the tokens
that are involved in the next parser action are used
to predict the next transition. More specifically,
the input sentence tokens are computed with the
BERT tokeniser (Devlin et al., 2018) and the next
transition is predicted from the embeddings of the
first sub-words of the top two elements of the stack
and the front element of the buffer.

In the baseline version of this model, the
Transformer which computes the token embeddings

*Preliminary experiments showed that using position em-
beddings for the whole sequence achieves better performance
than applying separate position embeddings for each segment
(More detail in Appendix A.B).

SPredicting transitions with the embedding of first
sub-word for each word results in better performance than
using the last one or all of them as also shown in previous
works. (Kondratyuk and Straka, 2019; Kitaev et al., 2019)

does not see the structure of the parser state nor the
partial dependency structure.

In Sentence Transformer, the sequence of input
tokens starts with a CLS token and ends with a SEP
token, as in the BERT (Devlin et al., 2018) input
representation. It also includes the ROOT symbol
for the root of the dependency tree. The input
embeddings are derived from input tokens as:

x;=Emb(w;)+Emb(a;)+5; 9)

where z; is the input embedding for token w;,
Emb(.) is defined as in Equation (6), and (3, is the
positional embedding for the element at position .

4.3 Integrating with G2G Transformer

We use the two proposed attention-based depen-
dency parsers above as baselines, and evaluate the
effects of integrating them with the Graph2Graph
Transformer architecture. We modify the encoder
component of each baseline model by adding the
graph input mechanism defined in Section 3.2.
Then, we compute the new partially constructed
graph as follows:

Z'=Gin(X,GY)

10
Gt“:GtUGout(Select(Zt7Pt)) (o

where G is the current partially specified graph, Z*
is the encoder’s sequence of output token embed-
dings, P! is the parser state, and G**! is the newly
predicted partial graph. Gin, and Gout are the
graph input and graph output mechanisms defined
in Sections 3.2 and 3.3. The Select function selects
from Z?, the token embeddings of the top two ele-
ments on the stack and the front of the buffer, based
on the parser state Pt. More specifics about each
baseline are given in the following paragraphs.®

State Tr +G2GTr: To input all the dependency
relations in the current partial parse, we add a third
segment to the parser state, called the Deleted list D,
which includes words that have been removed from
the buffer and stack after having both their children
and parent specified. The order of words in D is
the same as the input sentence. The current partial
dependency structure is then input with the graph
input mechanism as relations between the words in
this extended parser state. To show the effectiveness
of the graph input mechanism, we exclude the
composition model from the State Transformer
model when integrated with the Graph2Graph

A worked example of both baseline models integrated
with G2GTr is provided in Appendix C.
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Transformer architecture. We will demonstrate the
impact of this replacement in Section 6.

Sentence Tr +G2GTr: The current partial depen-
dency structure is input with the graph input mech-
anism as relations between the first sub-words of
the head and dependent words of each dependency
relation. For the non-first subwords of each word,
we define a new dependency relation with these sub-
words dependent on their associated first sub-word.

4.4 Pre-Training with BERT

Initialising a Transformer model with the pre-
trained parameters of BERT (Devlin et al., 2018),
and then fine-tuning on the target task, has demon-
strated large improvements in many tasks. But our
version of the Transformer has novel inputs that
were not present when BERT was trained, namely
the graph inputs to the attention mechanism and the
composition embeddings (for State Transformer).
Also, the input sequence of State Transformer has
a novel structure, which is only partially similar
to the input sentences which BERT was trained
on. So itis not clear that BERT pre-training will
even work with this novel architecture. To evaluate
whether BERT pre-training works for our proposed
architectures, we also initialise the weights of our
models with the first n layers of BERT, where n is
the number of self-attention layers in the model.

S Experimental Setup
5.1 Datasets

We evaluate our models on two types of datasets,
WSJ Penn Treebank, and Universal Dependency
(UD) Treebanks. Following Kulmizev et al.
(2019), for evaluation, we include punctuation for
UD treebanks and exclude it for the WSJ Penn
Treebank (Nilsson and Nivre, 2008).”

WSJ Penn Treebank: We train our models on
the Stanford dependency version of the English
Penn Treebank (Marcus et al., 1993). We use the
same setting as defined in Dyer et al. (2015). We
additionally add section 24 to our development set
to avoid over-fitting. For PoS tags, we use Stanford
PoS tagger (Toutanova et al., 2003).

