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Abstract

Word-embeddings are vital components of
Natural Language Processing (NLP) models
and have been extensively explored. However,
they consume a lot of memory which poses a
challenge for edge deployment. Embedding
matrices, typically, contain most of the param-
eters for language models and about a third
for machine translation systems. In this pa-
per, we propose Distilled Embedding, an (in-
put/output) embedding compression method
based on low-rank matrix decomposition and
knowledge distillation. First, we initialize the
weights of our decomposed matrices by learn-
ing to reconstruct the full pre-trained word-
embedding and then fine-tune end-to-end, em-
ploying knowledge distillation on the factor-
ized embedding. We conduct extensive ex-
periments with various compression rates on
machine translation and language modeling,
using different data-sets with a shared word-
embedding matrix for both embedding and vo-
cabulary projection matrices. We show that the
proposed technique is simple to replicate, with
one fixed parameter controlling compression
size, has higher BLEU score on translation and
lower perplexity on language modeling com-
pared to complex, difficult to tune state-of-the-
art methods.

1 Introduction

Deep Learning models are the state-of-the-art in
NLP, Computer Vision, Speech Recognition and
many other fields in Computer Science and Engi-
neering. The remarkable deep learning revolution
has been built on top of massive amounts of data
(both labeled and unlabeled), and faster computa-
tion. In NLP, large pre-trained language models
like BERT (Devlin et al., 2019) are state-of-the-
art on a large number of downstream NLP prob-
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lems. The largest publicly available language mod-
els are trained with hundred of billions of param-
eters (Brown et al., 2020). In machine translation
the state-of-the-art models have parameters in the
order of billions. Data privacy and server cost are
some major issues, driving research towards de-
ploying these models on edge-devices. However,
running these models on edge-devices, faces mem-
ory and latency issues due to limitations of the
hardware. Thus, there has been considerable in-
terest towards research in reducing the memory
footprint and faster inference speed for these mod-
els (Sainath et al., 2013; Acharya et al., 2019; Shi
and Yu, 2018; Jegou et al., 2010; Chen et al., 2018;
Winata et al., 2019).

The architecture of deep-learning-based lan-
guage generation models can be broken down into
three components. The first component, repre-
sents the embedding, which maps words in the
vocabulary to continuous dense vector represen-
tations of the words. In language modeling we
typically have one dictionary but machine trans-
lation has at least two dictionaries correspond-
ing to a translation pair. We model these as a
single dictionary with a common embedding ma-
trix. The second component, consists of a function
f , typically a deep neural-network (Schmidhuber,
2015; Krizhevsky et al., 2012; Mikolov et al., 2010)
which maps the embedding representation for dif-
ferent NLP problems (machine-translation, sum-
marization, question-answering and others), to the
output-space of function f . The third component,
is the output layer which maps the output of func-
tion f to the vocabulary-space, followed by a soft-
max function. Since, the first and third components
depend upon a large vocabulary-size, they require
large number of parameters which results in higher
latency and larger memory requirements. For in-
stance, the Transformer Base model (Vaswani et al.,
2017) uses 37% of the parameters in the first and
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third components using a vocabulary size of 50k,
and with parameter-tying between the components.
The percentage of parameters increases to 54%,
when parameters are not shared between the first
and third components. Thus, an obvious step to-
wards model compression is to reduce the parame-
ters used by the embedding matrices.

Recently, there has been considerable work on
compressing word-embedding matrices (Sainath
et al., 2013; Acharya et al., 2019; Shi and Yu, 2018;
Jegou et al., 2010; Chen et al., 2018; Winata et al.,
2019). These techniques have proven to perform at-
par with the uncompressed models, but still suffer
from a number of issues.

First, state-of-the-art embedding compres-
sion methods such as GroupReduce, Structured
Emebedding and Tensor Train Decomposition (Shi
and Yu, 2018; Chen et al., 2018; Khrulkov et al.,
2019; Shu and Nakayama, 2018), require multiple
hyper-parameters to be fine-tuned to optimize per-
formance on each dataset. These hyper-parameters
influence the number of parameters in the model,
and thus the compression rate. This leads to an
additional layer of complexity for optimizing the
model for different NLP problems. Additionally,
Chen et al. (2018) requires an additional optimiza-
tion step for grouping words, and lacks end-to-end
training through back-propagation. Shi and Yu
(2018) also requires an additional step for perform-
ing k-means clustering for generating the quantiza-
tion matrix. Thus, most of the current state-of-the-
art systems are much more complicated to fine-tune
for different NLP problems and data-sets.

