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Abstract

Generalization of models to out-of-
distribution (OOD) data has captured
tremendous attention recently. Specifically,
compositional generalization, i.e., whether
a model generalizes to new structures built
of components observed during training, has
sparked substantial interest. In this work, we
investigate compositional generalization in
semantic parsing, a natural test-bed for com-
positional generalization, as output programs
are constructed from sub-components. We
analyze a wide variety of models and propose
multiple extensions to the attention module
of the semantic parser, aiming to improve
compositional generalization. We find that
the following factors improve compositional
generalization: (a) using contextual repre-
sentations, such as ELMO and BERT, (b)
informing the decoder what input tokens have
previously been attended to, (c) training the
decoder attention to agree with pre-computed
token alignments, and (d) downsampling
examples corresponding to frequent program
templates. While we substantially reduce the
gap between in-distribution and OOD general-
ization, performance on OOD compositions is
still substantially lower.

1 Introduction

Neural models trained on large datasets have re-
cently shown great performance on data sampled
from the training distribution. However, gener-
alization to out-of-distribution (OOD) scenarios
has been dramatically lower (Sagawa et al., 2019;
Gardner et al., 2020; Kaushik et al., 2020). A par-
ticularly interesting case of OOD generalization
is compositional generalization, the ability to sys-
tematically generalize to test examples composed
of components seen during training. For exam-
ple, we expect a model that observed the questions

“What is the capital of France?” and “What is the
∗ The authors contributed equally.

population of Spain?” at training time to general-
ize to questions such as “What is the population
of the capital of Spain?”. While humans gener-
alize systematically to such compositions (Fodor
et al., 1988), models often fail to capture the struc-
ture underlying the problem, and thus miserably
fail (Atzmon et al., 2016; Lake and Baroni, 2018;
Loula et al., 2018; Bahdanau et al., 2019b; Ruis
et al., 2020).

Semantic parsing, mapping natural language ut-
terances to structured programs, is a task where
compositional generalization is expected, as sub-
structures in the input utterance and output program
often align. For example, in “What is the capital of
the largest US state?”, the span “largest US state”
might correspond to an argmax clause in the out-
put program. Nevertheless, prior work (Finegan-
Dollak et al., 2018; Herzig and Berant, 2019; Key-
sers et al., 2020) has shown that data splits that
require generalizing to new program templates re-
sult in drastic loss of performance. However, past
work did not investigate how different modeling
choices interact with compositional generalization.

In this paper, we thoroughly analyze the impact
of different modeling choices on compositional
generalization in 5 semantic parsing datasets—four
that are text-to-SQL datasets, and DROP, a dataset
for executing programs over text paragraphs. Fol-
lowing Finegan-Dollak et al. (2018), we examine
performance on a compositional split, where tar-
get programs are partitioned into “program tem-
plates”, and templates appearing at test time are
unobserved at training time. We examine the ef-
fect of standard practices, such as contextualized
representations (§3.1) and grammar-based decod-
ing (§3.2). Moreover, we propose novel extensions
to decoder attention (§3.3), the component respon-
sible for aligning sub-structures in the question and
program: (a) supervising attention based on pre-
computed token alignments, (b) attending over con-
stituency spans, and (c) encouraging the decoder
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attention to cover the entire input utterance. Lastly,
we also propose downsampling examples from fre-
quent templates to reduce dataset bias (§3.4).

Our main findings are that (i) contextualized
representations, (ii) supervising the decoder at-
tention, (iii) informing the decoder on coverage
of the input by the attention mechanism, and
(iv) downsampling frequent program templates,
all reduce the gap in generalization when com-
paring standard iid splits to compositional splits.
For SQL, the gap in exact match accuracy be-
tween in-distribution and OOD is reduced from
84.6 → 62.2 and for DROP from 96.4 →
77.1. While this is a substantial improvement,
the gap between in-distribution and OOD gen-
eralization is still significant. All our code and
data are publicly available at http://github.com/
inbaroren/improving-compgen-in-semparse.