Universal Dependency Treebanks: We also
train models on Universal Dependency Treebanks
(UD v2.3) (Nivre et al., 2018). We evaluate our
models on the list of languages defined in Kulmizev

"Description of Treebanks are provided in Appendix D.

et al. (2019). This set of languages contains
different scripts, various morphological complexity
and character set sizes, different training sizes, and
non-projectivity ratios.

5.2 Models

As strong baselines from previous work, we
compare our models to previous traditional
transition-based and Seq2Seq models. For a fair
comparison with previous models, we consider
“traditional” transition-based parsers to be those that
predict a fixed set of scores for each decoding step.

To investigate the usefulness of each component
of the proposed parsing models, we evaluate
several versions. For the State Transformer, we
evaluate StateTr and StateTr+G2GTr models both
with and without BERT initialisation. To further
analyse the impact of Graph2Graph Transformer,
we also compare to keeping the composition
function of the StateTr model when integrated with
G2GTr (StateTr+G2GTr+C). To further demon-
strate the impact of the graph output mechanism,
we compare to using the output embedding of the
CLS token as the input to the transition classifiers
for both the baseline model (StateCLSTr) and
its combined version (StateTr+G2CLSTr). For
Sentence Transformer, we evaluate the SentTr and
SentTr+G2GTr models with BERT initialisation.
We also evaluate the best variations of each baseline
on the UD Treebanks.’

5.3 Details of Implementation

All hyper-parameter details are given in Appendix F.
Unless specified otherwise, all models have 6
self-attention layers. We use the AdamW optimiser
provided by Wolf et al. (2019) to fine-tune model
parameters. All our models use greedy decoding,
meaning that at each step only the highest scoring
parser action is considered for continuation. This
was done for simplicity, although beam search
could also be used. The pseudo-code for computing
the elements of the graph input matrix (p;;) for each
baseline is provided in Appendix G.

8We do not consider the models of (Ma et al., 2018;
Fernandez-Gonzalez and Gémez-Rodriguez, 2019) to be
comparable to traditional transition-based models like ours
because they make decoding decisions between O(n) alter-
natives. In this sense, they are in between the O(1) alternatives
for transition-based models and the O(n?) alternatives for
graph-based models. Future work will investigate applying
Graph2Graph Transformer to these types of parsers as well.

The number of parameters and average running times for
each model are provided in Appendix E.
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Dev Set Test Set

UAS LAS UAS LAS
Transition-based:
Dyeretal. (2015) 93.10 90.90
Weiss et al. (2015) 94.26 91.42
Cross and Huang (2016) 93.42 91.36
Ballesteros et al. (2016) 93.56 92.41
Andor et al. (2016) 94.61 92.79
Kiperwasser and Goldberg (2016) 93.90 91.90
Yang et al. (2017) 94.18 92.26
Seq2Seq-based:
Zhang et al. (2017) 93.71 91.60
Lietal. (2018) 94.11 92.08
StateTr 91.94 89.07 92.32 8§9.69
StateTr+G2GTr 92.53 90.16 93.07 91.08
BERT StateTr 94.66 91.94 95.18 92.73
BERT StateCLSTr 93.62 90.95 94.31 91.85
BERT StateTr+G2GTr 94.96 92.88 95.58 93.74
BERT StateTr+G2CLSTr 94.29 92.13 94.83 92.96
BERT StateTr+G2GTr+C 94.41 92.25 94.89 9293
BERT SentTr 95.34 93.29 95.65 93.85
BERT SentTr+G2GTr 95.66 93.60 96.06 94.26
BERT SentTr+G2GTr-7 layer 95.78 93.74 96.11 94.33

Table 1:  Comparisons to SoTA on English WSJ
Treebank Stanford dependencies.
Kulmizev et al.| BERT BERT

Language| 919) StateTr+G2GTr| SentTr+G2GTr
Arabic 81.9 82.63 83.65
Basque 77.9 74.03 83.88
Chinese 83.7 8591 87.49
English 87.8 89.21 90.35
Finnish 85.1 80.87 89.47
Hebrew 85.5 87.0 88.75
Hindi 89.5 93.13 93.12
Italian 92.0 92.6 93.99
Japanese 92.9 95.25 95.51
Korean 83.7 80.13 87.09
Russian 91.5 92.34 93.30
Swedish 87.6 88.36 90.40
Turkish 64.2 56.87 67.77
Average 84.87 84.48 88.06

Table 2: Labelled attachment score on 13 UD corpora
for Kulmizev et al. (2019) with BERT pre-training,
BERT StateTr+G2GTr, and BERT SentTr+G2GTr
models.

