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Abstract

Semantic hashing is a powerful paradigm for
representing texts as compact binary hash
codes. The explosion of short text data has
spurred the demand of few-bits hashing. How-
ever, the performance of existing semantic
hashing methods cannot be guaranteed when
applied to few-bits hashing because of severe
information loss. In this paper, we present a
simple but effective unsupervised neural gener-
ative semantic hashing method with a focus on
few-bits hashing. Our model is built upon vari-
ational autoencoder and represents each hash
bit as a Bernoulli variable, which allows the
model to be end-to-end trainable. To address
the issue of information loss, we introduce a
set of auxiliary implicit topic vectors. With
the aid of these topic vectors, the generated
hash codes are not only low-dimensional rep-
resentations of the original texts but also cap-
ture their implicit topics. We conduct compre-
hensive experiments on four datasets. The re-
sults demonstrate that our approach achieves
significant improvements over state-of-the-art
semantic hashing methods in few-bits hashing.

1 Introduction

Semantic hashing (Salakhutdinov and Hinton,
2009) is an attractive strategy for fast similarity
search, which aims to find the most relevant texts
for a given query (Wang et al., 2017). The basic
idea of semantic hashing is to embed the semantics
of texts into a low-dimensional binary vector space,
while preserving text similarity. The embedded rep-
resentations are called hash codes, based on which
the calculation of text similarity can be efficiently
completed by computing the Hamming distance
using XOR operation (Zhang et al., 2010).

While considerable research efforts have been
devoted to semantic hashing (Wang et al., 2013;
Xu et al., 2015; Chaidaroon and Fang, 2017; Shen
et al., 2018; Dong et al., 2019; Hansen et al., 2019;

0

0

1

1

0

𝑡𝑡1𝑡𝑡2𝑡𝑡3 𝑡𝑡𝑙𝑙

𝑡𝑡1𝑡𝑡3

𝑑𝑑
̅𝑧𝑧 𝑧𝑧 𝑔𝑔(𝒯𝒯𝑧𝑧)

�̂�𝑑

𝒯𝒯𝑧𝑧

⋯

Topic vector selection

0.9

0.1

0.8

0.2

0.1

𝜎𝜎(𝑟𝑟(𝑑𝑑))

Inference network Generative network

Figure 1: The architecture of our approach WISH. The
inference network maps text d to hash code z and the
generative network reconstructs d based on the selected
topic vectors Tz . z captures the implicit topics of d.

Dadaneh et al., 2020), none of them have paid at-
tention to few-bits hashing. Their performance
also cannot be guaranteed when directly applied
to few-bits hashing due to severe information loss.
However, compactness is a crucial factor in learn-
ing to hash (Wang et al., 2015). It is important to
keep hash codes as short as possible. For a text
collection with c topics, the ideal length of hash
codes is just dlog2 (c)e (Liu et al., 2019). In addi-
tion, with the explosive growth of social media and
e-commerce, more and more short text data (e.g.,
tweets and online reviews) are generated everyday
on the Web. It would be a huge waste to represent
them as long hash codes. Therefore, it is neces-
sary to ensure the performance of few-bits hashing,
which is relatively an under-studied problem.

In this paper, we propose a simple but effec-
tive unsupervised neural generative semantic hash-
ing method WISH (feW-bIts Semantic Hashing),
which focuses on few-bits hashing. The architec-
ture of WISH is shown in Figure 1. Built upon Vari-
ational AutoEncoder (VAE) (Kingma and Welling,
2013), WISH learns hash codes directly via the
inference network. However, when using these bi-
nary codes as the inputs of the generative network,
the model may encounter severe information loss
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(i.e., the information transmitted from the infer-
ence network to the generative network may be
relatively limited, especially in the few-bits case).
As thus, the generative network has little chance to
effectively reconstruct the input texts. To address
this issue, we introduce a set of auxiliary contin-
uous implicit topic vectors. And we assume each
text is generated from one or more of these topic
vectors. Specifically, the inference network is used
to decide which topic vectors are selected, and the
generative network is used to reconstruct the input
texts based on the selected topic vectors. Thus, the
output of the inference network should be binary.
To this end, we model the output of the inference
network as either deterministic or stochastic multi-
variate Bernoulli variables. The inference network
and the generative network are optimized jointly
by maximizing the variational lower bound of the
text log likelihood. And the straight-through esti-
mator (Bengio et al., 2013) is utilized to estimate
the gradients with respect to the binary codes. In
summary, the main contributions include:

• We propose a simple but effective neural gen-
erative text hashing method (WISH) to tackle
the few-bits semantic hashing problem.

• We leverage auxiliary implicit topic vectors
to address the issue of information loss. None
of existing methods have used this technique.

• We conduct extensive experiments on four
public datasets, the results show that WISH
can achieve significant improvements over
state-of-the-art semantic hashing methods.

2 Related Work

Up to now, lots of hashing methods have been pro-
posed (Wang et al., 2017; Luo et al., 2020), which
can be roughly categorized into unsupervised meth-
ods and supervised methods. In this paper, we
focus on unsupervised methods since it is labori-
ous to get labels for large-scale text collections.
Unsupervised methods attempt to employ the data
properties such as manifold structures and distribu-
tions to learn hash functions. For example, graph
hashing (Liu et al., 2011) learns the hash func-
tion by utilizing the underlying manifold structure.
Self-Taught Hashing (STH) (Zhang et al., 2010)
decomposes the learning procedure into two steps:
first generating hash codes via unsupervised learn-
ing and then learning hash functions by treating the
previously generated hash codes as pseudo labels.

Owing to the success of deep learning, many
deep learning-based hashing methods have been
proposed in recent years (Wang et al., 2017; Xu
et al., 2015; Dong et al., 2019; Xuan et al., 2019).
For text hashing, Chaidaroon and Fang (Chaida-
roon and Fang, 2017) were the first to propose
a deep generative model called Variational Deep
Semantic Hashing (VDSH). Chaidaroon et al.
(Chaidaroon et al., 2018) further proposed an im-
proved version of VDSH, which employs unsuper-
vised ranking methods such as BM25 (Robertson
and Zaragoza, 2009) to extract weak signals from
training data. In consideration of the pervasiveness
of text relationships, Node2hash (Chaidaroon et al.,
2019) considers both text contents and connection
information. However, these methods are not end-
to-end trainable, because they generate the final
hash codes by using the median method (Weiss
et al., 2009) for binarization. Shen et al. (Shen
et al., 2018) proposed an end-to-end trainable gen-
erative semantic hashing method NASH that learns
hash codes directly. BMSH (Dong et al., 2019)
enhances NASH by imposing mixture priors. In
(Hansen et al., 2019), a Ranking based Semantic
Hashing (RBSH) method was proposed, which is
also an extension of NASH by incorporating text
similarity into the hash code generation.

Although the above methods have demonstrated
promising results in semantic hashing, they pay
no attention to few-bits hashing. Due to severe in-
formation loss, their performance also cannot be
guaranteed if applying them to few-bits hashing
directly. Our model focuses on few-bits hashing
and introduces a set of auxiliary implicit topic vec-
tors to mitigate information loss. The learned hash
codes are able to capture the implicit topics of texts.

3 Few-Bits Semantic Hashing

3.1 Problem Definition

We denote each text d as a bag-of-words vector
such that d ∈ R|V|, where V is the vocabulary
set. Let wi,vi ∈ {0, 1}|V| be the one-hot vector
representation of the i-th word in d and V . The
task of few-bits semantic hashing is to generate a
short-length binary hash code z ∈ {0, 1}l for each
text d, while preserving their similarity as much as
possible. l denotes the number of hash bits.

