Towards Domain-Independent Text Structuring Trainable
on Large Discourse Treebanks

Grigorii Guz and Giuseppe Carenini
Department of Computer Science
University of British Columbia
Vancouver, BC, Canada, V6T 174

{gguz, carenini}@cs.ubc.ca

Abstract

Text structuring is a fundamental step in NLG,
especially when generating multi-sentential
text. With the goal of fostering more general
and data-driven approaches to text structuring,
we propose the new and domain-independent
NLG task of structuring and ordering a (pos-
sibly large) set of EDUs. We then present a
solution for this task that combines neural de-
pendency tree induction with pointer networks
and can be trained on large discourse tree-
banks that have only recently become avail-
able. Further, we propose a new evaluation
metric that is arguably more suitable for our
new task compared to existing content order-
ing metrics. Finally, we empirically show that
our approach outperforms competitive alterna-
tives on the proposed measure and is equiva-
lent in performance with respect to previously
established measures.

1 Introduction

Natural Language Generation (NLG) plays a funda-
mental role in data-to-text tasks like automatically
producing soccer, weather and financial reports
(Chen and Mooney, 2008; Plachouras et al., 2016;
Balakrishnan et al., 2019), as well as in text-to-text
generation tasks like summarization (Nenkova and
McKeown, 2012).

Generally speaking, NLG involves three key
steps (Gatt and Krahmer, 2017): first there is con-
tent determination which selects what informa-
tion units should be conveyed, secondly there is
text structuring, which is responsible for properly
structuring and ordering those units; and finally
microplanning-realization that aggregates informa-
tion units into sentences and paragraphs that are
then verbalized.

The focus of this paper is on the text structuring
step, which is critical for the overall performance
of an NLG system, as it ensures that the commu-
nicative goals of the text are realized in the most

structurally coherent and cohesive way possible,
making the main ideas expressed by the text easy
to follow for the target audience.

Aiming to develop very general computational
methods for text structuring, we keep our study in-
dependent from particular ways in which the input
information units are represented and from explic-
itly provided ordering constraints for the target ap-
plication domain (Gatt and Krahmer, 2017). More
specifically, we propose and attack, in a fully data-
driven way, the novel and domain-independent task
of simultaneously structuring and ordering a set of
Elementary Discourse Units (EDUs), i.e., clause-
like text fragments that the Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988) as-
sumes to be the building blocks of any discourse
structure (see Figure 1(a)(left)). In other words,
we assume that the system is given a set of EDUs
(with cardinality possibly > 100) as input and re-
turns their ordering, as well as the unlabelled RST
dependency discourse tree structure for a document
consisting of this set of EDUs, as illustrated in Fig-
ure 1(a).

Our data-driven approach relies on the very re-
cent availability of large treebanks containing hun-
dreds of thousands of (silver-standard) discourse
trees that can be automatically generated by distant
supervision following the approach presented by
Huber and Carenini (2020). We formulate the prob-
lem as one of the dependency tree induction, re-
purposing existing solutions (Ma and Hovy, 2017;
Vinyals et al., 2015) to perform an RST-based
text structuring where both EDU ordering and tree
building are executed simultaneously (Reiter and
Dale, 2000). The resulting structures can be highly
useful for subsequent NLG pipeline stages such
as aggregation, and for downstream tasks like text
simplification (Zhong et al., 2019). Our approach is
trainable end-to-end, but since the discourse trees
in the training treebank are constituency trees (see

3141

Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3141-3152
November 16 - 20, 2020. (©2020 Association for Computational Linguistics

Figure 1(b)), we face the additional challenge of
turning them into dependency trees (see Figure
1(a)) before the learning process can start (Hayashi
et al., 2016).

In a comprehensive evaluation, we compare our
solution to three baselines along with a competitive
approach based on pointer networks (Vinyals et al.,
2015), which is the established method of choice
not only for sentence ordering (Cui et al., 2018),
but also for basic domain-specific text structur-
ing in data-to-text applications (Puduppully et al.,
2019). In particular, the comparison involves train-
ing and testing the different models on the MEGA-
DT treebank (Huber and Carenini, 2020), contain-
ing /250,000 discourse trees obtained by distant
supervision from a the Yelp’13 corpus of customer
reviews (Tang et al., 2015).

With respect to evaluation metrics, we found
the current ways of measuring content ordering
(e.g., Kendall’s 7) to be inadequate to capture the
quality of long sequences of relatively short in-
formation units (i.e., sequences of EDUs of long
multi-sentential text). Thus, we propose a novel
evaluation measure, Blocked Kendall’s 7, that we
argue should be used for our new NLG task of or-
dering and structuring a possibly large set of EDUs,
because it critically measures how well semanti-
cally close units are clustered together in the cor-
rect order.

To summarize the contributions of this paper:
(i) we propose the new and domain-independent
NLG task involving the structuring and ordering
a set of EDUs, which is intended to enable more
general and data-driven approaches to text structur-
ing; (ii) we present a strong benchmark solution for
this task, trainable on large discourse treebank, that
combines neural dependency tree induction with
pointer networks; (iii) we propose a new evalua-
tion metric that is arguably much more suitable for
this task than existing ordering metrics; (iv) and
on this new metric along with standard tree-quality
metrics, we show empirically that our approach
outperforms or is comparable to competitive alter-
natives. The code for our solution and the new
metric, as well as the treebank for training, is pub-
licly available.!

