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Abstract

Sequence labelling tasks like Dialog Act
and Emotion/Sentiment identification are
a key component of spoken dialog systems.
In this work, we propose a new approach
to learn generic representations adapted
to spoken dialog, which we evaluate on a
new benchmark we call Sequence labelllng
evalLuatlon benChmark fOr spoken laN-
guagE benchmark (SILICONE). SILICONE
is model-agnostic and contains 10 differ-
ent datasets of various sizes. We obtain
our representations with a hierarchical en-
coder based on transformer architectures,
for which we extend two well-known pre-
training objectives. Pre-training is per-
formed on OpenSubtitles: a large corpus of
spoken dialog containing over 2.3 billion of
tokens. We demonstrate how hierarchical
encoders achieve competitive results with
consistently fewer parameters compared to
state-of-the-art models and we show their
importance for both pre-training and fine-
tuning.

1 Introduction

The identification of both Dialog Acts (DA)
and Emotion/Sentiment (E/S) in spoken lan-
guage is an important step toward improving
model performances on spontaneous dialogue
task. Especially, it is essential to avoid the
generic response problem, i.e., having an au-
tomatic dialog system generate an unspecific
response — that can be an answer to a very
large number of user utterances (Yi et al.,
2019; Colombo et al., 2019). DA and emo-
tion identification (Witon et al., 2018; Jalalzai
et al., 2020) are done through sequence la-
belling systems that are usually trained on
large corpora (with over 100k labelled utter-
ances) such as Switchboard (Godfrey et al.,
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1992), MRDA (Shriberg et al., 2004) or Daily
Dialog Act (Li et al., 2017). Even though large
corpora enable learning complex models from
scratch (e.g., seq2seq (Colombo et al., 2020)),
those models are very specific to the labelling
scheme employed. Adapting them to different
sets of emotions or dialog acts would require
more annotated data.

Generic representations (Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; De-
vlin et al., 2018; Yang et al., 2019; Liu et al.,
2019) have been shown to be an effective way
to adapt models across different sets of labels.
Those representations are usually trained on
large written corpora such as OSCAR (Sudrez
et al., 2019), Book Corpus (Zhu et al., 2015)
or Wikipedia (Denoyer and Gallinari, 2006).
Although achieving state-of-the-art (SOTA)
results on written benchmarks (Wang et al.,
2018), they are not tailored to spoken dialog
(SD). Indeed, Tran et al. (2019) have suggested
that training a parser on conversational speech
data can improve results, due to the discrep-
ancy between spoken and written language
(e.g., disfluencies (Stolcke and Shriberg, 1996),
fillers (Shriberg, 1999; Dinkar et al., 2020), dif-
ferent data distribution). Furthermore, captur-
ing discourse-level features, which distinguish
dialog from other types of text (Thornbury and
Slade, 2006), e.g., capturing multi-utterance
dependencies, is key to embed dialog that is not
explicitly present in pre-training objectives (De-
vlin et al., 2018; Yang et al., 2019; Liu et al.,
2019), as they often treat sentences as a simple
stream of tokens.

The goal of this work is to train on SD data a
generic dialog encoder capturing discourse-level
features that produce representations adapted
to spoken dialog. We evaluate these represen-
tations on both DA and E/S labelling through a
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new benchmark SILICONE (Sequence labelllng
evaLuatlon benChmark fOr spoken laNguagE)
composed of datasets of varying sizes using
different sets of labels. We place ourselves
in the general trend of using smaller mod-
els to obtain lightweight representations (Jiao
et al., 2019; Lan et al., 2019) that can be
trained without a costly computation infras-
tructure while achieving good performance on
several downstream tasks (Henderson et al.,
2020). Concretely, since hierarchy is an inher-
ent characteristic of dialog (Thornbury and
Slade, 2006), we propose the first hierarchi-
cal generic multi-utterance encoder based on
a hierarchy of transformers. This allows us
to factorise the model parameters, getting rid
of long term dependencies and enabling train-
ing on a reduced number of GPUs. Based
on this hierarchical structure, we generalise
two existing pre-training objectives. As em-
beddings highly depend on data quality (Le
et al., 2019) and volume (Liu et al., 2019), we
preprocess OpenSubtitles (Lison et al., 2019):
a large corpus of spoken dialog from movies.
This corpora is an order of magnitude bigger
than corpora (Budzianowski et al., 2018b; Lowe
et al., 2015; Danescu-Niculescu-Mizil and Lee,
2011) used in previous works (Mehri et al.,
2019; Hazarika et al., 2019). Lastly, we evalu-
ate our encoder along with other baselines on
SILICONE, which lets us draw finer conclusions
of the generalisation capability of our models’.