3.2 Model Formulation

As illustrated in Figure 1, our model is built upon
the VAE architecture. Its basic idea is to learn the
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hash code z for each text d via the inference net-
work. Then z is decoded by the generative network
to reconstruct d. However, as l is small, the genera-
tive network has little chance to well reconstruct d
based solely on z. To solve this problem, we intro-
duce a set of auxiliary implicit topic vectors. Let
T = [t1, t2, · · · , tl] ∈ Rd×l be the matrix form
of these topic vectors, and the i-th topic vector is
denoted as ti ∈ Rd, where d represents the topic
vector size. There are l topic vectors in total, which
is set to be equal to the number of hash bits. Then,
each text d is generated based on these topic vec-
tors rather than the binary vector z. Specifically,
the generative process is described as follows:

• For each text d,

– Draw a binary vector z ∈ {0, 1}l ∼
P (z), where P (z) = Bernoulli(γ) =∏l

i=1 γ
zi
i (1 − γi)1−zi . Here, γi ∈ [0, 1]

is the i-th entry of γ, which stands for
the probability of sampling zi as 1.

– If zi = 1, then the i-th topic vector ti
is selected. Let Tz denote the set of all
selected topic vectors.

– For each word wi in d,
∗ Draw wi ∼ P (V|f(g(Tz))), where
g(Tz) integrates all the selected topic
vectors to obtain a new representa-
tion. g has many choices like sum-
ming, averaging, or other more com-
plex methods. And f maps the new
representation to a latent vector use-
ful for modeling word probabilities.

We utilize the softmax function to compute the
conditional probability over wi. Thus, we have:

P (wi|f(g(Tz))) =
exp(wT

i f(g(Tz)))∑|V|
j=1 exp(vTj f(g(Tz)))

.

(1)
Assume words in d are generated independently,
then the text likelihood conditioned on Tz is

P (d|Tz) =
N∏
i=1

P (wi|f(g(Tz))), (2)

where N denotes the number of words in d. The
objective is to maximize the text log likelihood:

logP (d) = log

∫
z
P (d|Tz)P (Tz|z)P (z)dz

= log

∫
z
P (d|Tz)P (z)dz.

(3)

Note that Eq. (3) holds because for all z, we
have P (Tz|z) = 1. However, this objective is
intractable. By introducing Q(z|d) as an approx-
imation of the true posterior distribution P (z|d),
similar to VAE, we derive the tractable variational
lower bound of the text log likelihood:

LELBO =EQ[
N∑
i=1

logP (wi|f(g(Tz)))]

−KL(Q(z|d)‖P (z)),

(4)

where KL(·‖·) calculates the Kullback-Leibler di-
vergence and P (z) is the prior distribution of z.

In our approach, the implicit topic vectors play
a crucial part in mitigating information loss in few-
bits hashing. They are learned automatically ac-
cording to the data distribution instead of being set
up manually. To take full advantage of the implicit
topic vectors, it is also useful to make them inde-
pendent with each other. For this purpose, we add
an orthogonal constraint on T . The final objective
is then derived as below:

L = −LELBO + λ‖T TT − I‖2F , (5)

where I represents the identity matrix and ‖·‖F de-
notes the Frobenius norm. λ is a parameter used to
adjust the contribution of the orthogonal constraint.

3.3 Model Implementation
Our model is implemented under the VAE frame-
work, comprised of an inference network and a
generative network.

3.3.1 The Inference Network
The inference network calculates Q(z|d) to ob-
tain the binary vector z for each text d. Since
the prior on z is a multivariate Bernoulli distribu-
tion, we restrictQ(z|d) to take the formQ(z|d) =
Bernoulli(z̄), where z̄ = σ(r(d)). σ(·) is the sig-
moid function which outputs the sampling proba-
bilities of z, and function r is a nonlinear function
specified as a multilayer perceptron. Based on
Q(z|d), the binary vector z can be sampled in a
deterministic or stochastic way. In the determinis-
tic case, we have zi = d(z̄i − 0.5)e, where zi and
z̄i denote the i-th entry of z and z̄, respectively.
In the stochastic case, we have zi = d(z̄i − µi)e,
where µi ∼ Uniform(0, 1).