"ttp://www.cs.ubc.ca/
cs-research/lci/research-groups/
natural-language—-processing/index.html

2 Related Work

(a) Text structuring is a key step in NLG, espe-
cially when generating long multi-sentential doc-
uments. Not surprisingly, this is also the case in
recent neural approaches. Wiseman et al. (2017)
presented the RotoWire corpus, targeting long-
document data-to-text NLG. To generate the docu-
ment, their model conditions on all records in the
data table by weighting their embeddings with at-
tention, in addition to using copying mechanism
for out-of-vocabulary data entries. The follow-up
work of Puduppully et al. (2019), instead of condi-
tioning on all records, arguably performs better text
structuring by first selecting and then ordering the
entries of a data table using Pointer network archi-
tecture (Vinyals et al., 2015). That way, the surface
realization module considers previously generated
text and only one new data table entry at a time.
Their model was extended by Iso et al. (2019), with
an additional GRU for tracking the entities that the
model already referred to in the past. Pursuing
a rather different approach to improve text struc-
turing, Shao et al. (2019) proposed a hierarchical
latent-variable model where the problem is decom-
posed into dependent sub-tasks, aggregating groups
of data table entries into sentences first and then
generating the sentences sequentially, conditioned
on the plan and already generated sentences. Over-
all, these last three models significantly outperform
the initial approach of Wiseman et al. (2017) both
in terms of fluency and coverage, with increasing
sophistication of the text structuring module yield-
ing bigger gains, confirming that text structuring is
indeed crucial for generating coherent long docu-
ments.

The task we propose and investigate in this paper
can be seen as pushing this line of research even
further. We aim for a more ambitious text struc-
turing module inspired by traditional NLG work,
viewing the process as the construction of an RST
discourse tree for the target document (Reiter and
Dale, 2000), which critically includes assigning
importance to each constituent. Tellingly, our task
is also domain-independent and agnostic on the
representation of the input information units.

(b) The goal of sentence ordering is to sort a
given set of unordered sentences into a maximally
coherent document. Most recent work on sentence
ordering (Logeswaran et al., 2016; Cui et al., 2018;
Wang and Wan, 2019) involves constructing con-
textualized order-agnostic representations of indi-

3142

http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html
http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html
http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/index.html

1.
excellent

2.
not pretty

food. and | wish
they would (
4. invest AN
but it is
clean
58
and has
6. friendly
food is staff

fresh and
excellent!

o

N
/ N N N N

/ \ \

1 2 3 5 (\9

(a)

(b)

Figure 1: (a) A simple example of the novel NLG task we propose in this paper: generating an ordered discourse
dependency tree (right) for a given set of EDUs (left). (b) The constituency discourse tree corresponding to the
dependency tree shown in (a). The RST-style discourse trees in the treebanks we use for our experiments are

initially represented as constituency trees.

vidual sentences and full documents using archi-
tectures such as Transformer Encoder without posi-
tional embeddings (Vaswani et al., 2017), and then
feeding those representations into a pointer-based
decoder (Vinyals et al., 2015).

The new task we propose in this paper is sim-
ilar, but more challenging than sentence order-
ing. Instead of ordering sentences, we need to
order EDUs, which are often shorter sentence
constituents, and therefore by expressing smaller
semantic units they arguably require more fine-
grained processing. Furthermore, our task goes
beyond ordering by also requiring the synergistic
and simultaneous step of generating the RST dis-
course structure for the EDUs. To address these
challenges, more powerful techniques for tree in-
duction are needed on top of pointer networks.

(c¢) Document discourse tree structure induc-
tion: The third related line of research involves
the induction of latent tree structures over doc-
uments. Some of these works aim at obtaining
better document representations for tasks such as
text classification (Karimi and Tang, 2019) and
single-document extractive summarization (Liu
et al., 2019). In essence, a neural framework is
designed so that a discourse tree for a document is
induced while training on the target downstream
task. However, even if these approaches demon-
strated improvements over non-tree-based models,
subsequent studies have shown that the resulting
latent discourse dependency trees are often trivial
and too shallow (Ferracane et al., 2019). In contrast,

recent work on distant supervision from sentiment
(Huber and Carenini, 2020) indicates that large tree-
banks of discourse trees can be generated by com-
bining neural multiple-instance learning (Angelidis
and Lapata, 2018) with a CKY-inspired algorithm
(Jurafsky and Martin, 2014). Since a series of ex-
periments in inter-domain discourse parsing have
certified the high-quality of these treebanks, we
use one of such treebaks, called MEGA-DT, for
training and testing our data-driven text structuring
approach.

3 Novel Task and Methods

Our novel task for text structuring receives as input
a set of n EDUs and returns both an ordering and
a discourse structure for that set. We first describe
how the EDUs are encoded, as this is the initial
step for all the approaches we consider. Then, after
discussing a basic method for just ordering the
input EDUs (Pointer Networks), which will serve
as our main baseline, we present our solution for
fully solving the task in detail, which combines tree
induction with pointer networks. We will refer to
our final approach as DepStructurer. We conclude
the section with two simple baselines for EDU
ordering and structuring, respectively.

