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Abstract

The ability to accurately track what happens
during a conversation is essential for the per-
formance of a dialogue system. Current state-
of-the-art multi-domain dialogue state trackers
achieve just over 55% accuracy on the current
go-to benchmark, which means that in almost
every second dialogue turn they place full con-
fidence in an incorrect dialogue state. Belief
trackers, on the other hand, maintain a dis-
tribution over possible dialogue states. How-
ever, they lack in performance compared to
dialogue state trackers, and do not produce
well calibrated distributions. In this work we
present state-of-the-art performance in calibra-
tion for multi-domain dialogue belief trackers
using a calibrated ensemble of models. Our
resulting dialogue belief tracker also outper-
forms previous dialogue belief tracking mod-
els in terms of accuracy.

1 Introduction

Task-oriented dialogue systems aim to act as assis-
tants to their users, solving tasks such as finding a
restaurant, booking a train, or providing informa-
tion about a tourist attraction. They have become
very popular with the introduction of virtual assis-
tants such as Siri and Alexa.

Two tasks are fundamental to such a system. The
first is the ability to track what happened in the
conversation, referred to as tracking. Based on the
result of tracking, the system needs to conduct the
conversation towards the fulfilment of the user goal,
referred to as planning. The tracking component
summarises the dialogue history, or the past, while
the planning component manages the dialogue and
concerns the future. In this work we focus on the
first component.

Early approaches to statistical dialogue mod-
elling view dialogue as a Markov decision pro-
cess (Levin et al., 1998) and define a set of dia-
logue states that the conversation can be in at any

given dialogue turn. The tracking component tracks
the dialogue state. In recent years discrimina-
tive models achieve state-of-the-art dialogue state
tracking (DST) results (Kim et al., 2019; Zhang
et al., 2019; Heck et al., 2020). Still, in a multi-
domain setting such as MultiwOZ (Eric et al.,
2019; Budzianowski et al., 2018), they achieve
an accuracy of just over 55%. This means that
in approximately 45% of cases they make a wrong
prediction and, even worse, they have full confi-
dence in that wrong prediction.

In the wake of statistical dialogue modeling, the
use of partially observable Markov decision pro-
cesses has been proposed to address this issue. The
idea is to model the probability over all possible
dialogue states in every dialogue turn (Williams
and Young, 2007). This probability distribution is
referred to as the belief state. The advantages of
belief tracking are probably best illustrated by an
excerpt from a dialogue with a real user in (Met-
allinou et al., 2013): even though the dialogue state
predicted with the highest probability is not the true
one, the system is able to provide a valid response
because the true dialogue state also has assigned a
non-zero probability.

A model is considered well calibrated if
its confidence estimates are aligned with
the empirical likelihood of its predictions
(Desai and Durrett, 2020).

The belief state can be modelled by deep
learning-based approaches such as the neural be-
lief tracker (Mrksi¢ et al., 2017), the multi-domain
belief tracker (Ramadan et al., 2018), the glob-
ally conditioned encoder belief tracker (Nouri and
Hosseini-Asl, 2018) and the slot utterance match-
ing belief tracker (SUMBT) (Lee et al., 2019) mod-
els. None of these models however address the
issue of calibrating the probability distribution that
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they provide, resulting in them being more con-
fident than they should be. In a dialogue setting,
overconfidence can lead to bad decisions and un-
successful dialogues.

In this work, we present methods for learning
well-calibrated belief distributions. Our contribu-
tions are the following:

e We present the state-of-the-art performance in
calibration for dialogue belief trackers using
a calibrated ensemble of models, called the
calibrated ensemble belief state tracker (CE-
BST).

e Our model achieves best overall joint goal ac-
curacy among the state-of-the-art belief track-
ing models.

Such a well-calibrated belief tracking model is es-
sential for the planning component to successfully
conduct dialogue.

2 Related Work

Since no other belief tracking methods that we are
aware of have achieved success in producing well-
calibrated confidence, we look towards methods
used in other language tasks. Natural language in-
ference is a related task that also benefits from well-
calibrated confidence in predictions. Desai and
Durrett (2020) introduce the use of post-processing
techniques such as temperature scaling to produce
better-calibrated confidence estimates.

Additionally, there have been recent advances in
the construction of more adequate loss functions.
These methods, including Bayesian matching and
prior networks, aim to learn well-calibrated models
without the burden of requiring many extra param-
eters. These methods achieve good calibration in
computer vision tasks such as CIFAR (Joo et al.,
2020; Malinin and Gales, 2018; Szegedy et al.,
2016).