2 Method

We start by formally defining the Sequence
Labelling Problem. At the highest level, we
have a set D of conversations composed of
utterances, i.e., D = (C1,Cy,...,C|p|) with
Y = (Y1,Y2,...,Y|p|) being the correspond-
ing set of labels (e.g., DA, E/S). At a lower
level each conversation C}; is composed of ut-
terances u, i.e C; = (u1,uz,...,uc,) with
Y; = (y1,%2,---,9c,|) being the correspond-
ing sequence of labels: each wu; is associated
with a unique label y;. At the lowest level, each
utterance u; can be seen as a sequence of words,
ieu; = (wi,wi,... ,w‘iu”). Concrete examples
with dialog act can be found in Table 1.

1Upon publication, we will release the code, models
and especially the preprocessing scripts to replicate our
results.

Utterances DA
How long does that take you to get to work? | qw
Uh, about forty-five, fifty minutes. sd
How does that work, work out with, uh,

storing your bike and showering and all that? e
Yeah |, b
It can be a pain . sd
It’s, it’s nice riding to school because

it’s all along a canal path, uh, sd
Because it’s just,

it’s along the Erie Canal up here. sd
So, what school is it? qw
Uh, University of Rochester. sd
Oh, okay. bk

Table 1: Examples of dialogs labelled with DA taken
from SwDA. The labels qw, sd, b, bk respectively
correspond to wh-question, statement-non-opinion,
backchannel and response acknowledgement.

2.1 Pre-training Objectives

Our work builds upon existing objectives de-
signed to pre-train encoders: the Masked Lan-
guage Model (MLM) from Devlin et al. (2018);
Liu et al. (2019); Lan et al. (2019); Zhang et al.
(2019a) and the Generalized Autoregressive
Pre-training (GAP) from Yang et al. (2019).
MLM Loss: The MLM loss corrupts sequences (or
in our case, utterances) by masking a propor-
tion p, of tokens. The model learns bidirec-
tional representations by predicting the original
identities of the masked-out tokens. Formally,
for an utterance u;, a random set of indexed
positions m%¢ is selected and the associated
tokens are replaced by a masked token [MASK]
to obtain a corrupted utterance uZmaSked. The
set of parameters 6 is learnt by maximizing :

quM(ean) =E

> log(po(wzla»)] (1)
tembi

where 1; is the corrupted utterance, m;“ ~
unif{1, |u;|} ¥V j € [1,p,] and p,, is the propor-
tion of masked tokens.

GAP Loss: the GAP loss consists in computing
a classic language modelling loss across differ-
ent factorisation orders of the tokens. In this
way, the model will learn to gather information
across all possible positions from both direc-
tions. The set of parameters 6 is learnt by
maximising:

ﬁgAP(ev Uz) =E

E,z,,, [zt: log po(wt, !uf<t)H
(2)
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where Zj,,| is the set of permutations of length
lu;] and u*<' represent the first ¢ tokens of
u; when permuting the sequence according to
VS Z|ul\

2.2 Hierarchical Encoding

Capturing dependencies at different granular-
ity levels is key for dialog embedding. Thus,
we choose a hierarchical encoder (Chen et al.,
2018b; Li et al., 2018a). It is composed of two
functions f* and f¢, satisfying:

gui :fg(wly--'aw\ui|) (3)
Ec, = f3(Eus- ..\ Ec;) (4)
where &,, € R% is the embedding of u; and
&c, € R% the embedding of Cj. The structure

of the hierarchical encoder is depicted in Fig-
ure 1.

2.3 Hierarchical Pre-training

2.3.1 General Motivation

&,
Ngx fg
L 1
Nool[Cos ] Lo ] [ )= e
et - [ i
Uy ‘ U U|C|

Figure 1: General structure of our proposed hier-
archical dialog encoder, with a decoder: fy, fg

and the sequence label decoder (gd°¢) are colored

respectively in green, blue and red.