3.1 EDU Encoder

For a clear comparison of tree vs. non-tree based
approaches, we encode EDUs in a very similar way
to previous sentence ordering works (Cui et al.,
2018; Wang and Wan, 2019). Given a document

3143

with n EDUs ejy.,, with each EDU e; containing
a list of m; words wi.,,,, the final output of the
EDU encoder is a set v1.,,, v; € R? of embeddings
of its EDUs. First, using the base version of the
ALBERT language model (Lan et al., 2020), we
construct individual EDU embeddings b; € R7%®
as the means of EDU word embeddings w01, from
the last layer of ALBERT:

1
by = — D 1
mi;w] (1)

This language model was chosen because it uses
a sentence-ordering objective during pre-training,
see Lan et al. (2020). The EDU embeddings are
then fed into a Transformer Encoder (Vaswani et al.,
2017) without positional embeddings, yielding con-
textualized EDU representations vy.y,:

v1., = TransformerEncoder (b .y,) (2)

As Cui et al. (2018), we compute the final docu-
ment representation z by averaging the document’s
EDU embeddings vy .;,.

3.2 Predicting Order Only: Pointer
Networks

Pointer networks are commonly used for sentence
ordering tasks (Cui et al., 2018) and have been
recently applied to basic text structuring in data-
to-text NLG (Puduppully et al., 2019). We train
a pointer network to maximize the probability of
correct ordering o° of an unordered set of EDUs
V1., @8 a sequence prediction:

n

P(o*|vrm) = [[P (051051, s 05, 01m) (3)
=1

Here, each term in the product of probabilities is
computed as:

hj,cj = LSTM (hj-1,¢j-1,vi-1) (4)
ug = kTtanh(Wyiv; + Wah;) (5)

p(0i|0i—1, ..,01,8) = softmax(u;) (6)

where & € R% and W, Wy € R%*? are learnable
parameters and i,j € (1,...,n) index into input
and output sequences respectively. Similarly to
(Vinyals et al., 2015), we use the document em-
bedding vector z as the initial hidden state and a
vector of zeros as the first input to the pointer net-
work. More specifically, during training, for each

document s in our dataset D we feed in the EDU
embeddings v; according to the gold document or-
der o® and maximize the probability according to

0" = argmax » logp(o*l|s,@) (7)

During inference, since an exhaustive search over
the most likely ordering is intractable, we use beam
search for finding a suboptimal solution.

3.3 Performing the whole task: Our
DepStructurer

The first design choice in addressing the task of
simultaneously structuring and ordering a set of
EDUs is whether the system should learn how to
build dependency or constituency discourse trees
(see Figure 1 (a)-(b) for corresponding examples).
We decided to aim for dependency discourse struc-
tures for two key reasons. Not only have they been
shown to be more general and expressive (Morey
et al., 2018), but there are also readily available
graph-based methods for learning and inference of
dependency trees (Ma and Hovy, 2017) that when
properly combined enable structure and ordering
prediction to benefit from each other. However,
since the only large-scale discourse treebank for
training (MEGA-DT) contains constituency trees,
we first convert them into dependency ones. For
this, we follow the protocol of (Hayashi et al.,
2016), which effectively resolves the ambiguity
involved in converting multinuclear constituency
units. Notice that we want dependency trees that
fully specify the ordering for the EDUs, so our
translation algorithm also labels each dependency
arc with label - L or R, denoting whether the modi-
fier node should be on the left (L) or on the right (R)
of the head node in the linearized EDU sequence.

Once the training data is generated as a depen-
dency treebank, our two-step solution for the task
of structuring and ordering a set of EDUs can be ap-
plied. Notice that the same EDU embeddings v1.,
are reused in both steps - for tree induction (Step 1
§3.3.1) and child ordering (Step 2 §3.3.2). These
embeddings are generated by training a single EDU
Encoder as described in §3.1.

3.3.1 Step 1: Compatibility Matrix and
Initial Tree Induction

The first step of our solution learns how to build a
discourse dependency tree for the input sequence
of EDU embeddings vy.,. Formally, this can be
framed as learning a compatibility matrix (edge

3144

a) Output of Step 1

23%\45

b) Output of Step 2

Figure 2: Outputs of the two inference steps: (a) Initially induced Dependency Tree and (b) Final total ordering.

score tensor more precisely) M € R™*"*2 where
the last dimension of [an entry ¢, j corresponds
to the scores of the labels L and R for the edge
from node 7 to node j. Similarly to (Ma and Hovy,
2017), each entry is computed as follows:

M; ;= vf Wy + Wav; + Wavj +b (8)

where W; € RIX4X2 1), ¢ RI*2 and W35 €
R¥*2 b € R? are learnable bilinear, linear and bias
terms. Once the tensor M is predicted, it is used
for inferring an initial dependency structure.