Second, all the state-of-the-art embedding com-
pression models compress the input and output
embedding separately. In practice, state-of-the-art
NLP models (Vaswani et al., 2017; Lioutas and
Guo, 2020) have shown better performance with
parameter sharing between the two (Press and Wolf,
2017). Thus, there is a need for an exhaustive anal-
ysis of various embedding compression techniques,
with parameter sharing.

Lastly, embedding compression models not
based on linear SVD (Khrulkov et al., 2019; Shi
and Yu, 2018) require the reconstruction of the en-
tire embedding matrix or additional computations,
when used at the output-layer. Thus during runtime,
the model either uses the same amount of mem-
ory as the uncompressed model or pays a higher
computation cost. This makes linear SVD based
techniques more desirable for running models on

edge-devices.
In this paper, we introduce Distilled Embedding,

a matrix factorization method, based on Singular
Value Decomposition (SVD) with two key changes
a) a neural network decomposition instead of an
eigenvalue decomposition and b) a distillation loss
on the word embedding while fine-tuning. Our
method, first compresses the vocabulary-space to
the desired size, then applies a non-linear activation
function, before recovering the original embedding-
dimension. Additionally, we also introduce an em-
bedding distillation method, which is similar to
Knowledge Distillation (Hinton et al., 2015) but
we apply it to distill knowledge from a pre-trained
embedding matrix and use an L2 loss instead of
cross-entropy loss. To summarize, our contribu-
tions are as follows:

• We demonstrate that SVD, when fine-tuned
till convergence, is comparable to recently pro-
posed, difficult to tune methods.

• We demonstrate that at the same compression
rate Distilled Embedding outperforms existing
state-of-the-art methods on machine transla-
tion and SVD on language modeling.

• Our proposed method is much simpler than
the current state-of-the-methods, with only a
single parameter controlling the compression
rate.

• Unlike the current state-of-the-art systems, we
compress the embedding matrix with parame-
ter sharing between input and output embed-
dings. We perform an exhaustive comparison
of different models in this setting.

• Our method is faster at inference speed than
competing matrix factorization methods and
only slightly slower than SVD.

2 Related Work

We can model the problem of compressing the em-
bedding matrix as a matrix factorization problem.
There is a considerable amount of work done in
this field and some of the popular methods include
Singular Value Decomposition (SVD) (Srebro and
Jaakkola, 2003; Mnih and Salakhutdinov, 2008),
product quantization (Jegou et al., 2010) and ten-
sor decomposition (De Lathauwer et al., 2000). A
number of prior works in embedding compression
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Figure 1: Distilled Embedding method to compress the shared embedding matrix of a transformer based sequence
to sequence model.

are influenced by these fields and have been ap-
plied to various NLP problems. In this Section, we
will discuss some of the significant works across
different NLP problems.

Low-rank Factorization Low-rank approxima-
tion of weight matrices, using SVD, is a natural
way to compress deep learning based NLP models.
Sainath et al. (2013) apply this to a convolutional
neural network for language modeling and acous-
tic modeling. Winata et al. (2019) use SVD on
all the weight matrices of an LSTM and demon-
strate competitive results on question-answering,
language modeling and text-entailment. Acharya
et al. (2019) use low-rank matrix factorization for
word-embedding layer during training to compress
a classification model. However, they do not study
the effects of applying a non-linear function before
reconstructing the original dimension.

GroupReduce Chen et al. (2018) apply
weighted low-rank approximation to the em-
bedding matrix of an LSTM. They first create
a many-to-one mapping of all the words in
the vocabulary into g groups based upon word
frequency. For each group g they apply weighted
SVD to obtain a lower rank estimation, the rank
is determined by setting a minimum rank and
linearly increasing it based upon average frequency.
Finally, they update the groups by minimizing
the reconstruction error from the weighted SVD
approximation. They demonstrate strong results
on language modeling and machine translation
compared to simple SVD. In their models they

use different embedding matrices for input and
softmax layers and apply different compression
ratios to each.