Current self-supervised pre-training objec-
tives such as MLM and GAP are trained at the
sequence level, which for us translates to only
learning fy'. In this section, we extend both the
MLM and GAP losses at the dialog level in order
to pre-train fgl. Following previous work on
both multi-task learning (Argyriou et al., 2007;
Ruder, 2017) and hierarchical supervision (Gar-
cia et al., 2019; Sanh et al., 2019), we argue
that optimising simultaneously at both levels
rather than separately improves the quality of
the resulting embeddings. Thus, we write our
global hierarchical loss as:

L(O) = Ay LY0) + Ng x LYO)  (5)

where £%(0) is either the MLM or GAP loss at the
utterance level and £4(6) is its generalisation
at the dialog level.

2.3.2 MLM Loss

The MLM loss at the utterance level is defined
in Equation 1. Our generalisation at the dialog
level masks a proportion pe of utterances and
generates the sequences of masked tokens (a
concrete example can be found in Appendix B).
Thus, at the dialog level the MLM loss is defined
as:

|

EgLMw?Ck) =K Z ZlOg(PO(%”ék))
iemCr i=1
(6)
Ch . . .

where m;* ~ unif{1,|Cy[} V j € [L,pc] is the
set of positions of masked utterances in the
context C, C} is the corrupted context, and

pe is the proportion of masked utterances.

2.3.3 GAP Loss

The GAP loss at the utterance level is defined
in Equation 2. A possible generalisation of the
GAP at the dialog level is to compute the loss of
the generated utterance across all factorization
orders of the context utterances. Formally, the
GAP loss is defined at the dialog level as:

LG (0,Cx) =
‘Ck‘ |uzt|

E |E,oz, [Z Z log pg(w;* C,f<t)}

t=1 i=1
(7)

where w;* denotes the first i-th tokens of the
permuted ¢-th utterance when permuting the
context according to z € Zp and C’,f<t the first
t utterances of C when permuting the context
according to z.

2.4 Architecture

Commonly, The functions fg* and fél are either
modelled with recurrent cells (Serban et al.,
2015) or Transformer blocks (Vaswani et al.,
2017). Transformer blocks are more paralleliz-
able, offering shorter paths for the forward and
backward signals and requiring significantly
less time to train compared to recurrent layers.
To the best of our knowledge this is the first at-
tempt to pre-train a hierarchical encoder based
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only on transformers?.

The structure of the model can be found in Fig-
ure 1. In order to optimize dialog level losses as
described in Equation 5, we generate (through
ggec) the sequence with a Transformer Decoder
(Tgec). For downstream tasks, the context em-
bedding &, is fed to a simple MLP (simple
classification), or to a CRF/GRU/LSTM (se-
quential prediction) — see Appendix B for
more details. In the rest of the paper, we
will name our hierarchical transformer-based
encoder H7T and the hierarchical RNN-based
encoder HR. We use 0 to refer to the set of
model parameters learnt using the pre-training
objective y (either MLM or GAP) at the level x.

2.5 Pre-training Datasets

Datasets used to pre-train dialog en-
coders (Hazarika et al., 2019; Mehri et al.,
2019) are often medium-sized (e.g. Cornell
Movie Corpus (Danescu-Niculescu-Mizil and
Lee, 2011), Ubuntu (Lowe et al., 2015),
MultiWOz (Budzianowski et al., 2018a)). In
our work, we focus on OpenSubtitles (Li-
son and Tiedemann, 2016)% because (1) it
contains spoken language, contrarily to the
Ubuntu corpus (Lowe et al., 2015) based
on logs; (2) as Wizard of Oz (Budzianowski
et al, 2018a) and Cornell Movie Dialog
Corpus (Danescu-Niculescu-Mizil and Lee,
2011), it is a multi-party dataset; and (3)
OpenSubtitles is an order of magnitude larger
than any other spoken language dataset used
in previous work. We segment OpenSubtitles
by considering the duration of the silence
between two consecutive utterances. Two
consecutive utterances belong to the same
conversation if the silence is shorter than
d7°. Conversations shorter than the context
size T are dropped®. After preprocessing,

2 Although it is possible to relax the fixed size im-
posed by transformers (Dai et al., 2019) in this paper
we follow (Colombo et al., 2020) and fix the context
size to 5 and the max utterance length to 50 — these
choices are made to work with OpenSubtitles, since the
number of available dialogs drops when considering a
number of utterances greater than 5.