Learning M: The objective is to maximize the
probability of the correct tree structure y:

exp { Z(vi,vj,l)ey Mi’j’l}

Pl 0 = = 0) ®
where
Z(e1n,0) = Z exp { Z M}
yET(elzn) ('U'L'/Ujvl)ey
(10)

with T'(ey.,,) denoting all possible trees from a set
of EDUS ey.,,. Since the number |T'(e1.,,)| of pos-
sible trees grows exponentially with the number
of EDUs, we need an efficient way of comput-
ing Z(e1.n,0). Following (Koo et al., 2007), we
achieve this goal by first computing the weighted
adjacency matrix A(M) € R™*"*2 for left-child
and right-child edges:

0, ift =7
Aiji= . (11)
exp{M; ;;} otherwise
as well as the root scores for each node:
ri(v) = exp{ MLP(v;)} (12)

Then, the weight of the correct dependency struc-
ture y is defined as

¢(y7 9) = Troot(y) (U) H AZ}J}Z

i,j,l€y

13)

where root(y) is the child of the root node in the
dependency tree. We then compute the Laplacian
matrix L of G:

n 2 e - .
i Ay , fq=
MJ:{zzlzllzm =5

212:1 —A; 1 otherwise

and replace its first row by 7(v):

- ri(v),
2y

It can be shown (Koo et al., 2007) that the deter-
minant of L is in fact equal to the normalizing
constant that we need:

ifi=1

} (15)
otherwise

Z(e1n,0) = |L] (16)
which takes O(n?) time to compute. Hence, the
loss for tree construction derived from eq. 9 can be
computed efficiently:

liree(0) = —log(y,0) +log Z(e1.,,0) (17)

Inference of the initial tree structure: The
learned model is applied to the input sequence of
EDU embeddings vy.,,. Then, using the predicted
compatibility matrix M, the highest-weighting
tree structure can be constructed by the Chu-Liu-
Edmonds algorithm (Edmonds, 1967), with the root
being the node with highest root score r; (eq. 12).
Figure 2 (a) shows a sample output of this process.

3145

3.3.2 Step 2: Ordering Children

The key limitation of Step 1 is that some nodes
in the resulting dependency tree can have multiple
left or right children, which makes their relative
order unrecoverable from the basic tree structure.
For instance, this is the case for nodes 1 and 2 in
Figure 2 (a), both of which have two left children
(outgoing edges labeled by L). To address this issue,
in Step 2 for every node s; € s1., thathas k > 1
left or right children s;, ..., s;, , we train a pointer
network that predicts the correct order of children
on each side - in the same way as described in §
3.2, but specifically trained on groups of children in
MEGA-DT. Figure 2 (b)(top) illustrates an output
of the Pointer network applied to plain dependency
structure in Figure 2 (a), from which the final EDU
ordering 2 (b)(bottom) is decoded as follows.

Algorithm 1: PredictEduOrder

Data: Root

Result: The ordering of elements of V

ordering = []

ordChildren = PtrNet(Root.leftChildren)

for child in ordChildren do
ordering.extend(PredictEduOrder(child))

end

ordering.append(Root)

ordChildren = PtrNet(Root.rightChildren)

for child in ordChildren do
ordering.extend(PredictEduOrder(child))

end

LY-J- RN N A N O R S

-
=

Inference of final ordering: The pseudocode
for predicting the final ordering is provided in Al-
gorithm 1. The ordering is built recursively bottom-
up - at each step, given the ordering of all left and
right subtrees (recursive calls in lines 4, 9), the or-
dering is obtained by concatenating, in the order
predicted by Pointer network (lines 2, 7), the or-
derings of those subtrees, together with the current
root node (line 6). Specifically, the children are or-
dered according to their root node; for example in
Figure 2(b)(top), when deciding the order for child
subtrees rooted at nodes 2,6 for the node 1, the
pointer network orders them using the embeddings
for those nodes.

3.4 Baselines for Ordering and Full Task

Language model decoding (LMD): greedily pre-
dicts the linear EDU ordering. The next EDU at

each timestep is the one maximizing the length
normalized language modelling objective from AL-
BERT.

Unsupervised tree induction (UTI): computes
the compatibility matrix M using cosine similar-
ity between the means of ALBERT embeddings
for each EDU. The label for dependency (left vs.
right child) is chosen randomly, while dependent
orders for nodes with multiple children are chosen
according to above ordering baseline LMD.

Tree Induction (TI+LMD): being an ablation
for our main model, this baseline only learns to in-
duce the tree structure in the same way as DepStruc-
turer, but orders the children as in LMD, without
performing supervised leaf ordering.

4 Experiments

4.1 The MEGA-DT Dataset

Our evaluation relies on MEGA-DT, a discourse
treebank generated by distant supervision from the
Yelp’13 corpus of customer reviews (Tang et al.,
2015), according to the method presented by Huber
and Carenini (2020). The high-quality of MEGA-
DT trees has been certified in experiments in inter-
domain discourse parsing similar to the ones de-
scribed in (Huber and Carenini, 2020). In practice,
their approach for generating the discourse trees
for a set of documents can be applied to any other
genre. If the required sentiment annotation is not
naturally available (like star ratings for customer
reviews), it can be obtained from an off-the-shelf
sentiment analyzer. We train all models on 100k
and 215k subsets of MEGA-DT, and use 7.5k docu-
ments for development and 15k for testing. Due to
memory requirements induced by finetuning AL-
BERT, the training splits only contain documents
with less than 35 EDUs, whereas to evaluate the per-
formance on longer documents, the development
and test sets contain respectively 2.5k and 5k of
longer documents. The project GitHub repository
provides the exact splits.