Product Quantization Jegou et al. (2010) intro-
duced product quantization for compressing high
dimensional vectors, by uniformly partitioning
them into subvectors and quantizing each subvec-
tor using K-means clustering technique. Basically,
product quantization assumes that the subvectors
share some underlying properties which can be
used to group similar ones together and unify their
representation. That being said, this approach
breaks the original matrix into a set of codebooks
coming from the center of the clusters in differ-
ent partitions together with a separate index ma-
trix which refers to the index of the clusters for
each subvector. Shi and Yu (2018) applied prod-
uct quantization to a language model and were
able to show better perplexity scores. Shu and
Nakayama (2018) extended this technique by first
representing the product quantization as a matrix
factorization problem, and then learning the quan-
tization matrix in an end-to-end trainable neural
network. Li et al. (2018) implement product quan-
tization through randomly sharing parameters in
the embedding matrix, and show good results on
perplexity for an LSTM based language model.

Tensor Decomposition De Lathauwer et al.
(2000) introduced multilinear SVD, which is a gen-
eralization of SVD for higher order tensors. Os-
eledets (2011) introduced an efficient algorithm
Tensor Train (TT) for multilinear SVD Tensor.
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Novikov et al. (2015) applied the Tensor Train de-
composition on fully connected layers of deep neu-
ral networks. Khrulkov et al. (2019) applied Tensor
Train algorithm to the input embedding layer on
different NLP problems like language modeling,
machine translation and sentiment analysis. They
demonstrate high compression rate with little loss
of performance. However, they compress only the
input embedding and not the softmax layer for lan-
guage modeling and machine translation.

Knowledge Distillation Knowledge distillation
(Buciluǎ et al., 2006; Hinton et al., 2015). has been
studied in model compression where knowledge
of a large cumbersome model is transferred to a
small model for easy deployment. In this paper,
we propose an embedding factorization of word-
embedding matrix using knowledge distillation to
mimic the pre-trained word-embedding representa-
tion.

3 Methodology: Distilled Embedding

3.1 Funneling Decomposition and
Embedding Distillation

We present an overview of our proposed method in
Figure 1. Given an embedding matrix E ∈ R|V|×d,
we can decompose it into three matrices (Equation
1), using the SVD algorithm

E = U|V|×|V|Σ|V|×dV
T
d×d (1)

where |V| is the vocabulary size and d is the embed-
ding dimension. Σ is a diagonal matrix containing
the singular values, and matricesU and V represent
the left and right singular vectors of the embedding
matrix respectively. We can obtain the reduced
form of the embedding matrix, Ẽ, by only keeping
r (< d) largest singular values out of d.

Ẽ = U|V|×rΣr×rV
T
r×d = U|V|×rV T

r×d (2)

where the matrix U = UΣ. The reduced form
of the embedding matrix will need r × (|V| + d)
parameters compared to |V| × d.

Our proposed approach in this work, is to apply
a non-linear transformation on the matrix U, before
reconstructing the original embedding dimension
using V (see Figure 1a), as shown in Equation 3,

Ẽ = f(U|V|×r)V T
r×d (3)

We use the ReLU as our non-linear function
f(.) throughout this paper. We postulate that this

neural decomposition helps in end-to-end training
during the fine-tuning stage, although, we can only
demonstrate empirical evidence for that. We train
a sequence to sequence model (Sutskever et al.,
2014; Vaswani et al., 2017) with tied input and
output embedding (i.e. the output embedding is the
transpose of the input embedding matrix Ẽout =
ẼT = Vd×r[f(U|V|×r)]T . We train our model end-
to-end by replacing the embedding function with
Equation 3. The matrix U and V are trainable
parameters, and for the output layer we use ẼT ,
with the parameter sharing. We train on two losses.
The standard cross entropy loss defined as:

Lce = −
M∑
i=1

yilog(pi) (4)

where M is the sequence length, yi is the one-hot
representation for the ith label and pi is the softmax
probability of the ith term generated by the decoder.

In addition to the cross-entropy loss, we intro-
duce a novel embedding reconstruction loss (Equa-
tion 5), which we refer to as embedding distillation
as we distill information from the pre-trained em-
bedding into our model,

Lrecon =
1

|V|

|V|∑
i=1

‖ei − ẽi‖2

=
1

|V|

|V|∑
i=1

‖ei − f(ui)V
T
r×d‖2

(5)

where ei and ẽi are the embedding vectors corre-
sponding to the ith word in the original embedding
matrix E and the reconstructed embedding matrix
Ẽ respectively and ui refers to the ith row of the
matrix U. This helps in better generalization since
during fine-tuning the words seen in the training
corpus are given higher weight at the expense of
low-frequency word. This loss helps maintain a
balance between the two.