3if 2 = u solely utterance level training is used, if
z = d solely dialog level is used and if z = u,d multi
level supervision is used (Au, Aq € {0,1}? according to
the case.)

“http://opus.nlpl.eu/OpenSubtitles-alt-v2018.php

®We choose dr = 65

5Using pre-training method based on the next ut-
terance proposed by Mehri et al. (2019) requires drop-

Opensubtitles contains subtitles from 446520
movies or series which represent 54642424
conversations and over 2.3 billion of words.

2.6 Baseline Encoder

We compare the different methods we presented
with two different types of baseline encoders:
pre-trained encoders, and hierarchical encoders
based on recurrent cells. The latter, achieve
current SOTA performance in many sequence
labelling tasks (Li et al., 2018a; Colombo et al.,
2020; Lin et al., 2017).

Pre-trained Encoder Models. We use
BERT (Devlin et al., 2018) through the py-
torch implementation provided by the Hugging
Face transformers library (Wolf et al., 2019).
The pre-trained model is fed with a concatena-
tion of the utterances. Formally given an input
context Cx = (uy,...ur) the concatenation
[u1,...,ur] is fed to BERT.

Hierarchical Recurrent Encoders. In this
work we rely on our own implementation of
the model based on H'R. Hyperparameters are
described in Appendix B.

3 Evaluation of Sequence Labelling

3.1 Related Work

Sequence labelling tasks for spoken dialog
mainly involve two different types of labels:
DA and E/S. Early work has tackled the se-
quence labelling problem as an independent
classification of each utterance. Deep neu-
ral network models that currently achieve the
best results (Keizer et al., 2002; Surendran
and Levow, 2006; Stolcke et al., 2000) model
both contextual dependencies between utter-
ances (Colombo et al., 2020; Li et al., 2018b)
and labels (Chen et al., 2018b; Kumar et al.,
2018; Li et al., 2018c).

The aforementioned methods require large
corpora to train models from scratch, such
as: Switchboard Dialog Act (SwDA) (God-
frey et al., 1992), Meeting Recorder Dia-
log Act (MRDA) (Shriberg et al., 2004), Daily
Dialog Act (Li et al., 2017), HCRC Map
Task Corpus (MT) (Thompson et al., 1993).
This makes harder their adoption to smaller
datasets, such as: Loqui human-human dia-
logue corpus (Loqui) (Passonneau and Sachar.,

ping conversation shorter than 7"+ 1 leading to a non-
negligible loss in the preprocessing stage.
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2014), BT Oasis Corpus (Oasis) (Leech
and Weisser, 2003), Multimodal Multi-Party
Dataset (MELD) (Poria et al., 2018a), Interac-
tive emotional dyadic motion capture database
(IEMO), SEMAINE database (SEM) (Mckeown
et al., 2013).

3.2 Presentation of SILICONE

Despite the similarity between methods usually
employed to tackle DA and E/S sequential clas-
sification, studies usually rely on a single type
of label. Moreover, despite the variety of small
or medium-sized labelled datasets, evaluation
is usually done on the largest available corpora
(e.g., SwDA, MRDA). We introduce SILICONE, a
collection of sequence labelling tasks, gathering
both DA and E/S annotated datasets. SILICONE
is built upon preexisting datasets which have
been considered by the community as chal-
lenging and interesting. Any model that is
able to process multiple sequences as inputs
and predict the corresponding labels can be
evaluated on SILICONE. We especially include
small-sized datasets, as we believe it will en-
sure that well-performing models are able to
both distil substantial knowledge and adapt
to different sets of labels without relying on a
large number of examples. The description of
the datasets composing the benchmark can be
found in the following sections, while corpora
statistics are gathered in Table 2.

3.2.1 DA Datasets

Switchboard Dialog Act Corpus (SwDA) is
a telephone speech corpus consisting of two-
sided telephone conversations with provided
topics. This dataset includes additional fea-
tures such as speaker id and topic information.
The SOTA model, based on a seq2seq architec-
ture with guided attention, reports an accuracy
of 85.5% (Colombo et al., 2020) on the official
split.