3.3.2 The Generative Network
The generative network takes selected topic vec-
tors Tz as input and outputs the word probability
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distribution P (V|f(g(Tz))). We set f to be a lin-
ear function, i.e., f(g(Tz)) = Eg(Tz) + b, where
E ∈ R|V|×d′ and b ∈ R|V|, d′ is the size of g(Tz).
Then, according to Eq. (1) we have:

P (wi|f(g(Tz))) =
exp(wT

i Eg(Tz) + bi)∑|V|
j=1 exp(vTj Eg(Tz) + bj)

,

(6)
where bi is the i-th entry of b. We do not resort to
more complex function f to avoid the “posterior
collapse” phenomenon (Lucas et al., 2019).

3.3.3 Optimization
The inference network and the generative network
can be trained jointly via backpropagation to op-
timize the objective in Eq. (5). However, the gra-
dients with respect to the binary vector z would
be essentially all zero, thus the inference network
cannot be trained. To address this issue, we utilize
the straight-through estimator (Bengio et al., 2013)
to approximate the gradients with respect to z as 1.
As thus, the gradients can be backpropagated from
the generative network to the inference network.

In this work, the prior on z is set to be the stan-
dard Bernoulli distribution, that is, all entries in γ
are fixed at 0.5. Therefore, the Kullback-Leibler
divergence term in Eq. (4) can be computed as:

KL(Q(z|d)‖P (z)) = KL(Bernoulli(z̄)‖P (z))

=
l∑

i=1

z̄i log(2z̄i) + (1− z̄i) log 2(1− z̄i).

3.4 Hash Code Generation
Once the model has been trained, we can generate
hash codes for both training and query texts via the
inference network. Since the vector z outputted by
the inference network is binary, we choose it as the
hash code directly, which indicates that our model
is end-to-end trainable. Note that when generating
hash codes, the binary vector z should be sampled
only in the deterministic way.

3.5 Discussion
As shown in the hash code generation process, each
hash bit corresponds to an implicit topic. When
the hash bit is 1, the corresponding implicit topic
vector will be selected to generate the text. In this
sense, the learned hash codes not only reduce the
dimension of the original texts but also capture
their implicit topics, which lends themselves more
interpretability. However, the hash codes learned
by existing hashing methods lack this property.
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Figure 2: Graphical models of PLSA, LDA and WISH.

In fact, our approach WISH can be regarded as
a Latent Topic Modeling (LTM) model. Here, we
provide an intuitive way to demonstrate how WISH
can be treated as an LTM model and what is the
difference between WISH and existing LTM mod-
els. We choose the most popular two LTM mod-
els, Probabilistic Latent Semantic Analysis (PLSA)
(Hofmann, 2001) and Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), for comparison and il-
lustrate their graphical representations in Figure 2,
where M , N and l denote the number of texts, the
number of words and the number of latent topics,
respectively. As shown in Figure 2 (a), PLSA first
chooses a topic c based on the text topic distribu-
tion θ and then generates word w according to the
c-th topic vector tc. LDA is a slightly modified
version of PLSA. In LDA, both topic distribution θ
and topic vector t are assumed to follow the Dirich-
let distribution characterized by α and β. As for
WISH, its graphical representation is similar to
PLSA and LDA, as shown in Figure 2 (c). WISH
first samples a binary vector z from the multivari-
ate Bernoulli distribution characterized by γ. Then
a subset of topic vectors Tz are selected to generate
word w. In view of the word generation process,
WISH can be regarded as an LTM model.

However, WISH is a discrete deep model as z is
forced to be binary. And the prior on z is Bernoulli
distribution rather than Dirichlet distribution. Simi-
lar to PLSA, WISH does not have any prior on the
topic vector t. But it generates words based on a
subset of topic vectors simultaneously instead of
only one topic vector. Besides, PLSA is a transduc-
tive method, it is unable to deal with query texts,
thus it cannot be used for text hashing.