We use Equation 6 as our final loss function

Ltotal = αLrecon + (1− α)Lce (6)

where α ∈ [0, 1] is a hyper-parameter, which con-
trols the trade-off between reconstruction and cross-
entropy loss. Lrecon acts as the knowledge distil-
lation loss by which we try to distill information
from the original pre-trained embedding layer as
a teacher to the funneling decomposed embedding
layer as a student. The training process of our
Distilled Embedding method is summarized in Al-
gorithm 1.
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Algorithm 1 Distilled Embedding

Step 1) Pre-training the Embedding Matrix
Pre-train the sequence to sequence model with
the full embedding matrix for better initializa-
tion.
Step 2) Initializing the Weights of Funneling
Decomposition Layer We extract the trained
embedding matrix E from Step 1 and train our
decomposed matrices U and V on reconstruc-
tion loss defined in Equation 5, as shown in Fig-
ure 1a.
Step 3) Embedding Distillation The pre-
trained funneling decomposition layer is plugged
into the model (replacing the original embedding
matrix E) and the entire model is trained based
on Equation 6.

4 Experimental Setup

4.1 Datasets and Evaluation

We test our proposed method on machine transla-
tion and language modeling which are fundamental
problems in NLP and challenging for embedding
compression since we typically have an input and
output embedding.

On machine translation, we present results on
three language pairs: WMT English to French
(En-Fr), WMT English to German (En-De) and
IWSLT Portuguese to English (Pt-En). We decided
that these pairs are good representatives of high-
resource, medium-resource and low-resource lan-
guage pairs.

WMT En-Fr is based on WMT’14 training data
which contains 36M sentence pairs. We used Sen-
tencePiece (Kudo and Richardson, 2018) to extract
a shared vocabulary of 32k subwords. We vali-
date on newstest2013 and test on newstest2014.
For WMT English to German (En-De), we use the
same setup as Vaswani et al. (2017). The dataset
is based on WMT’16 training data and contains
about 4.5M pairs. We use a shared vocabulary of
37k subwords extracted using SentencePiece.

For the IWSLT Portuguese to English (Pt-En)
dataset, we replicate the setup of Tan et al. (2019)
for training individual models. Specifically, the
dataset contains about 167k training pairs. We used
a shared vocabulary of 32k subwords extracted with
SentencePiece.

For all language pairs, we measure case-sensitive
BLEU score (Papineni et al., 2002) using Sacre-

BLEU1 (Post, 2018). In addition, we save a check-
point every hour for the WMT En-Fr and WMT
En-De language pairs and every 5 minutes for the
IWSLT Pt-En due to the smaller size of the dataset.
We use the last checkpoint which resulted in the
highest validation BLEU and average the last five
checkpoints based on this. We use beam search
with a beam width of 4 for all language pairs.

For language modeling, we decided to use the
WikiText-103 dataset (Merity et al., 2017) which
contains 103M training tokens from 28K articles,
with an average length of 3.6K tokens per article.
We replicate the setup of Dai et al. (2019) for train-
ing the base and the compressed models.

4.2 Experiment Details

Hyper-Parameters For WMT En-Fr and WMT
En-De, we use the same configuration as Trans-
former Base which was proposed by Vaswani et al.
(2017). Specifically, the model hidden size dmodel is
set to 512, the feed-forward hidden size dff is set to
2048 and the number of layers for the encoder and
the decoder was set to 6. For the IWSLT Pt-En, we
use Transformer Small configuration. Specifically,
the model hidden-size dmodel is set to 256, the feed-
forward hidden size dff is set to 1024 and the num-
ber of layers for the encoder and the decoder was
set to 2. For Transformer Small, the dropout config-
uration was set the same as Transformer Base. All
models are optimized using Adam (Kingma and
Ba, 2015) and the same learning rate schedule as
proposed by Vaswani et al. (2017). We use label
smoothing with 0.1 weight for the uniform prior
distribution over the vocabulary (Szegedy et al.,
2016; Pereyra et al., 2017). Additionally, we set
the value α of Equation 6 to 0.01.

For the WikiText-103 we use the same configu-
ration as Transformer-XL Standard which was pro-
posed by Dai et al. (2019). Specifically, the model
hidden size dmodel is set to 410, the feed-forward
hidden size dff is set to 2100 and the number of
layers for was set to 16.