ICSI MRDA Corpus (MRDA) has been in-
troduced by Shriberg et al. (2004). It con-
tains transcripts of multi-party meetings hand-
annotated with DA. It is the second biggest
dataset with around 110k utterances. The
SOTA model reaches an accuracy of 92.2% (Li
et al., 2018a) and uses Bi-LSTMs with atten-
tion as encoder as well as additional features,
such as the topic of the transcript.
DailyDialog Act Corpus (DyDA,) has been

produced by Li et al. (2017). It contains multi-
turn dialogues, supposed to reflect daily com-
munication by covering topics about daily life.
The dataset is manually labelled with dialog
act and emotions. It is the third biggest corpus
of SILICONE with 102k utterances. The SOTA
model reports an accuracy of 88.1% (Li et al.,
2018a), using Bi-LSTMs with attention as well
as additional features. We follow the official
split introduced by the authors.

HCRC MapTask Corpus (MT) has been in-
troduced by (Thompson et al., 1993). To build
this corpus, participants were asked to collabo-
rate verbally by describing a route from a first
participant’s map by using the map of another
participant. This corpus is small (27k utter-
ances). As there is no standard train/dev/test
split” performances depends on the split. Tran
et al. (2017) make use of a Hierarchical LSTM
encoder with a GRU decoder layer and achieves
an accuracy of 65.9%.

Bt Oasis Corpus (Oasis) contains the tran-
scripts of live calls made to the BT and opera-
tor services. This corpus has been introduced
by (Leech and Weisser, 2003) and is rather
small (15k utterances). There is no standard
train/dev/test split 8 and few studies use this
dataset.

3.2.2 S/E Datasets

In S/E recognition for spoken language, there
is no consensus on the choice the evaluation
metric (e.g., Ghosal et al. (2019); Poria et al.
(2018b) use a weighted F-score while Zhang
et al. (2019b) report accuracy). For SILICONE,
we choose to stay consistent with the DA re-
search and thus follow Zhang et al. (2019b)
by reporting the accuracy. Additionally, emo-
tion/sentiment labels are neither merged nor
prepossessed”.

DailyDialog Emotion Corpus (DyDA,)
has been previously introduced and con-
tains eleven emotional labels. The SOTA
model (De Bruyne et al., 2019) is based on
BERT with additional Valence Arousal and

"We split according to the code in
https://github.com/NathanDuran/Maptask-Corpus.
SWe use a random split from
https://github.com/NathanDuran/BT-Oasis-Corpus.
Comparison with concurrent work is more difficult
as system performance heavily depends on the number
of classes and label processing varies across studies
(Clavel and Callejas, 2015).
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Dominance features and reaches an accuracy
of 85% on the official split.

Multimodal EmotionLines  Dataset
(MELD) has been created by enhancing and
extending EmotionLines dataset (Chen et al.,
2018a) where multiple speakers participated
in the dialogues. There are two types of an-
notations MELDg and MELD.: three sentiments
(positive, negative and neutral) and seven
emotions (anger, disgust, fear, joy,neutral,
sadness and surprise). The SOTA model with
text only is proposed by Zhang et al. (2019b)
and is inspired by quantum physics. On the
official split, it is compared with a hierarchical
bi-LSTM, which it beats with an accuracy
of 61.9% (MELDs) and 67.9% (MELD,) against
60.8% and 65.2.

IEMOCAP database (IEMO) is a multi-
modal database of ten speakers. It consists
of dyadic sessions where actors perform im-
provisations or scripted scenarios. Emotion
categories are: anger, happiness, sadness, neu-
tral, excitement, frustration, fear, surprise, and
other. There is no official split on this dataset.
One proposed model is built with bi-LSTMs
and achieves 35.1%, with text only (Zhang
et al., 2019b).

SEMAINE database (SEM) comes from the
Sustained Emotionally coloured Machine hu-
man Interaction using Nonverbal Expression
project (Mckeown et al., 2013). This dataset
has been annotated on three sentiments labels:
positive, negative and neutral by Barriere et al.
(2018). It is built on Multimodal Wizard of
Oz experiment where participants held conver-
sations with an operator who adopted various
roles designed to evoke emotional reactions.
There is no official split on this dataset.