4 Experimental Setup

4.1 Datasets
We use four public benchmark datasets for evalu-
ation. 1) Reuters1 is a collection of 10,788 news

1http://www.nltk.org/nltk_data/

http://www.nltk.org/nltk_data/
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documents with 90 different classes. Similar to
(Chaidaroon and Fang, 2017), only the 20 most fre-
quent classes are taken into consideration. 2) TMC2

contains air traffic reports provided by NASA and
is comprised of 28,596 reports divided into 22 dif-
ferent categories. 3) 20Newsgroups3 is a dataset of
18,846 newsgroup posts, partitioned into 20 differ-
ent groups. 4) Agnews4 is a collection of 127,600
news articles, which has 4 categories. For each
article, we use both the title and the description.
All the adopted datasets are short text data. The av-
erage text lengths of Reuters, TMC, 20Newsgroups
and Agnews are 51, 63, 102 and 21, respectively.

For each dataset, we filter all documents by re-
moving words with more than 90% document fre-
quency and words occurring less than 3 times. We
also apply stopwords removal using the sklearn
stopwords list. No stemming is performed. We
split each dataset into three parts with 80% for
training, 10% for validation and 10% for testing.
Only documents in the training set are retrieved
for each testing document during evaluation. We
choose the TF-IDF (Manning et al., 2008) features
as the original document representation.

4.2 Evaluation Metric

To evaluate the effectiveness of the generated hash
codes in similarity search, we treat each document
in the testing set as a query. For each query, we
retrieve relevant documents from the training set
based on the Hamming distance between their hash
codes. To facilitate comparison with prior seman-
tic hashing methods (Chaidaroon and Fang, 2017;
Shen et al., 2018; Hansen et al., 2019; Chaidaroon
et al., 2018), we take precision as the evaluation
metric. To be more specific, for each query, we
search for the 100 nearest/closest documents and
measure the performance as the precision among
the 100 retrieved documents (Prec@100), which is
calculated as the ratio of the number of retrieved
relevant documents to the number of all retrieved
documents (fixed value of 100). The total perfor-
mance is then simply the average Prec@100 score
over all queries. To determine if a retrieved doc-
ument is relevant to the given query, following
prior works (Chaidaroon and Fang, 2017; Shen

2https://catalog.data.gov/dataset/
siam-2007-text-mining-competition-dataset

3https://scikit-learn.org/0.19/
datasets/twenty_newsgroups.html

4http://groups.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

et al., 2018; Hansen et al., 2019; Wang et al., 2013;
Chaidaroon et al., 2018), we consider documents
sharing at least one class label as relevant pairs.

4.3 Comparison Methods

We compare our method WISH against the follow-
ing methods: Self-Taught Hashing (STH) (Zhang
et al., 2010), Variational Deep Semantic Hashing
(VDSH) (Chaidaroon and Fang, 2017), Neural Ar-
chitecture Semantic Hashing (NASH) (Shen et al.,
2018), Ranking based Semantic Hashing (RBSH)
(Hansen et al., 2019), Node2hash (Chaidaroon
et al., 2019) and the neighbourhood recognition
model (NbrReg) (Chaidaroon et al., 2018). The
detailed descriptions of these baseline methods can
be found in Section 2.

4.4 Training Details

On all datasets, we implement the inference net-
work of our approach with 2 hidden layers (both
with 1000 units) using the ReLU activation func-
tion, followed by a hidden layer with sigmoid ac-
tivation function to obtain the sampling probabil-
ities of hash code z. We also employ the dropout
technique (Srivastava et al., 2014) with the keep
probability of 0.8 on the output of the second layer
to alleviate overfitting. The generative network
consists of only one layer with softmax activation
function, as described in Section 3.3. We adopt the
stochastic method to sample the binary vector z
during training so as to encourage exploration. For
simplicity, we choose function g as the summing
function to integrate the selected topic vectors Tz
before feeding them to the generative network.