2 Compositional Generalization

Natural language is compositional in a sense that
complex utterances are interpreted by understand-
ing the structure of the utterance and the meaning
of its parts (Montague, 1973). For example, the
meaning of “a person below the tree” can be com-
posed from the meaning of “a person”, “below”
and “tree”. By virtue of compositionality, an agent
can derive the meaning of new utterances, even at
first encounter. Thus, we expect our systems to
model this compositional nature of language and
generalize to new utterances, generated from sub-
parts observed during training but composed in
novel ways. This sort of model generalization is
often called compositional generalization.

Recent work has proposed various benchmarks
to measure different aspects of compositional gen-
eralization, showing that current models struggle
in this setup. Lake and Baroni (2018) introduce a
benchmark called SCAN for mapping a command
to actions in a synthetic language, and proposed a
data split that requires generalizing to commands
that map to a longer sequence of actions than ob-
served during training. Bahdanau et al. (2019a)
study the impact of modularity in neural models on
the ability to answer visual questions about pairs
of objects that were not observed during training.
Bahdanau et al. (2019b) assess the ability of models
trained on CLEVR (Johnson et al., 2017) to inter-
pret new referring expressions composed of parts
observed at training time. Keysers et al. (2020) de-
velop a benchmark of Freebase questions and pro-

Program Question iid 
split

Program 
split

select distinct 
river.length from 
river where 
rive.name = 
"river_name0"

What length is 
river_name0? train train

How long is 
river_name0? test train

select state.name
from state where 
state.area = 
(select max 
(state.area) from 
state)

Give me the 
largest state train test

What state has 
the largest area? test test

Figure 1: An iid split of examples in semantic parsing
leads to identical anonymized programs appearing at
both training and test time. A program split prohibits
anonymized programs from appearing in the same par-
tition, and hence tests compositional generalization.

pose a data split such that the test set contains new
combinations of knowledge-base constants (entities
and relations) that were not seen during training.
Ruis et al. (2020) proposed gSCAN, which focuses
on compositional generalization when mapping
commands to actions in a situated environment.

In this work, we focus on a specific kind of com-
positional data split, proposed by Finegan-Dollak
et al. (2018), that despite its simplicity leads to
large drops in performance. Finegan-Dollak et al.
(2018) propose to split semantic parsing data such
that a model cannot memorize a mapping from
question templates to programs. To achieve this,
they take question-program pairs, and anonymize
the entities in the question-program pair with typed
variables. Thus, questions that require the same
abstract reasoning structure now get mapped to the
same anonymized program, referred to as program
template. For example, in the top two rows of Fig-
ure 1, after anonymizing the name of a river to
the typed variable river name0, two lexically-
different questions map to the same program tem-
plate. Similarly, in the bottom two rows we see two
different questions that map to the same program
even before anonymization.

The data is then split in a manner such that a pro-
gram template and all its accompanying questions
belong to the same set, called the program split.
This ensures that all test-set program templates are
unobserved during training. For example, in a iid
split of the data, it is possible that the question

“what is the capital of France?” will appear in the
training set, and the question “Name Spain’s cap-
ital.” will appear in the test set. Thus, the model
only needs to memorize a mapping from question

http://github.com/inbaroren/improving-compgen-in-semparse
http://github.com/inbaroren/improving-compgen-in-semparse
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templates to program templates. However, in the
program split, each program template is in either
the training set or test set, and thus a model must
generalize at test time to new combinations of pred-
icates and entities (see Figure 1 - Program split).

We perform the compositional split proposed
by Finegan-Dollak et al. (2018) on four text-to-
SQL datasets from Finegan-Dollak et al. (2018)
and one dataset for mapping questions to QDMR
programs (Wolfson et al., 2020) on DROP (Dua
et al., 2019). Exact experimental details are in §4.

3 Model

Finegan-Dollak et al. (2018) convincingly showed
that a program split leads to low semantic pars-
ing performance. However, they examined only
a simple baseline parser, disregarding many stan-
dard variations that have been shown to improve in-
distribution generalization, and might affect OOD
generalization as well. In this section, we describe
variants to both the model and training, and evalu-
ate their effect on generalization in §5. We examine
well-known choices, such as the effect of contex-
tualized representations (§3.1) and grammar-based
decoding (§3.2), as well as several novel exten-
sions to the decoder attention (§3.3), which include
(a) eliciting supervision (automatically) for the de-
coder attention distribution, (b) allowing attention
over question spans, and (c) encouraging attention
to cover all of the question tokens. For DROP,
where the distribution over program templates is
skewed, we also examine the effect of reducing this
bias by downsampling frequent program templates
(§3.4).