4.2 Evaluation Metrics

In all experiments, we assess the quality of the
EDUs ordering and of their tree structure indepen-
dently with two sets of corresponding metrics.

4.2.1 Information Ordering Metrics

Measuring the quality of information ordering is
a challenging task because different metrics can
be more or less appropriate depending on the num-

3146

ber and the nature/granularity of the information
units that are ordered. In accord with previous
works, we first consider a set of simple metrics
that essentially penalize the distance of an infor-
mation unit from its correct position. These in-
clude Kendall’s 7, Position Accuracy (POS) and
Perfect Match Ratio (PMR). Then, we propose a
new, more sophisticated metric, which is arguably
much more appropriate for longer sequences of rel-
atively short information units (i.e., sequences of
EDUs of long multisentential text). This metric,
that we call Blocked Kendall’7 rewards a correctly
ordered sub-sequence even if its location is shifted
as a single block.

Kendall’s 7: a metric of rank correlation, widely
used for information ordering evaluation; found to
correlate with human judgement (Lapata, 2006). It
is computed as follows:

> 7 (18)
‘D| 0,€D
where
=1 2% # of transpositions (19)

Z (3)
Position Accuracy (POS) computes the aver-

age proportion of EDUs that are in their correct
absolute position according to the gold ordering.

count(6; = ol)
]D\ Z length(o;)
Perfect Match Ratio (PMR) is the strictest met-

ric, measuring the proportion of documents where
positions of all EDUs are predicted correctly.

(20)

21

The new metric Blocked Kendall’s 7: All met-
rics from previous work simply penalize the dis-
tance of an information unit from its correct posi-
tion. However, ideally, a good metric for informa-
tion ordering should also capture how well seman-
tically close units are clustered together. This as-
pect is even more critical when ordering discourse
units of long documents - oftentimes, paragraphs
or groups of sentences are largely independent in
their meaning from other parts of text, so as long
as a paragraph’s subset of EDUs is ordered cor-
rectly, placing it in a different position should not
be penalized harshly. As a short example, given

the correct ordering o, [1, 2, 3, 4, 5], all afore-
mentioned metrics would give a low score to the
predicted ordering o, [3, 4, 5, 1, 2] - zero for PMR
and POS, and -0.2 for Kendall’s 7. Yet, since the
blocks [1, 2] and [3, 4, 5] are preserved in o, it
makes sense to penalize this ordering for only one
transposition, and not for twelve like Kendall’s 7
does. Arguably, these blocks of EDUs are likely
to be much more coherent and interpretable than
random sequences.

Therefore, we propose a modification for Kendall’s
T that treats the correctly ordered blocks as single
units. For the example above with n = 5, we first
merge the correct blocks into single units (indexed
by the first EDU in the block), so [3,4,5,1,2] —
[3, 1], and compute the Kendall’s 7 on the resulting
reduced sequence:

block transpositions
(5)

The number of transpositions can be at least zero
(if the sequence is perfectly ordered) and at most
(g), if the sequence is in reversed order. Thus,
Blocked Kendall’s 7 has the same range [—1, 1]
and is lower bounded by the standard Kendall’s 7,
with the key advantage of rewarding correct blocks
of EDUs. We also note that our proposed measure
and the standard Kendall’s 7 are not metrics in
mathematical sense, as they both give a score of 1
to perfectly ordered sequences.

Block 75, =1 -2 (22)

4.2.2 Tree Structure Metrics

UAS and LAS: Unlabelled and labelled attach-
ment scores are the most commonly used measures
for evaluation of dependency parsers:

{ele € E¢ N Ep}
V]
{ella(e) =

UAS =

(23)

lp(e), e€ Eqgn Ep}

LAS =
V]

(24)

where V is the set of EDUs, Eq, E'p are the sets
of gold and predicted edges, and I (e) is the label
of edge ein G.

5 Quantitative and Qualitative Results

Results are presented in Table 1 for the full test set
(upper sub-table) and its longer (> 35 EDUs) doc-
ument subset (lower-sub-table). Remarkably, the
DepStructurer (§3.3) dominates other approaches
on the new ordering metric (Blocked Kendall’s 7),

3147

Approach New ordering metric | Tree structure | Previous ordering metrics
Blocked 7 UAS LAS | Kendall’'st POS PMR
Full test set
LM Decoding 8.7 X X -1.3 8.4 1.86
Unsup Tree Induction (UTI) 10.7 13.1 9.27 0.3 9.3 2.61
Tree Induction (TI+LMD) (100k) 41.7 245 229 20.0 16.9 7.36
Tree Induction (TI+LMD) (215k) 45.6 259 243 21.2 175 17.76
Pointer Network (100K) 38.2 X X 29.4 199 6.89
Pointer Network (215K) 40.4 X X 313 20.7 7.22
DepStructurer (100K) 48.7 243 227 28.8 20.0 8.90
DepStructurer (215K) 52.7 258 242 30.7 21.0 935
Long documents only (> 35 EDUs)
LM Decoding 2.4 X X -1.7 2.0 0
Unsup Tree Induction (UTI) 4.5 341 2.22 0.0 2.07 0
Tree Induction (TI+LMD) (100k) 21.2 124 115 5.0 2.8 0
Tree Induction (TI+LMD) (215k) 25.1 13.6 127 5.5 3.0 0
Pointer Network (100K) 21.9 X X 16.6 4.5 0
Pointer Network (215K) 24.1 X X 18.3 4.84 0
DepStructurer (100K) 27.5 120 111 11.7 3.55 0
DepStructurer (215K) 31.5 134 125 12.3 3.51 0