4 Results on SILICONE

This section gathers experiments performed on
the SILICONE benchmark. We first analyse an
appropriate choice for the decoder, which is se-
lected over a set of experiments on our baseline
encoders: a pre-trained BERT model and a
hierarchical RNN-based encoder (HR). Since
we focus on small-sized pre-trained represen-
tations, we limit the sizes of our pre-trained
models to TINY and SMALL (see Table 7). We
then study the results of the baselines and
our hierarchical transformer encoders (H7) on

SILICONE along three axes: the accuracy of
the models, the difference in performance be-
tween the E/S and the DA corpora, and the
importance of pre-training. As we aim to ob-
tain robust representations, we do not perform
an exhaustive grid search on the downstream
tasks.

4.1 Decoder Choice

Current research efforts focus on single label
prediction, as it seems to be a natural choice for
sequence labelling problems (subsection 2.1).
Sequence labelling is usually performed with
CRFs (Chen et al., 2018b; Kumar et al., 2018)
and GRU decoding (Colombo et al., 2020), how-
ever, it is not clear to what extent inter-label
dependencies are already captured by the con-
textualised encoders, and whether a plain MLP
decoder could achieve competitive results. As
can be seen in Table 3, we found that in the case
of E/S prediction there is no clear difference
between CRFs and MLPs, while GRU decoders
exhibit poor performance, probably due to a
lack of training data. It is also important to no-
tice, that training a sequential decoder usually
requires thorough hyper-parameter fine-tuning.
As our goal is to learn and evaluate general
representations that are decoder agnostic, in
the following, we will use a plain MLP decoder
for all the models compared.

4.2 General Performance Analysis

Table 4 provides an exhaustive comparison of
the different encoders over the SILICONE bench-
mark. As previously discussed, we adopt a
plain MLP as a decoder to compare the differ-
ent encoders. We show that SILICONE covers a
set of challenging tasks as the best performing
model achieves an average accuracy of 74.3.
Moreover, we observe that despite having half
the parameters of a BERT model, our pro-
posed model achieves an average result that is
2% higher on the benchmark. SILICONE cov-
ers two different sequence labelling tasks: DA
and E/S. In Table 4 and Table 3, we can see
that all models exhibit a consistently higher
average accuracy (up to 14%) on DA tagging
compared to E/S prediction. This performance
drop could be explained by the different sizes
of the corpora (see Table 2). Despite having
a larger number of utterances per label (u/l),
E/S tasks seem generally harder to tackle for
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Corpus |Train| |Val| |Test| Utt. |Labels| Task Utt./|Labels|
SwDA* 1k 100 11 200k 42 DA 4.8k
MRDA* 56 6 12 110k 5 DA 2.6k
DyDA, 11k 1k 1k 102k 4 DA 25.5k

MT* 121 22 25 36k 12 DA 3k

Oasis* 508 64 64 15k 42 DA 357
DyDA, 11k 1k 1k 102k 7 E 2.2k
MELD} 934 104 280 13k 3 S 4.3k
MELD} 934 104 280 13k 7 S 1.8k

IEMO 108 12 31 10k 6 E 1.7k
SEM 62 7 10 5,6k 3 S 1.9k

Table 2: Statistics of datasets composing SILICONE. E stands for emotion label and S for sentiment label;

*

conversations.

Avg AvgDA AvgE/S
BERT (+MLP) | 728 8L5 64.0
BERT (+GRU) | 69.9 804  59.3
BERT (+CRF) | 72.8  S8L5 64.1

HR (+MLP) | 69.8  79.1 60.4
HR (+GRU) | 67.6  79.4 55.7
HR (+CRF) | 705 803 60.7

Table 3: Experiments comparing decoder perfor-
mances. Results are given on SILICONE for two
types of baseline encoders (pre-trained BERT mod-
els and hierarchical recurrent encoders HR).

the models. For example, on Oasis, where the
u/l is inferior than those of most E/S datasets
(MELDg, MELD,, IEMO and SEM), models consis-
tently achieve better results.