Hardware Details We train the WMT models
on 8 NVIDIA V100 GPUs and the IWSLT models
on a single NVIDIA V100 GPU. Each training
batch contained a set of sentence pairs containing
approximately 6000 source tokens and 6000 target
tokens for each GPU worker. All experiments were
run using the TensorFlow framework2.

1https://github.com/mjpost/sacreBLEU
2https://www.tensorflow.org/

https://github.com/mjpost/sacreBLEU
https://www.tensorflow.org/
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Model
WMT En-Fr WMT En-De IWSLT Pt-En

Emb.
CR

BLEU
Emb.
CR

BLEU
Emb.
CR

BLEU

Transformer Base 1.0x 38.12 1.0x 27.08 1.0x 41.43

Smaller Transformer Network (416) 1.23x 37.26 1.28x 26.72 1.88x 40.71
End-to-End NN compression with non-linearity 7.87x 37.23 7.89x 26.14 3.96x 42.27
SVD with rank 64 7.87x 37.44 7.89x 26.32 3.96x 42.37
GroupReduce (Chen et al., 2018) 7.79x 37.63 7.88x 26.75 3.96x 42.13
Structured Embedding (Shi and Yu, 2018) 7.90x 37.78 7.89x 26.34 3.97x 41.27
Tensor Train (Khrulkov et al., 2019) 7.72x 37.27 7.75x 26.19 3.96x 42.34

Distilled Embedding (Ours) 7.87x 37.78 7.89x 26.97 3.96x 42.62

Table 1: Machine translation BLEU score for the three language pairs. CR refers to the compression rate.

5 Results

5.1 Machine Translation

We present BLEU score for our method and com-
pare it with SVD, GroupReduce (Chen et al., 2018),
Structured Emedding (Shi and Yu, 2018), Tensor
Train (Khrulkov et al., 2019) and a smaller trans-
former network with the same number of parame-
ters. We learn a decomposition for all the methods
except Tensor Train since it was pointed out in
Khrulkov et al. (2019) that there is no difference
in performance between random initialization and
tensor train learnt initialization. Once initialized
we plug the decomposed embedding and fine-tune
till convergence. None of the weights are frozen
during fine-tuning.

Table 1 presents the results on translation. We
see that on the English-French language pair our
method along with Structured Embedding performs
the best. Group Reduce is next, and SVD performs
better than Tensor Train, showing that SVD is a
strong baseline, when fine-tuned till convergence.
We also compare against end-to-end compression
using a 2 layer neural network (NN) with the same
parameterization as distilled embedding which has
not been initialized offline. The results show that
initializing the neural decomposition with the em-
bedding weights is important.

On English-German translation, our method out-
performs all other methods. The smaller trans-
former network does well and is only surpassed
by GroupReduce amongst the competing methods.
SVD again performs better than Tensor Train.

The Portuguese-English task presents a problem
where the embedding matrix constitutes the major-
ity of the parameters of the neural network. The

Model
Emb.
CR

Val.
PPL

Test
PPL

Transformer-XL std
(Dai et al., 2019)

1.0x 23.23 24.16

SVD (rank 64) 3.23x 25.34 26.51
Distilled Emb
(rank 64)

3.23x 24.88 25.75

SVD (rank 32) 6.47x 27.06 27.91
Distilled Emb
(rank 32)

6.47x 26.15 27.46

Table 2: Language Modeling perplexity for WikiText-
103 on validation and test sets. We compressed the em-
bedding matrix from 151M parameters to 34M (3.23x)
and 17M (6.47x) parameters. Std is an abbreviation of
the word Standard.

embedding dimension is smaller (256) compared
to the other two tasks but embedding compression
yields a BLEU score increase in all methods except
Structured Embedding. This is due to a regulariza-
tion effect from the compression. Our model again
achieves the highest BLEU score.

On these three experiments we demonstrate that
our funneling decomposition method with embed-
ding distillation consistently yields higher BLEU
scores compared to existing methods.

5.2 Language Modeling

As a second task we consider language modeling on
the WikiText-103 dataset. We compare our method
against SVD with two compression rates. The re-
sults are presented in Table 2. We demonstrate that
our distilled embedding method consistently yields
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Model
Emb.
CR

Init.
No

Distill.
Emb.

Distill.