Table 1: Evaluation results on full test set (15k documents) and its long-document subset (5k documents), with best
results per subtable highlighted in bold. The entries marked as (x) signify that these metrics cannot be computed
for the corresponding models, since they do not induce document tree structures.

Figure 3: Ordering produced by DepStructurer (top row) and Pointer (bottom row); Gold ordering in middle row.

and surprisingly, our TI+LMD baseline also out-
performs the Pointer Network on the full test set
and has the performance similar to it on the long-
document subset. In contrast, results are mixed for
ordering metrics from previous work (last column),
which as we have argued in §4.2.1 are however
less appropriate for our text structuring task. In-
terestingly, all trainable models (Pointer Networks
§3.2, our DepStructurer §3.3 and TI+LMD §3.4)
benefit from more training data (100K — 215K),
with equal or even bigger absolute gains for the
DepStructurer, especially on the new metric. This
validates the quality of the MEGA-DT treebank
and suggests that training on larger corpora could
increase the performance even further.

Focusing on the performance of tree induction
systems, our DepStructurer outperforms the unsu-
pervised model (UTI) by a wide margin and has
nearly identical performance with TI+LMD model,

indicating that a trainable tree induction model is
essential to obtain much more accurate trees.

Lastly, among the unsupervised models, UTI out-
performs LM across all metrics. This suggests that
even without training, forcing a model to generate
a tree structure is by itself a useful inductive bias.

To highlight the strengths and potential weak-
nesses of our solution and new metric, we analyze
the output of the DepStructurer and Pointer models
for two medium-length illustrative sample docu-
ments with 16 and 14 EDUs respectively (see Fig-
ures 3 and 4). In each figure, the top row indicates
the ordering output of the DepStructurer, the mid-
dle row is the gold (i.e., correct) ordering, and the
bottom is the Pointer’s output. We color-coded the
blocks that each model predicted correctly, with
the highlights in the middle gold ordering denot-
ing whether the top or bottom model predicted
that block correctly. Additionally, for both exam-

3148

13 10 7 8 9 12 4

13 10 7 3 2 9 11

Figure 4: Example illustrating benefits of new metric.

ples, on the top of the DepStructurer ordering, we
show the predicted tree dependency edges within
the blocks. The main structural benefit of the Dep-
Structurer can be clearly seen in the Figure 3 - the
adjacent EDUs tend to form subtrees, the nodes of
which the model learns to put close together. In the
case of the Pointer model, however, even though
it was able to infer a reasonable approximate or-
dering - with EDUs 1, 3, 2 and EDUs 15, 12, 16
being placed respectively at the beginning/end of
the sequence, it failed to arrange them properly in
coherent blocks. In Figure 4, we can see an exam-
ple where the DepStructurer scores in the standard
and Blocked Kendall’s 7 are very different: —36.3
vs. 34.1; while they are the same for the pointer
model —9.9. This example clearly illustrates the
benefit of our new metric for text structuring. While
both models made poor predictions with respect
to the distance of each EDU to its correct position,
our DepStructurer arguably learned a much more
coherent document structure by better grouping re-
lated information, which is reflected in the Blocked
metric, but is ignored by the standard Kendall’s 7.

6 Conclusions and Future work

By proposing the domain-independent task of struc-
turing and ordering a set of EDUs, we aim to stim-
ulate more general and data-driven approaches for
text structuring. The solution we have developed
for such task combines neural dependency tree in-
duction with pointer networks, which are both train-
able on large discourse treebanks. Since existing
text ordering metrics are not capturing key aspects
of text structuring, we have also proposed a new
metric that is arguably much more suitable for the
task. In a series of experiments, complemented by
qualitative error analysis, we have shown that our
solution delivers top performance and represents
a promising initial framework for further develop-
ments. Fruitful directions for future work include:

(1) Exploring more recent techniques for tree induc-
tion, such as pointer-based and higher-order depen-
dency parsing. (2) Integrating our approach into
existing long-document data-to-text NLG pipelines
such as Puduppully et al. (2019), to explore the
benefits of content structuring pre-training for data-
to-text applications. (3) Verifying the validity of
our proposed measure for ordering textual units of
long documents (i.e. correlation with human judge-
ment), as well as exploring further metrics for text
structuring. (4) Extending our approach to fully-
labelled RST discourse trees involving nuclearity
and relation annotations, which can be obtained
from state-of-the-art RST discourse parsers.

References

Stefanos Angelidis and Mirella Lapata. 2018. Multi-
ple instance learning networks for fine-grained sen-
timent analysis. Transactions of the Association for
Computational Linguistics, 6:17-31.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831—
844, Florence, Italy. Association for Computational
Linguistics.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: A test of grounded language ac-
quisition. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, page
128-135, New York, NY, USA. Association for
Computing Machinery.