Baseline Semantic Parser A semantic parser
maps an input question x into a program z, and
in the supervised setup is trained from (x, z) pairs.
Similar to Finegan-Dollak et al. (2018), our base-
line semantic parser is a standard sequence-to-
sequence model (Dong and Lapata, 2016) that
encodes the question x with a BiLSTM encoder
(Hochreiter and Schmidhuber, 1997) over GloVe
embeddings (Pennington et al., 2014), and decodes
the program z token-by-token from left to right
with an attention-based LSTM decoder (Bahdanau
et al., 2015).

3.1 Contextualized Representations
Pre-trained contextualized representations revo-
lutionized natural language processing in recent
years, and semantic parsing has been no exception

(Guo et al., 2019; Wang et al., 2019). We hypothe-
size that better representations for question tokens
should improve compositional generalization, be-
cause they reduce language variability and thus
may help improve the mapping from input to out-
put tokens. We evaluate the effect of using ELMO

(Peters et al., 2018) and BERT (Devlin et al., 2019)
to represent question tokens.1

3.2 Grammar-Based Decoding

A unique property of semantic parsing, compared
to other generation tasks, is that programs have a
clear hierarchical structure that is based on the tar-
get formal language. Decoding the output program
token-by-token from left to right (Dong and Lap-
ata, 2016; Jia and Liang, 2016) can thus generate
programs that are not syntactically valid, and the
model must effectively learn the syntax of the target
language at training time. Grammar-based decod-
ing resolves this issue and has been shown to con-
sistently improve in-distribution performance (Ra-
binovich et al., 2017; Krishnamurthy et al., 2017;
Yin and Neubig, 2017). In grammar-based decod-
ing, the decoder outputs the abstract syntax tree of
the program based on a formal grammar of the tar-
get language. At each step, a production rule from
the grammar is chosen, eventually outputting a top-
down left-to-right linearization of the program tree.
Because decoding is constrained by the grammar,
the model outputs only valid programs. We refer
the reader to the aforementioned papers for details
on grammar-based decoding.

Compositional generalization involves combin-
ing known sub-structures in novel ways. In
grammar-based decoding, the structure of the out-
put program is explicitly generated, and this could
potentially help compositional generalization. We
discuss the grammars used in this work in §4.

3.3 Decoder Attention

Semantic parsers use attention-based decoding:
at every decoding step, the model computes a
distribution (p1 . . . pn) over the question tokens
x = (x1, . . . , xn) and the decoder computes its
next prediction based on the weighted average∑n

i=1 pi · hi, where hi is the encoder represen-
tation of xi. Attention has been shown to both
improve in-distribution performance (Dong and La-
pata, 2016) and also lead to better compositional

1We use fixed BERT embeddings without fine-tuning in
the SQL datasets due to computational constraints.
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How many yards longer was L. 's pass to E. than V. Y. 's shortest pass ?

ARITHMETIC_diff( SELCT_num( SELECT ) SELECT_num( ARGMIN( SELECT )))

Figure 2: Example of an alignment between question
and program tokens in DROP as predicted by FastAl-
ign. “Lossman”, “Evan”, “Vince”, and “Young” are
abbreviated to “L.”, “E.”, “V.”, and “Y.” for brevity.

generalization (Finegan-Dollak et al., 2018), by
learning a soft alignment between question and
program tokens. Since attention is the component
in a sequence-to-sequence model that aligns parts
of the input to parts of the output, we propose new
extensions to the attention mechanism, and exam-
ine their effect on compositional generalization.

(a) Attention Supervision Intuitively, learning
good alignments between question and program
tokens should improve compositional generaliza-
tion: a model that correctly aligns the token largest
to the predicate max should output this predicate
when encountering largest in novel contexts.

To encourage learning better alignments, we su-
pervise the attention distribution computed by the
decoder to attend to specific question tokens at
each time-step (Liu et al., 2016). We use an off-
the-shelf word aligner to produce a “gold” align-
ment between question and program tokens (where
program tokens correspond to grammar rules in
grammar-based decoding) for all training set exam-
ples. Then, at every decoding step where the next
prediction symbol’s ”gold” alignment is to question
tokens at indices I , we add the term− log

∑
i∈I pi

to the objective, pushing the model to put attention
probability mass on the aligned tokens. We use
the FastAlign word alignment package (Dyer et al.,
2013), based on IBM model 2, which is a genera-
tive model that allows to extract word alignments
from parallel corpus without any annotated data.
Figure 2 shows an example question-program pair
and the alignments induced by FastAlign.