6 Results and Discussion

6.1 English Penn Treebank Result

In Table 1, we show several variations of our models,
and previous state-of-the-art transition-based and
Seq2Seq parsers on WSJ Penn Treebank.'® For
State Transformer, replacing the composition
model (StateTr) with our graph input mechanism
(StateTr+G2GTr) results in 9.97% /11.66% LAS

10Results are calculated with the official evaluation script
providedin https://depparse.uvt.nl/.

relative error reduction (RER) without / with BERT
initialisation, which demonstrates its effectiveness.
Comparing to the closest previous model for
conditioning of the parse graph, the StateTr+G2GTr
model reaches better results than the StackLSTM
model (Dyer et al., 2015). Initialising our models
with pre-trained BERT achieves 26.25% LAS
RER for the StateTr model, and 27.64% LLAS RER
for the StateTr+G2GTr model, thus confirming
the compatibility of our G2GTr architecture with
pre-trained Transformer models. The BERT
StateTr+G2GTr model outperforms previous
state-of-the-art models. Removing the graph output
mechanism  (StateCLSTr/ StateTr+G2CLSTr)
results in a 12.28% / 10.53% relative performance
drop for the StateTr and StateTr+G2GTr models,
respectively, which demonstrates the importance of
our graph output mechanism. If we consider both
the graph input and output mechanisms together,
adding them both (BERT StateTr+G2GTr) to
BERT StateCLSTr achieves 21.33% LAS relative
error reduction, which shows the synergy of using
both mechanisms together. But then adding the
composition model (BERT StateTr+G2GTr+C)
results in an 8.84% relative drop in performance,
which demonstrates again that our proposed graph
input method is a more effective way to model the
partial parse than recursive composition models.
For Sentence Transformer, the synergy between
its encoder and BERT results in excellent perfor-
mance even for the baseline model (compared to
Cross and Huang (2016)). Nonetheless, adding
G2GTr achieves significant improvement (4.62%
LAS RER), which again demonstrates the effective-
ness of the Graph2Graph Transformer architecture.
Finally, we also evaluate the BERT SentTr+G2GTr
model with 7 self-attention layers instead of 6, re-
sulting in 2.19% LAS RER, which motivates future
work on larger Graph2Graph Transformer models.

6.2 UD Treebanks Results

In Table 2, we show LAS scores on 13 UD
Treebanks'!. As the baseline, we use scores of the
transition-based model proposed by Kulmizev et al.
(2019), which uses the deep contextualized word
representations of BERT and ELMo (Peters et al.,
2018) as an additional input to their parsing models.

"Unlabelled attachment scores, and results of de-
velopment set are provided in the Appendix H. Re-
sults are calculated with the official UD evaluation
script  (https://universaldependencies.org/
conlll8/evaluation.html).
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Our BERT StateTr+G2GTr model outperforms
the baseline on 9 languages, again showing
the power of the G2GTr architecture. But for
morphology-rich languages such as Turkish and
Finish, the StateTr parser design choice of only
inputting the first sub-word of each word causes
too much loss of information, resulting in lower
results for our BERT StateTr+G2GTr model than
the baseline. This problem is resolved by our SentTr
parser design because all sub-words are input. The
BERT SentTr+G2GTr model performs substantially
better than the baseline on all languages, which
confirms the effectiveness of our Graph2Graph
Transformer architecture to capture a diversity of
types of structure from a variety of corpus sizes.

6.3 Error Analysis

To analyse the effectiveness of the proposed graph
input and output mechanisms in variations of
our StateTr model pre-trained with BERT, we
follow McDonald and Nivre (2011) and measure
their accuracy as a function of dependency length,
distance to root, sentence length, and dependency
type, as shown in Figure 3 and Table 3.'2. These
results demonstrate that most of the improvement
of the StateTr+G2GTr model over other variations
comes from the hard cases which require a more
global view of the sentence.