Our model is trained using the Adam optimizer
(Kingma and Ba, 2014), and the learning rate is
fixed at 0.001 for all parameters. By default, we set
the orthogonal constraint coefficient λ to be 1. The
topic vector size d is fixed at 50 for Reuters and
100 on the other three datasets. Following (Chaida-
roon and Fang, 2017), we add a weight parameter
for the Kullback-Leibler divergence term. This pa-
rameter is initially fixed at 0 and then increased
by 5 × 10−6 in each iteration. We implement
our approach in Pytorch5 and conduct all exper-
iments on a server with 2 AMD Ryzen Threadrip-
per 2950X 16-Core Processors and 2 Nvidia Titan
RTX GPUs. Our implementation can be accessed
at https://github.com/smartyfh/WISH.

5https://pytorch.org/

https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
https://catalog.data.gov/dataset/siam-2007-text-mining-competition-dataset
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://github.com/smartyfh/WISH
https://pytorch.org/
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Reuters TMC
Methods 4 bits 6 bits 8 bits 10 bits 12 bits 4 bits 6 bits 8 bits 10 bits 12 bits

STH 0.5451 0.6098 0.6880 0.7150 0.7239 0.3743 0.4008 0.4340 0.4561 0.4940
VDSH 0.5435 0.6649 0.6765 0.7059 0.7142 0.4327 0.4764 0.5032 0.5186 0.5317
NASH 0.5829 0.6500 0.6886 0.7088 0.7392 0.3891 0.4147 0.4304 0.4710 0.4828
RBSH 0.5824 0.6420 0.6718 0.6895 0.7075 0.3727 0.3883 0.4039 0.4373 0.4440

Node2hash 0.5831 0.6248 0.6465 0.6639 0.6749 0.4162 0.4476 0.4838 0.4953 0.5120
NbrReg 0.6000 0.6829 0.6978 0.7185 0.7383 0.4297 0.4822 0.5146 0.5327 0.5409
WISH 0.6639 0.7589 0.7680 0.7798 0.7971 0.4648 0.5291 0.5520 0.5640 0.5762

20Newsgroups Agnews
Methods 4 bits 6 bits 8 bits 10 bits 12 bits 4 bits 6 bits 8 bits 10 bits 12 bits

STH 0.1322 0.2082 0.2730 0.3294 0.3754 0.5754 0.5865 0.6637 0.6739 0.7460
VDSH 0.2626 0.3929 0.4329 0.4836 0.5008 0.6950 0.7423 0.7672 0.7734 0.7868
NASH 0.2319 0.3084 0.3938 0.4529 0.4803 0.5728 0.6611 0.6942 0.7129 0.7733
RBSH 0.2267 0.2807 0.3318 0.4035 0.4693 0.5002 0.5286 0.6514 0.7363 0.7453

Node2hash 0.2160 0.2949 0.3212 0.3447 0.3454 0.5648 0.6072 0.6325 0.6518 0.6695
NbrReg 0.2434 0.3760 0.4251 0.4680 0.5002 0.6952 0.7317 0.7499 0.7807 0.7909
WISH 0.3543 0.4947 0.5188 0.5194 0.5387 0.7688 0.7764 0.7906 0.7973 0.8066

Table 1: Prec@100 on four datasets with different number of hash bits (best results in bold fonts).

5 Experimental Results

5.1 Baseline Comparison

To evaluate the performance of our approach WISH
in few-bits hashing, we set the length of hash codes
(i.e., l) as 4, 6, 8, 10, 12. For a fair comparison, we
run each method 10 times and report the average re-
sults. The detailed results are presented in Table 1,
where the best performing results are shown in bold.
Firstly, we observe that WISH consistently outper-
forms all baselines on the four datasets across dif-
ferent number of hash bits. For example, on the
20Newsgroups dataset, WISH achieves approxi-
mately 10% performance promotion over the best
performing baseline when the number of hash bits
is set to 4 and 6. These results indicate that WISH
can make the most effective use of the limited in-
formation transmitted from the inference network
with the aid of the auxiliary implicit topic vectors.
Secondly, we observe that all methods achieve bet-
ter performance with the increasing of hash code
length. This is desirable because longer hash codes
can reserve more information. Overall, compared
to the baseline methods, our approach WISH is
more suitable for few-bits hashing.