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei
Zhang. 2018. Deep attentive sentence ordering net-
work. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4340-4349, Brussels, Belgium. Association
for Computational Linguistics.

Jack Edmonds. 1967. Optimum branchings. JOUR-
NAL OF RESEARCH of the National Bureau of Stan-

3149

https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.18653/v1/D18-1465
https://doi.org/10.18653/v1/D18-1465

dards - B. Mathematics and Mathematical Physics,
71B:233-240.

Elisa Ferracane, Greg Durrett, Junyi Jessy Li, and Ka-
trin Erk. 2019. Evaluating discourse in structured
text representations. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 646—653, Florence, Italy. Associ-
ation for Computational Linguistics.

Albert Gatt and Emiel Krahmer. 2017. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61.

Katsuhiko Hayashi, Tsutomu Hirao, and Masaaki Na-
gata. 2016. Empirical comparison of dependency
conversions for RST discourse trees. In Proceed-
ings of the 17th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue, pages 128—
136, Los Angeles. Association for Computational
Linguistics.

Patrick Huber and Giuseppe Carenini. 2020. Mega
rst discourse treebanks with structure and nuclear-
ity from scalable distant sentiment supervision. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing.

Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi
Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke
Miyao, Naoaki Okazaki, and Hiroya Takamura.
2019. Learning to select, track, and generate for
data-to-text. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2102-2113, Florence, Italy. Associa-
tion for Computational Linguistics.

Dan Jurafsky and James H Martin. 2014. Speech and
language processing, volume 3. Pearson London.

Hamid Karimi and Jiliang Tang. 2019. Learning hier-
archical discourse-level structure for fake news de-
tection. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3432-3442, Minneapolis, Minnesota. Association
for Computational Linguistics.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction mod-
els via the matrix-tree theorem. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 141-150, Prague, Czech Republic.
Association for Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Mirella Lapata. 2006. Automatic evaluation of infor-
mation ordering: Kendall’s tau. Computational Lin-
guistics, 32(4):471-484.

Yang Liu, Ivan Titov, and Mirella Lapata. 2019. Single
document summarization as tree induction. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 1745-1755,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Lajanugen Logeswaran, Honglak Lee, and Dragomir R.
Radev. 2016. Sentence ordering and coherence mod-
eling using recurrent neural networks. In AAAL

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 59-69, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243-281.

Mathieu Morey, Philippe Muller, and Nicholas Asher.
2018. A dependency perspective on RST discourse

parsing and evaluation. Computational Linguistics,
44(2):197-235.

Ani Nenkova and Kathleen McKeown. 2012. A Sur-
vey of Text Summarization Techniques, pages 43-76.
Springer US, Boston, MA.

Vassilis Plachouras, Charese Smiley, Hiroko Bretz, Ola
Taylor, Jochen L. Leidner, Dezhao Song, and Frank
Schilder. 2016. Interacting with financial data using
natural language. In Proceedings of the 39th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 16,
page 1121-1124, New York, NY, USA. Association
for Computing Machinery.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In AAAL

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation Systems. Cambridge Univer-
sity Press, USA.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, and Xiaoyan Zhu. 2019. Long and diverse text
generation with planning-based hierarchical varia-
tional model. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

3150

https://doi.org/10.18653/v1/P19-1062
https://doi.org/10.18653/v1/P19-1062
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.5714
https://doi.org/10.1613/jair.5714
https://doi.org/10.18653/v1/W16-3616
https://doi.org/10.18653/v1/W16-3616
https://doi.org/10.18653/v1/P19-1202
https://doi.org/10.18653/v1/P19-1202
https://doi.org/10.18653/v1/N19-1347
https://doi.org/10.18653/v1/N19-1347
https://doi.org/10.18653/v1/N19-1347
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.1162/coli.2006.32.4.471
https://doi.org/10.1162/coli.2006.32.4.471
https://doi.org/10.18653/v1/N19-1173
https://doi.org/10.18653/v1/N19-1173
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://doi.org/10.1162/COLI_a_00314
https://doi.org/10.1162/COLI_a_00314
https://doi.org/10.1007/978-1-4614-3223-4_3
https://doi.org/10.1007/978-1-4614-3223-4_3
https://doi.org/10.1145/2911451.2911457
https://doi.org/10.1145/2911451.2911457
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3257-3268, Hong Kong, China. As-
sociation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929-1958.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1422-1432.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—-6008. Curran Asso-
ciates, Inc.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2692-2700. Curran Asso-
ciates, Inc.

Tianming Wang and Xiaojun Wan. 2019. Hierarchi-
cal attention networks for sentence ordering. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33:7184-7191.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Yang Zhong, Chao Jiang, Wei Xu, and Junyi Jessy Li.
2019. Discourse level factors for sentence deletion
in text simplification.