When the limitations of a single model still in-
hibit us from producing more accurate and better-
calibrated models, a popular alternative is to use an
ensemble of models. Recently Malinin and Gales
(2020) showed the success of using an ensemble
of models for machine translation, and in partic-
ular utilising accurate confidence predictions for
analysing translation quality.

3 Calibration Techniques

In this section we explain the details of three cali-
bration techniques that we apply to dialogue belief

tracking.

3.1 Loss Functions

The loss function can have a great impact on the
calibration and accuracy of models. The most com-
monly used loss function in belief tracking is the
standard softmax cross entropy loss. However,
it tends to cause overconfident predictions where
most of the probability is placed on the top class.

Label smoothing cross entropy (Szegedy et al.,
2016) aims to resolve this problem by replacing the
one-hot targets of cross entropy with a smoothed
target distribution. That is, for label y; and smooth-
ing parameter o € (0, %}, the target distribution
will be:

C =Y,

otherwise,

t(cla, yi) = ey

1— (K -1a
e}
where K is the number of possible values of c.
The loss for a model with parameters € and a set
of N output logits 21, Zo, ..., Zy with true labels
Y1, Y2, ..., ynN is defined as:

N
1
L(O.0) =+ > "KL [Softmax(2;)|[t(ci|o, ;)] ,

i=1
2
where KL is the Kullback—Leibler divergence be-
tween two distributions (Kullback and Leibler,
1951).

Alternatively, Bayesian matching loss (Joo et al.,
2020) uses a Dirichlet distribution as the final acti-
vation function. The target is constructed using the
Bayes rule, where we assume the observed label
¥; to be an observation from a categorical distribu-
tion y;|m; ~ Cat(7r;) and 7, is the true underlying
distribution of the label. To introduce uncertainty
into the target distribution we assume that the prior
of 7r; is a Dirichlet distribution, Dir(1). In this
way, we have a highly uncertain prior distribution.
From this it can be shown that the posterior will be
7ily; ~ Dir(1+I(y;)), where I(y;) is the one-hot
representation of y;. The loss function is then con-
structed using the negative log likelihood of the true
label given the predicted distribution 7r; ~ Dir(z;),
penalised by the KL divergence from the the uncer-
tain Dir(1) distribution:

N
L(6,)) = {MKL [7;||Dir(1)] —
i=1
Ex, [log(p(yil7:))]},  (3)

where A > 0 is the penalisation parameter.
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3.2 Ensemble Distribution Estimation

From a Bayesian viewpoint, the probability of ob-
serving an outcome given the observed examples
can be broken down into two components: the pre-
dictive distribution of the model and the posterior
of the model given the observed examples. The pos-
terior of the model given the data is an unknown
distribution which can be estimated in various ways.
One method is to use an ensemble of models, where
the ensemble acts as an estimator for the posterior
distribution of the parameters, p(8|D), where D
represents the observed examples. Let ¢(0) rep-
resent the distribution over all possible members
of an ensemble. This distribution could be seen
as the ensemble estimate of the posterior, p(6|D),
(Malinin et al., 2019; Malinin and Gales, 2020).
Hence,

P(ylx, D) = / p(ylx,0)¢(0)d0.  (4)

Since this integral is still intractable we need to
estimate it using Monte Carlo. To sample from
the ensemble distribution ¢(@) we consider two ap-
proaches: using dropout during inference to collect
an ensemble of N equally likely models (Gal and
Ghahramani, 2016), or alternatively bootstrap sam-
pling N equally likely subsets of the data to train
N equally likely ensemble members. Let these N
members be {0(1), 02, ..., O(N)}. The estimated
predictive distribution can then be calculated as
follows:

N
1 )
plx D) = = > plyx.0%) &)

i=1
3.3 Temperature Scaling

Temperature scaling is a post-processing technique
which scales the logits of the model by a scaling
factor 8 > 1 (Guo et al., 2017), resulting in better-
calibrated estimates. The temperature scaling pa-
rameter [ can be trained on a development set.

4 Experimental Setup

We seek to build a well-calibrated dialogue belief
tracker. For our baseline belief tracker, we use
the SUMBT model architecture (Lee et al., 2019),
which uses BERT (Devlin et al., 2018) as a turn
encoder and multi-head attention for slot candidate
matching. We perform all experiments on the Mul-
tiwOZ 2.1 dataset (Eric et al., 2019), the current
standard dataset for multi-domain dialogue. When

training using Bayesian matching, we use a scaling
coefficient of A\ = 0.003, and for label smoothing, a
smoothing coefficient of @ = 0.05. For the ensem-
ble belief tracker, we train 10 identical independent
models, each with a sub-sample of 7500 dialogues.
All hyper-parameters are obtained using a parame-
ter search based on validation set performance. For
all training, we use the BERT-base-uncased model
from PyTorch Transformers (Wolf et al., 2019) for
turn embedding. We use a gated recurrent unit
with a hidden dimension 300 for latent tracking
and Euclidean distance for value candidate scoring.
During training, we use a learning rate of 5e — 5 in
combination with a linear learning rate scheduler,
the warm-up proportion is set to 0.1. A dropout
rate of 0.3 is used, and training is performed for
100 epochs.!