En-Fr 7.87x Random 37.04 37.21
En-Fr 7.87x Model 37.54 37.78

En-De 7.89x Random 26.07 26.35
En-De 7.89x Model 26.7 26.97

Pt-En 3.96x Random 42.29 42.36
Pt-En 3.96x Model 42.5 42.62

Table 3: Comparison of different methods for Funnel-
ing (64).

lower perplexity (PPL) compared to SVD.

5.3 Ablation Study
We present different experiments on machine trans-
lation to demonstrate the effect of 1) Model Initial-
ization, 2) Embedding Distillation, 3) Fine-tuning
strategies, 4) Compression capability, 5) Alpha
Value Sensitivity and 6) Extension and generality
of our method.

Initialization We do an ablation study on all the
three language pairs defined in Section 4.1, to con-
clude, if random initialization is better than model-
based initialization. We conclude that model-based
initialization, consistently performs better (Table
3).

Embedding Distillation Table 4 presents differ-
ent compression rates on the Pt-En task, and em-
bedding distillation performs better across all of
them. In Table 3, we see that across all language
pairs when we initialize our model using weights
from the funneling decomposition, we improve
when using Embedding Distillation during finetun-
ing. We performed embedding distillation with ran-
dom initialization only on the smaller Pt-En dataset
and observed that Embedding Distillation improves
BLEU score even with random initialization.

Compression Rate We demonstrate in Table 4
that it is possible to compress the embedding up
to 15.86x with only a 2% drop in BLEU score for
Pt-En.

Re-training Fine-tuning is an important compo-
nent in our method and we demonstrate through our
experiments that at convergence most of the tech-
niques are close in performance. Table 5 shows
that freezing embedding weights and re-training
just the network weights or vice versa leads to a

Params
Emb.

Params
Emb.
CR

No
Distill.

Emb.
Distill.

11M 8M 1.0x 41.43 -
5M 2M 3.96x 42.50 42.62
4M 1M 7.93x 42.44 42.60
4M 516k 15.86x 40.42 40.60

Table 4: BLEU scores for different compression rates
with bottleneck sizes of 64, 32 and 16 accordingly for
IWSLT Pt-En.

Model BLEU

Proposal 42.60

- embedding distillation 42.44
- non-linearity 42.34

Proposal (Freeze non-emb. weights) 33.34
Proposal (Freeze emb. weights) 20.49

Table 5: BLEU score for IWSLT Pt-En with compres-
sion rate 7.93x.

sharp drop in BLEU score, thus, we need to re-
train all the weights. The use of a non-linearity
and adding embedding distillation also improves
BLEU score after finetuning.

Alpha (α) Value Sensitivity Analysis We per-
formed a sensitivity analysis on the α hyper-
parameter introduced by our method. Table 6
presents our findings. We can see that the method
is not very sensitive to the change in α value. We
did not tune the alpha for our different experiments
but chose the value which gave us good validation
results on the WMT En-De translation task. The re-
sults of this analysis suggest that we can gain a little
performance if we tune alpha for every dataset.

Extension We experimented with applying two
key lessons from our method, namely, using a
non-linear function and embedding distillation, to
a model initialized with group partitions of the
GroupReduce method (Chen et al., 2018), we refer
to this method as GroupFunneling. Table 7 shows
that, GroupFunneling achieves a higher BLEU
score on Pt-En compared to GroupReduce.

6 Discussion

Importance of Non-linearity We postulate that
only a subset of word vector dimensions, explains
most of the variance, for most word vectors in the
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Alpha BLEU

0 42.50
0.01 42.62
0.1 42.65
0.3 42.66
0.5 42.72
0.7 42.57
0.9 42.03

Table 6: Alpha value sensitivity analysis on IWSLT Pt-
En.

Model BLEU

GroupFunneling
(Rand. Initialized + Emb. Distil.)

42.52

GroupFunneling
(Rand. Initialized)

42.49

GroupReduce 42.13

Table 7: GroupFunneling (i.e. GroupReduce + Funnel-
ing) on IWSLT Pt-En.

embedding matrix. Thus, using ReLU activation
might help in regularizing the less important di-
mensions for a given word vector.

Importance of Reconstruction Loss We pro-
pose that the embedding reconstruction might suf-
fer from adding the ReLU activation function.
The consequence would be loss of information on
words not seen during training and loss of gen-
eralization performance. Thus, adding a loss for
embedding reconstruction helps in grounding the
embedding and not lose a lot of information. The
amount of regularization is controlled by the hyper-
parameter α. Our intuition is partly justified by
results shown in Table 5, as reconstruction loss per-
forms worse without the ReLU activation function.