4.3 Importance of Pre-training for
SILICONE

Results reported in Table 4 and Table 3
show that pre-trained transformer-based en-
coders achieve consistently higher accuracy
on SILICONE, even when they are not ex-
plicitly considering the hierarchical structure.
This difference can be observed both in small-
sized datasets (e.g. MELD and SEM) and in
medium/large size datasets (e.g SwDA and
MRDA). To validate the importance of pre-
training in a regime of low data, we train
different H7 (with random initialisation) on
different portions of SEM and MELD;. Results
shown in Figure 2 illustrate the importance of
pre-trained representations.

stands for datasets with available official split. Sizes of Train, Val and Test are given in number of

0.65
0.60
oy
©
5
80.55
8
" —A— HT(Bf ) (TINY)
0.50 : HT(O,1) (TINY)
—*— HT(6575,) (TINY)
045 T e HT(Brandom) (TINY)

20 40 60 80 100
Percentage of train split used

Figure 2: A comparison of pre-trained encoders be-
ing fine-tuned on different percentage the training
set of SEM. Validation and test set are fixed over
all experiments, reported scores are averaged over
10 different random split.

5 Model Analysis

In this section, we dissect our hierarchical pre-
trained models in order to better understand
the relative importance of each component. We
show how a hierarchical encoder allows us to
obtain a light and efficient model. Additional
experiments can be found in Appendix C.

5.1 Pre-training on Spoken vs
Written Data

First, we explore the differences in training
representations on spoken and written corpora.
Experimentally, we compare the predictions on
SILICONE made by HT (0%;,,,) and the one
made by HT (0BERT—21ayers). The latter is a
hierarchical encoder where utterance embed-
dings are obtained with the hidden vector rep-
resenting the first token [CLS] (see (Devlin
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Avg SwDA MRDA DyDADA MT Oasis DyDAe MELD; MELD, IEMO SEM

BERT-4layers || 70.4 || 77.8 90.7 79.0 88.4 66.8 | 90.3 553 534 43.0 588
BERT 72.8 || 79.2 90.7 82.6 88.2 66.9 | 91.9 59.3 61.4 45.0 62.7
HR 69.8 || 77,5 90,9 80,1 82,8 64,3 | 91.5 59,3 59.9 40.3 51.1

HT (0% ) || 733 (| 79.3 92.0 801  90.0 683 | 925 626 59.9 420 66.6
HT (0% ,p) oy || 71.6 || 786 91.8 781 89.3 641 | 91.6 60.5 557 422 63.9
HT (0% )y | 74.3]| 79.2 92.4 815 90.6 69.4 | 92.7 64.1 60.1 45.0 68.2

Table 4: Performances of different encoders when decoding using a MLP on SILICONE. The datasets
are grouped by label type (DA vs E/S) and ordered by decreasing size. MT stands for Map Task, IEM for

IEMOCAP and Sem for Semaine.

Avg DA AvgE/S
BERT (4 layers) | 805 60.2
HT(OBERT—21ayers) | 80.5 61.1
HT (6%, 0) 80.8  64.0

Table 5: Results of ablation studies on SILICONE

et al., 2018)) of the second layer of BERT. In
both cases, predictions are performed using
an MLP'0. Results in Table 5 show higher ac-
curacy when the pre-training is performed on
spoken data. Since SILICONE is a spoken lan-
guage benchmark, this result might be due to
the specific features of colloquial speech (e.g.
disfluencies, sentence length, vocabulary, word
frequencies).

5.2 Hierarchy and Multi-Level
Supervision

We study the relative importance of three
aspects of our hierarchical pre-training with
multi-level supervision. We first show that
accounting for the hierarchy increases the per-
formance of fine-tuned encoders, even without
our specific pre-training procedure. We then
compare our two proposed hierarchical pre-
training procedures based on the GAP or MLM
loss. Lastly, we look at the contribution of
the possible levels of supervision on reduced
training data from SEM.

5.2.1 Importance of hierarchical
fine-tuning

We compare the performance of BERT-4layers
with the HT (0pERT—2iayer) previously de-
scribed. Results reported in Table 5 demon-
strate that fine-tuning on downstream tasks

10We consider the two first layer for a fair comparison
based on the number of model parameters.

with a hierarchical encoder yields to higher
accuracy, with fewer parameters, even when
using already pre-trained representations.