5 Evaluation Metrics

5.1 Joint Goal Accuracy

The joint goal accuracy (JGA) is the percentage of
turns for which the model predicts the complete
user goal correctly. We further propose the intro-
duction of an adjusted top 3 JGA, which considers
a user goal prediction correct if the true label for
each slot is among the top 3 predicted candidates
for that slot in the belief state given there are at
least 5 possible candidates.

5.2 L2 Norm Error

The L2 norm error is the L2 norm of the difference
between the true labels and the predicted distribu-
tions. To form the user goals and belief states we
concatenate all the slot labels and slot distributions.
This error measure does not only consider the ac-
curacy of the predictions but also the uncertainty.

5.3 Joint Goal Calibration Error

A well-calibrated model is one where the accuracy
is aligned with the confidence predictions. The
expected calibration error (ECE) evaluates the cal-
ibration by measuring the difference between the
model’s confidence and accuracy (Guo et al., 2017),
meaning a lower ECE indicates better calibration.
Hence:

B

ECE = Z ka]acc(k) —conf(k)|, (6)
k=1

'Our code will be made available at https://gitlab.
cs.uni-duesseldorf.de/general/dsml/

calibrating-dialogue-belief-state-distributions.
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where B is the number of bins, b, are the bin sizes,
N the number of observations, acc(k) and conf (k)
the accuracy and confidence measures of bin k. We
also propose an adapted ECE, called the expected
joint goal calibration error (EJCE), which uses the
joint goal accuracy for bin k as acc(k), and the
following metric as confidence:

by
1 s€slots vEvalues
1=

1
conf(k) = b—z min max p;(v|s), (7)
k

where p;(v|s) is the predicted probability of value

v for slot s given the 7' observation in bin k.
6 Results
Model 1GA | (R % | EICE
Cross entropy 46.78% | 69.97% | 1.996
Label smoothing 46.32% | 74.57% | 1.292
Bayesian matching 31.03% | 45.16% | 4.922
Temperature scaling
Cross entropy (1.73%) 46.78% | 69.97% | 4.758
Label smoothing (1.00%) | 46.32% | 74.57% | 1.292
Dropout ensembles
Cross entropy (35%%*) 47.18% | 71.14%| 2.909
Label smoothing (35**) | 46.36% | 76.12% | 2.217
Bootstrap model ensembles
Label smoothing (10%*) | 48.41%| 84.08%| 0.841

Table 1: Calibration strategy performance. *tempera-
ture scaling coefficient **ensemble size.

Model JGA L2 Norm
SUMBT (Lee et al., 2019) 46.78% 1.1075
CE-BST (ours) 48.41% 1.1041
SOTA DST < 56.0% | > 1.2445

Table 2: MultiWOZ 2.1 performance.
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Figure 1: Reliability Diagram.

All of the calibration techniques presented above
can be combined. Here, we focus on the most im-
portant combinations and present the results in Ta-
ble 1. We make the following observations. First,
cross entropy on its own leads to a high EJCE,
as expected. Second, label smoothing reduces
EJCE while leading to a negligible drop in accu-
racy. Third, Bayesian matching underperformed in
our experiments, suggesting a difficulty in choos-
ing the right priors. Fourth, temperature scaling
is not an effective way of calibrating uncertainty,
as the same calibration is applied to each observa-
tion. Finally, the ensemble methods produce very
promising results for both accuracy and calibra-
tion of the model. In particular, if we look at the
Top 3 JGA, our method achieves an improvement
of 14.11 percentage points over the baseline, in
the Appendix we include a comprehensive set of
Top n JGA results. In Figure 1 we plot JGA as a
function of confidence. The best calibrated model
is the one that is closest to the diagonal, i.e. the
one whose confidence for each dialogue state is
closest to the achieved accuracy. From this reli-
ability diagram we see that both the dropout and
model ensembles improve model calibration and
do not produce over-confident output as the cross
entropy baseline does. In Table 2 we compare our
model to some of the best performing belief and
state tracking models. Here we see that we out-
perform the best performing belief tracker but the
state-of-the-art (SOTA) state trackers (Heck et al.,
2020; Chen et al., 2020; Hosseini-Asl et al., 2020)
have a significantly higher JGA. However, when
analysing the L2 norm? we see that the uncertainty
estimates of belief tracking models compensate for
the lower joint goal accuracy. This corroborates our
premise that it is important to have well calibrated
confidence estimates and not just a high JGA.