Comparison of Inference Speed We compare
the number of floating-point operations used by
different models. Table 8 presents these results.
As it is expected, our method is slightly slower
than plain SVD method due to the use of the non-
linear activation function and the bias additions
but notably faster than other more complex meth-
ods. Structured embedding does not use any addi-
tional floating-point operations, though it requires
groups− 1 additional embedding lookup and con-
catenate operations. Also, structured embedding
requires the reconstruction of the entire embedding

Model Approx. GFLOPs

SVD 1.21
Distilled Embedding 1.22
Tensor Train 2.18
GroupReduce 3.41

Table 8: Approximate GFLOPs on reconstructing the
WMT En-De embedding matrix with size [37000×512]
and compression rate 7.89x.

Model Inference Time (Sec)

Base Model 27.92

SVD 29.63
Structured Embedding 31.18
Distilled Embedding 29.23

Table 9: Average inference speed on the IWSLT PT-En
model with compression rate 3.96x.

matrix at the output projection layer, making it
ineffective for model compression.

In addition, we demonstrate on Table 9 the av-
erage inference time needed for each method to
do a forward pass on the IWSLT Pt-En validation
dataset which has a size of 7590 examples. We
used a single NVIDIA P100 GPU (12GB) with a
batch size of 1024. We averaged the time for 30
runs. We did not perform experiments on GroupRe-
duce and Tensor Train, but according to the Table 8
we are expecting these methods to be even slower.

7 Conclusion and future work

In this paper we proposed Distilled Embed-
ding, a low-rank matrix decomposition with non-
linearity in the bottleneck layer for a shared word-
embedding and vocabulary projection matrix. We
also introduce knowledge distillation of the em-
bedding during fine-tuning using the full embed-
ding matrix as the teacher and the decomposed
embedding as the student. We compared our pro-
posed approach with state-of-the-art methods for
compressing word-embedding matrix. We did ex-
tensive experiments using three different sizes of
datasets and showed that our approach outperforms
the state-of-the art methods on the challenging task
of machine translation. Our method also general-
ized well to the task of language modeling. For
future work, we will apply our approach to com-
press feed-forward and multi-head attention layers
of the transformer network.
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A Appendices

A.1 Additional Hyper-parameters
WMT En-Fr Smaller Transformer Network de-
notes a network with the same configuration as
Transformer Base but with hidden size dmodel of
416. For GroupReduce, to match the same com-
pression rate we used number of clusters c be-
ing equal to 10 and minimum rank rmin to be 22.
For SVD, we decided to set the rank to 64. For
Tensor Train, we set the embedding shape to be
[25, 32, 40]×[8, 8, 8] and the Tensor Train Rank to
be 90. For structured embedding we use group size
as 32 and number of clusters as 2048, we then use
the quantization matrix and learn the clusters from
scratch.

WMT En-De Smaller Transformer Network de-
notes a network with the same configuration as
Transformer Base but with hidden size dmodel of
400. For GroupReduce, to match the same com-
pression rate we used number of clusters c be-
ing equal to 10 and minimum rank rmin to be 23.
For SVD, we decided to set the rank to 64. For
Tensor Train, we set the embedding shape to be
[25, 37, 40]×[8, 8, 8] and the Tensor Train Rank to
be 90. For structured embedding we use group size
as 32 and number of clusters as 2376, we then use
the quantization matrix and learn the clusters from
scratch.

IWSLT Pt-En Smaller Transformer Network de-
notes a network with the same configuration as
Transformer Small but with hidden size dmodel of
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Parameters Embedding FFN Multi-head attention Linear

Number 26M 25M 14M 5M

Percentage 37% 36% 20% 7%

Table 10: Parameters in the Transformer Base model (Vaswani et al., 2017) based on a 50k dictionary size and tied
input and output embedding.

136. For GroupReduce, to match the same com-
pression rate we used number of clusters c be-
ing equal to 15 and minimum rank rmin to be 30.
For SVD, we decided to set the rank to 64. For
Tensor Train, we set the embedding shape to be
[25, 32, 40]×[8, 4, 8] and the Tensor Train Rank to
be 125. For structured embedding we use group
size as 32 and number of clusters as 4048, we then
use the quantization matrix and learn the clusters
from scratch.

A.2 Parameter count
Table 10 presents the the number of parameters in
the different transfomer layers for the transformer
base architecture.