A Hyperparameters and training setup

For the Pointer Model §3.2, similarly to (Cui et al.,
2018), the hidden state size in the decoder and
transformer EDU encoder is 512, and beam size
is 64. Also, as in Cui et al. (2018), the 4-layer
Transformer has 8 attention heads. For the De-
pendency Model §3.3, the edge prediction weights
have d = 512, and we choose the highest-scoring
tree among the top-5 root classifier predictions dur-
ing inference. The 768-dimensional outputs of
ALBERT are transformed with a dense layer to
match the dimensionality of EDU encoder. We use

AdamW optimizer (Loshchilov and Hutter, 2019)
with default weight decay 0.01 and learning rate
0.001, and clip gradient norm at 0.2. The learning
rate scheduling rule as in (Vaswani et al., 2017)
has 4000 warm-up steps. We apply word dropout
(Srivastava et al., 2014) to outputs of ALBERT and
of the contextual EDU encoder. We tune dropout
value using 15k training subset, selecting among [0,
0.05, 0.15, 0.3], with best values 0.15 for Pointer
and 0O for the Dependency Model. All models are
trained using early stopping if validation loss did
not decrease for three epochs. As only 1% of EDUs
have length > 20 word tokens, we clip each EDU’s
size at 50 ALBERT tokenizer tokens (since it keeps
spaces). Batch size for all models is 2 - the highest
that could fit into a single GTX 1080 Ti GPU with
11 GB of memory.

B EDU Ordering Examples

See the next page.

3151

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.18653/v1/D17-1239
http://arxiv.org/abs/1911.10384
http://arxiv.org/abs/1911.10384

Dependency:

2: the lechon special on saturdays tasted 3: like it was premade. 4:the ““crispy " part of the pork belly was almost gooey. 1: i
would actually go for 2 1/2 stars. 8: for $2.00, you get 5 mini half, 9: that are great! 12: being a true filipino, i like my lumpia with
a vinegar sauce. 13: if you ask the cashier, for a vinegar sauce, 14: they have a white vinegar, with some onions in it. 10: they
give you a sweet and sour sauce on the side, 11: which i do n't think goes well with it. 7: the gem was the shanghai. 15: it was
ok, better then then the sweet and sour. 6: the pancit was good, but heavy on the vegetables. 5: the meat itself tasted good,
although better with some kikkoman shoyu. 16: overall, a descent find.

Gold:

1: i would actually go for 2 1/2 stars. 2: the lechon special on saturdays tasted 3: like it was premade . 4: the "crispy " part of the
pork belly was almost gooey. 5: the meat itself tasted good , although better with some kikkoman shoyu. 6: the pancit was good,
but heavy on the vegetables. 7: the gem was the shanghai. 8: for $2.00 , you get 5 mini half, 9: that are great! 10: they give you a
sweet and sour sauce on the side, 11: which i don't think goes well with it. 12: being a true filipino , i like my lumpia with a vinegar
sauce. 13: if you ask the cashier, for a vinegar sauce, 14: they have a white vinegar, with some onions in it. 15: it was ok , better

then then the sweet and sour. 16: overall, a descent find.

Pointer:

1:i would actually go for 2 1/2 stars. 8: for $2.00 , you get 5 mini half , 9: that are great! 3: like it was premade. 2: the lechon
special on saturdays tasted 14: they have a white vinegar, with some onions in it. 11: which i don't think goes well with it. 13: if
you ask the cashier, for a vinegar sauce, 7: the gem was the shanghai. 4: the “crispy " part of the pork belly was almost gooey.
6: the pancit was good, but heavy on the vegetables. 15: it was ok, better then then the sweet and sour. 12: being a true filipino, i
like my lumpia with a vinegar sauce. 10: they give you a sweet and sour sauce on the side, 5: the meat itself tasted good,
although better with some kikkoman shoyu. 16: overall, a descent find.

Figure 5: Example from Figure 3 in the paper

Dependency:

13: i simply love their gyros! 10: it is set up like sauce 7: the food is cooked fresh 8: for you 9: so there will be a short wait. 12:
and they bring the food to you. 4: the interior is cutesy and bright 11: where you order at the cashier area 5: while upbeat music
is playing. 6: they have a small outdoor seating area and some booths and tables inside. 3: it's tucked away in a strip plaza
shockingly! 1: i hope more people are frequenting this place 2: since i was last there. 14: it's relatively quick but always fresh and
inexpensive!

Gold:

1:i hope more people are frequenting this place 2: since i was last there. 3: it's tucked away in a strip plaza shockingly! 4: the
interior is cutesy and bright 5: while upbeat music is playing. 6: they have a small outdoor seating area and some booths and
tables inside. 7: the food is cooked fresh 8: for you 9: so there will be a short wait. 10: it is set up like sauce 11: where you order
at the cashier area, 12: and they bring the food to you. 13: i simply love their gyros! 14: it's relatively quick but always fresh and
inexpensive!

Pointer:

13: i simply love their gyros! 10: it is set up like sauce 7: the food is cooked fresh 3: it's tucked away in a strip plaza shockingly! 2
since i was last there. 9: so there will be a short wait. 11: where you order at the cashier area 8: for you, 5: while upbeat music is
playing. 4: the interior is cutesy and bright 6: they have a small outdoor seating area and some booths and tables inside. 14: it's
relatively quick but always fresh and inexpensive! 1: i hope more people are frequenting this place 12: and they bring the food to
you.

Figure 6: Example from Figure 4 in the paper

3152