7 Conclusion

We applied a number of calibration techniques to
a baseline dialogue belief tracker. We showed that
a label smoothed trained ensemble provides state-
of-the-art calibration of the belief state distribu-
tions and has the best accuracy among the avail-
able belief trackers. Although it does not compete
with state trackers in terms of JGA, when consider-
ing top 3 predictions it achieves 84.08% accuracy

%For a model with a given JGA we can calculate the mini-
mum L2 that such a model can possibly achieve by assuming
that it never predicts more than one slot incorrectly.
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(Top 3 JGA), almost 30 percentage points above
state-of-the art state trackers. We also find that our
model has the best L2 norm performance, which
suggests that the quality of predicted uncertainty is
as important as the average JGA.

It is important to note that the proposed calibra-
tion methods can be applied to any neural dialogue
belief tracking method. The uncertainty estimates
predicted by this model could improve the success
of dialogue systems because this model can provide
the dialogue manager with a good measure of con-
fidence. This could allow the system to ask ques-
tions in moments of confusion. In the Appendix
we include example dialogues to illustrate this. In
future, we aim to combine the state-of-the-art dia-
logue state tracking and belief tracking methods to
create a method that can achieve both states-of-the-
art joint goal accuracy and well-calibrated belief
states.
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A Appendices

A.1 Joint Goal Accuracy Analysis

In Table 3 we compare SUMBT and our CE-BST
method using 5 different top n joint goal accuracy’s.

Model Top 1 Top 2 Top3 | Top4 | Topd
SUMBT | 46.78%| 64.61%| 69.97%| 72.10%| 73.70%
CE-BST | 48.41%| 77.25%| 84.08%| 85.84%| 86.93%

Table 3: Top n joint goal accuracy comparison.

A.2 Example Dialogues

In Figures 2 - 9 we present some example dialogues
together with an extract from their belief state dis-
tributions. These examples show situations where
a well-calibrated belief state distribution could be
beneficial for decision making.

User: I need a place to stay.

System: Sure. I’ll need a little more information.
Is there an area you are interested in?

User: No specific area. I would like it to be in
the moderate price range and it should have free
parking. I would also like it to have 4 stars.

Figure 2: Dialogue PMUL3364 from the MultiwWOZ
2.1 corpus.

mSUMBT = CE-BST
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Figure 3: PMUL3364 Hotel - Location belief state dis-
tribution.
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User: Can you help me find a place to go in the
centre?

System: I can help you with that. Is there a certain
kind of attraction that you would like to visit?
User: Surprise me! Give me the postcode as well.
System: Would you prefer the castle galleries is a
museum in the centre of town. Their post code is
cb23b;j.

User: Great! I am also looking for a place to eat
in the same area. Something not too expensive, but
not cheap.

Figure 4: Dialogue PMULA258 from the MultiWOZ
2.1 corpus.

mSUMBT mCE-BST

Not Don't care Cheap Moderate
Mentioned

Probabilty
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20 % 5 5 a3 % b -
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Expensive

Figure 5: PMULA4258 Restaurant - Price Range belief
state distribution.

User: Hi, I am looking for a hotel by the name
of Acorn guest house.

System: Sure, what would you like to know
about it?

User: I would like to know if it is available for
8 people for 4 nights starting Saturday?

Figure 6: Dialogue PMUL4605 from the MultiWOZ
2.1.

uSUMBT = CE-BST
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Figure 7: PMULA4605 Hotel - Book Day belief state
distribution.

User: I need a train to Stansted airport that
leaves on Sunday.

System: Did you have a time you would like to
arrive or leave?

User: I need to arrive by 14:30.

System: tr1668 will arrive at 14:08, would that
work for you?

User: That is perfect. I would like to make a
booking for 6 people please.

System: Booking was successful, the total fee is
48.48 gbp payable at the station. Your reference
number is hf03ug02. Do you need assistance
with anything else?

User: I need to eat too.

System: What type of restaurant and price range
are you looking for?

User: I would like Catalan food. It needs to be
in the centre and be expensive.

Figure 8: Dialogue PMUL3625 from the MultiwWOZ
2.1 corpus.
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Figure 9: PMUL3625 Restaurant - Location belief state
distribution.
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