5.2.2 MLM vs GAP

In this experiment, we compare the different
pre-training objectives at utterance and di-
alog level. As a reminder HT (0Y,,,,) and
HT (04 4p) are respectively trained using the
standard MLM loss (Devlin et al., 2018) and
the standard GAP loss (Yang et al., 2019). In
Table 6 we report the different pre-training ob-
jective results. We observe that pre-training
at the dialog level achieves comparable results
to the utterance level pre-training for MLM and
slightly worse for GAP. Interestingly, we ob-
serve that HT (0¢ 4 p) compared to HT (6%, /)
achieves worse results, which is not consistent
with the performance observed on other bench-
marks, such as GLUE (Wang et al., 2018). The
lower accuracy of the models trained using
a GAP-based loss could be due to several fac-
tors (e.g., model size, pre-training using the
GAP loss could require a finer choice of hyper-
parameters). Finally, we see that supervising
at both dialog and utterance level helps for
MLM!L,

5.2.3 Multi level Supervision for
pre-training
In this section, we illustrate the advantages of
learning using several levels of supervision on
small datasets. We fine-tune different model on
SEM using different size of the training set. Re-
sults are shown in Figure 2. Overall we see that
introducing sequence level supervision induces
"We investigate a similar setting for GAP which lead
to poor results, the loss hit a plateau suggesting that
objectives are competing against each other. More

advanced optimisations techniques (Sener and Koltun,
2018) are left for future work.
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Avg DA AvgE/S
HT (0%,0) | 808 64.0
HT(04,,.,) | 80.8 64.0
HT (0% ,p) | 80.7 62.0
HT (04 ,4p) | 804 62.8
HT(O: ) | 81.9  64.7

Table 6: Comparison of GAP and MLM with a com-
parable number of parameters. For all models a
MLP decoder is used on top of a TINY pre-trained
encoder.

Emb. Word Seq Total
BERT 87 110
BERT (4-layer) 43 66
HMLP 23 8.6 7.8 40
(TINY) 29 28 287
(SMALL) 106 106 45

Table 7: Number of parameters for the encoders.
Sizes are given in million of parameters.

a consistent improvement on SEM. Results on
MELDg are provided in Appendix C.

5.3 Other advantages of hierarchy

Introducing a hierarchical design in the en-
coder allows to break dialog into utterances
and to consider inputs of size T instead of size
512. First, it allows parameters sharing, re-
ducing the number of model parameters. The
different model sizes are reported in Table 7.
Our TINY model contains half the parameters
of BERT (4-layers). Furthermore, modelling
long-range dependencies hierarchically makes
learning faster and allows to get rid of learn-
ing tricks (e.g., partial order prediction (Yang
et al., 2019), two-stage pre-training based on
sequence length (Devlin et al., 2018)) required
for non-hierarchical encoders. Lastly, original
BERT and XLNET are pre-trained using re-
spectively 16 and 512 TPUs. Pre-training lasts
several days with over 500K iterations. Our
TINY hierarchical models are pre-trained dur-
ing 180K iterations (1.5 days) on 4 NVIDIA
V100.

6 Conclusions

In this paper, we propose a hierarchical
transformer-based encoder tailored for spoken
dialog. We extend two well-known pre-training

objectives to adapt them to a hierarchical set-
ting and use OpenSubtitles, the largest spoken
language dataset available, for encoder pre-
training. Additionally, we provide an evalu-
ation benchmark dedicated to comparing se-
quence labelling systems for the NLP commu-
nity, SILICONE, on which we compare our mod-
els and pre-training procedures with previous
approaches. By conducting ablation studies,
we demonstrate the importance of using a hi-
erarchical structure for the encoder, both for
pre-training and fine-tuning. Finally, we find
that our approach is a powerful method to
learn generic representations on spoken dia-
log, with less parameters than state-of-the-art
transformer models.

These results open new future research di-
rections: (1) to investigate new pre-training
objectives leveraging the hierarchical frame-
work in order to achieve better results on
SILICONE while keeping light models (2) to
provide multilingual models using the whole
pre-training corpus (OpenSubtitles) available
in 62 languages, (3) investigate robust methods
(Staerman et al., 2020a) and the application
of our embedding to different anomaly detec-
tion settings (Staerman et al., 2019, 2020b).
We hope that the SILICONE benchmark, ex-
perimental results, and publicly available code
encourage further research to build stronger
sequence labelling systems for NLP.
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