5.2 Comparison with LDA

We have discussed the relationship between WISH
and two LTM models PLSA and LDA in Section
3.5. PLSA is a transductive method, thus cannot
be used for hashing. While LDA is an inductive
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Figure 4: Effects of sam-
pling strategies.

method, it can be utilized for hashing directly. Here
we compare WISH with LDA by setting the num-
ber of hash bits to 8. The results are illustrated in
Figure 3, where 20NG stands for 20Newsgroups.
We can see that WISH shows much better perfor-
mance than LDA. Compared to LDA, WISH has
two advantages: 1) WISH is a discrete model and
learns hash codes directly, while LDA needs a bina-
rization step to generate hash codes, which usually
leads to suboptimal results. 2) WISH is a deep
neural generative model, which inherits good prop-
erties of both deep learning and probabilistic gen-
erative models. While LDA is a shallow model.

5.3 Effects of Sampling Strategies

As described in Section 3.3, there are two sampling
strategies on how to obtain the binary vector z:
namely the stochastic and deterministic sampling
method. Here we compare the two sampling strate-
gies and observe their effects on the performance
of WISH. We fix the number of hash bits at 8 and
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Figure 5: Effects of topic vector size.
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Figure 6: Effects of parameter λ.

report the results in Figure 4. As can be observed,
on all datasets, the stochastic sampling method out-
performs the deterministic sampling method. The
results indicate that endowing the sampling process
of the binary vector z with more stochasticity helps
to make the learned binary representations of input
texts more meaningful and more discriminative.

5.4 Effects of Topic Vector Size

In this section, we investigate the effects of topic
vector size d. For this purpose, we fix the number
of hash bits at 4 and 8, and vary d in the range
of {50, 100, 150, 200, 250, 300}. The results on
Reuters and 20Newsgroups are reported in Fig-
ure 5. Similar results can be observed on the other
two datasets. Due to space limitation, their results
are omitted. From Figure 5, we observe that our
approach is relatively stable with respect to d. Al-
though d is expected to be much larger than the
size of the binary vector z (in order to address the
issue of information loss), there is no need to set
it to be very large. A small d can reduce the num-
ber of parameters in our model, which reduces the
training time and also the chance of overfitting.

5.5 Effects of Parameter λ

As shown in Eq. (5), our approach has involved an
orthogonal constraint on the topic vectors T with
λ being the weighting parameter. This constraint
is important because it helps to reduce information
redundancy in the topic vectors and thus makes the
learned binary representations more discriminative.
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Figure 7: Comparison of two implicit topic vector inte-
gration strategies (i.e., summing and averaging).

It is useful to study the effects of λ. To this end, we
tune λ in the range of {0.01, 0.1, 1, 10, 100} and
report the results on Reuters and 20Newsgroups in
Figure 6, where the number of hash bits is set to 4
and 8. Note that the horizontal axis of Figure 6 is
plotted in log scale. From Figure 6, we observe that
our approach is robust to λ. Although we vary λ in
such a large range, the performance keeps stable.

5.6 Effects of Implicit Topic Vector
Integration Strategies

Recall that in our approach there is a function g,
which integrates all the selected implicit topic vec-
tors before feeding them to the generative network.
In previous experiments, we have set g to be the
summing function (i.e., adding all the selected topic
vectors). Since g has many other choices like av-
eraging (i.e., taking the average of all the selected
topic vectors) and more complex methods, here
we compare the summing strategy and the averag-
ing strategy. We conduct experiments on Reuters
and 20Newsgroups by varying the number of hash
bits in the range of {4, 6, 8, 10, 12}. The results
are illustrated in Figure 7. As can be seen, the
summing strategy consistently shows better per-
formance than the averaging strategy. The results
indicate that a proper g is important to ensure the
performance of our approach. With a more ad-
vanced g, our approach has the potential to achieve
even better performance. We leave the exploration
of more advanced g as our future work.