Dependency Length: The leftmost plot shows
labelled F-scores on dependencies binned by
dependency lengths. The integrated G2GTr models
outperform other models on the longer (more
difficult) dependencies, which demonstrates the
benefit of adding the partial dependency tree to
the self-attention model, which provides a global
view of the sentence when the model considers
long dependencies. Excluding the graph output
mechanism also results in a drop in performance
particularly in long dependencies. Keeping the
composition component in the StateTr+G2GTr
model doesn’t improve performance at any length.

Distance to Root: The middle plot shows the
labelled F-score for dependencies binned by the
distance to the root, computed as the number of
dependencies in the path from the dependent to the
root node. The StateTr+G2GTr models outperform
baseline models on nodes that are of middle depths,
which tend to be neither near the root nor near the

2We use MaltEval(Nilsson and Nivre, 2008) tool for

computing accuracies. Tables of results for the error analysis
in Figure 3, and Table 3 are in the Appendix I.

Type StateTr+G2GTr| StateTr StateTr+G2CLSTr
rcmod 86.84 76.38 (-79.5%) | 83.91 (-22.3%)
nsubjpass| 95.49 92.70 (-61.9%) | 94.08 (-31.1%)
ccomp | 89.49 81.82 (-73.0%) | 87.56 (-18.4%)
infmod | 87.38 79.19 (-64.9%) | 84.93 (-19.4%)
neg 95.75 94.84 (-21.4%) | 93.78 (-46.2%)
csubj 76.94 67.93 (-39.0%) | 70.83 (-26.5%)
cop 93.08 92.62(-6.5%) | 91.58 (-21.7%)

cc 90.90 90.45 (-4.9%) | 88.80(-23.1%)

Table 3: F-scores (and RER) of our full BERT model
(StateTr+G2GTr), without graph inputs (StateTr), and
without graph outputs (StateTr+G2CLSTr) for some
dependency types on the development set of WSJ
Treebank, ranked by total negative RER. Relative error
reduction is computed w.r.t. the StateTr+G2GTr scores.

leaves, and thus require more global information,
as well as deeper nodes.

Sentence Length: The rightmost plot shows
labelled attachment scores (LAS) for sentences
with different lengths. The relative stability of the
StateTr+G2GTr model across different sentence
lengths again shows the effectiveness of the
Graph2Graph Transformer model on the harder
cases. Not using the graph output method shows
particularly bad performance on long sentences, as
does keeping the composition model.

Dependency Type: Table 3 shows F-scores of
different dependency types. Excluding the graph
input (StateTr) or graph output (StateTr+G2CLSTr)
mechanisms results in a substantial drop for many
dependency types, especially hard cases where accu-
racies are relatively low, and cases such as ccomp
which require a more global view of the sentence.

7 Conclusion

We proposed the Graph2Graph Transformer archi-
tecture, which inputs and outputs arbitrary graphs
through its attention mechanisms. Each graph rela-
tion is input as a label embedding to each attention
function involving the relation’s tokens, and each
graph relation is predicted from its token’s embed-
dings like an attention function. We demonstrate the
effectiveness of this architecture on transition-based
dependency parsing, where the input graph is
the partial dependency structure specified by the
parse history, and the output graph is predicted one
dependency at a time by the parser actions.

To establish strong baselines, we also propose two
Transformer-based models for this task, called State
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Figure 3: Error analysis of our models on the development set of the WSJ dataset.

Transformer and Sentence Transformer. The former
model incorporates history and composition models,
as proposed in previous work. Despite the compet-
itive performance of these extended-Transformer
parsers, adding our graph input and output mecha-
nisms results in significant improvement. Also, the
graph inputs are effective replacements for the com-
position models. All these results are preserved with
the incorporation of BERT pre-training, which re-
sults in substantially improving the state-of-the-art
in traditional transition-based dependency parsing.

As well as the generality of the graph input
mechanism, the generality of the graph output
mechanism means that Graph2Graph Transformer
can be integrated with a wide variety of decoding
algorithms. For example, Mohammadshahi and
Henderson (2020) investigate non-autoregressive
decoding, which addresses the computational
cost of running the G2GTr model once for every
dependency edge. Graph2Graph Transformer can
also easily be applied to a wide variety of NLP
tasks, such as semantic parsing tasks, which we
hope to demonstrate in future work.
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