5.7 Time Comparison

In this part, we first compare the training time of
different methods on the largest dataset Agnews.
For our approach WISH and all the baselines except
STH (i.e., VDSH, NASH, RBSH, Node2hash and
NbrReg), we run each method 100 iterations. The
results are reported in Figure 8 (a), where the verti-
cal axis is plotted in log scale. From Figure 8 (a),
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Figure 8: Time comparison of different methods.

we can observe that STH runs much faster than the
other methods. This is because STH is a shallow
model, whereas all other methods are deep models.
We can also observe that RBSH and NbrReg takes
much longer time for training. The training time
of our approach WISH is comparable with VDSH,
NASH and Node2hash.

We further compare the average query time of
different methods. To this end, we treat each doc-
ument in the testing set as a query. We first feed
each query to the trained model to generate the hash
code and then retrieve relevant documents from the
training set. The average time results are reported
in Figure 8 (b), from which we observe that STH
takes much longer query time, while RBSH and
our approach WISH are very efficient. The results
demonstrate the efficiency of our approach.

5.8 Comparison of Long-Bits Hashing
As described in Section 5.1, our approach WISH
consistently outperforms all baseline methods in
few-bits hashing. Here we look at the performance
when the hash codes are set to be longer. Specifi-
cally, we vary the number of hash bits in the range
of {16, 20, 24, 28, 32} and conduct experiments on
TMC and Agnews. We choose the two datasets
because TMC has the most ground-truth classes
while Agnews has the least ground-truth classes.
In this experiment, the topic vector size is fixed at
50 for both datasets. And we set the learning rate
to 0.001 for TMC and 0.0001 for Agnews. The re-
sults are illustrated in Figure 9. From Figure 9, we
observe that WISH shows better performance than
all baseline methods on both datasets. The results
further confirm the effectiveness of our approach.

5.9 Visualization of Hash Codes
To intuitively see if the learned hash codes can pre-
serve the semantics of the original documents, we
further perform a qualitative visualization analysis
using the UMAP (McInnes et al., 2018) tool on
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Figure 9: Comparison of long-bits hashing.

(a) VDSH (b) WISH

Figure 10: Visualization of the 8 bits hash codes of
20Newsgroups generated by VDSH and WISH. Each
point denotes a document and different colors represent
different classes (best viewed in color).

the dataset 20Newsgroups. Specifically, we first
project the 8 bits hash codes learned by VDSH and
our approach WISH into the 2D space and then
generate the scatter plots. Figure 10 illustrates the
results. In Figure 10, each point denotes a docu-
ment which is associated with one of the 20 classes
and different colors represent different classes. As
can be observed, our approach WISH generates
more separate clusters, while the cluster structure
of VDSH is highly overlapped. We can also ob-
serve that the points generated by our approach are
closer to each other if they share the same class
label. This visualization analysis verifies the effec-
tiveness of our approach again and demonstrates
that our approach can preserve the semantics of doc-
uments even though it is an unsupervised method.

6 Conclusion

In this paper, we have presented a simple but ef-
fective unsupervised neural generative semantic
hashing method with a focus on few-bits hashing.
To address the problem of information loss in few-
bits hashing, we have introduced a set of auxil-
iary implicit topic vectors. With the aid of these
topic vectors, our approach can well capture the
semantics of texts, thus the learned hash codes are
not only low-dimensional representations of the
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original texts but also capture their implicit topics.
We have further analyzed that our approach can
be treated as an LTM model although it is funda-
mentally different from existing LTM models. To
evaluate the effectiveness of our approach, we have
conducted a comprehensive set of experiments, the
results demonstrate the superiority of our approach
over existing semantic hashing methods.
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