(b) Attention over Spans Question spans can
align to subtrees in the corresponding pro-
gram. For example, in Fig. 1, largest state
aligns to state.area = (select max . . .
from state). Similarly, in a question such as

“What does Lionel Messi do for a living?”, the multi-
word phrase “do for a living” aligns to the KB
relation Profession. Allowing the model to di-
rectly attend to multi-token phrases could induce
more meaningful alignments that improve compo-

sitional generalization.
Here, rather than computing an attention distri-

bution over input tokens (x1, . . . xn), we compute
a distribution over the set of spans corresponding to
all constituents (including all tokens) as predicted
by an off-the-shelf constituency parser (Joshi et al.,
2018). Spans are represented using a self-attention
mechanism over the hidden representations of the
tokens in the span, as in Lee et al. (2017).

(c) Coverage Questions at test time are some-
times similar to training questions, but include new
information expressed by a few tokens. A model
that memorizes a mapping from question templates
to programs can ignore this new information, ham-
pering compositional generalization. To encour-
age models to attend to the entire question, we
add the attention-coverage mechanism from See
et al. (2017) to our model. Specifically, at each
decoding step the decoder holds a coverage vector
c = (c1, . . . , cn), where ci corresponds to the sum
of attention probabilities over xi in all previous
time steps. The coverage vector is given as another
input to the decoder, and a loss term is added that
penalizes attending to tokens with high coverage:∑n

i=1min(ci, pi), encouraging the model to attend
to tokens not yet attended to.

3.4 Downsampling Frequent Program
Templates

Training a semantic parser can be hampered if the
training data contains a highly skewed distribution
over program templates, i.e., a large fraction of the
training examples correspond to the same template.
In such a biased environment, the model might
memorize question-to-template mappings instead
of modeling the underlying structure of the prob-
lem. We propose to downsample examples from
frequent templates such that the resulting training
data has a more balanced template distribution.

Our initial investigation showed that the distri-
bution over program templates in DROP is highly
skewed (20 templates out of 111 constitute 90%
of the data), leading to difficulties to achieve any
generalization to examples from the program split.
Thus, in DROP, for any program template in the
training set where there are more than 20 exam-
ples, we randomly sample 20 examples for training.
Downsampling is related to AFLite (Sakaguchi
et al., 2020; Bras et al., 2020), an algorithmic ap-
proach to bias reduction in datasets. AFLite is ap-
plied when bias is hard to define; as we have direct
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access to a skewed program distribution, we can
take a much simpler approach for reducing bias.

4 Datasets

We create iid and program splits for five datasets
according to the procedure of Finegan-Dollak et al.
(2018) as described in §2:2 Four text-to-SQL
datasets from Finegan-Dollak et al. (2018) and one
dataset for mapping questions to QDMR programs
(Wolfson et al., 2020) in DROP (Dua et al., 2019).
Similar to prior work (Finegan-Dollak et al., 2018),
we train and test models on anonymized programs,
that is, entities are replaced with typed variables
(§2). Table 1 gives an example question and pro-
gram for each of these datasets.
• ATIS: questions for a flight-booking task (Price,

1990; Dahl et al., 1994).
• GEOQUERY: questions about US geography

(Zelle and Mooney, 1996).
• ADVISING: questions about academic course

information. (Finegan-Dollak et al., 2018).
• SCHOLAR: questions about academic publica-

tions (Iyer et al., 2017).
• DROP: questions on history and football games

described in text paragraphs. We use annotated
QDMR programs from Wolfson et al. (2020).

SQL Grammar: We adapt the SQL gram-
mar developed for ATIS (Lin et al., 2019) to
cover the four SQL datasets. To achieve that,
additional data normalization steps were taken
(see appendix), such as rewriting programs to
have a consistent SQL style. The grammar
uses the DB schema to produce domain-specific
production rules, e.g., in ATIS table name
→ FLIGHTSalias0, column name →
FLIGHTSalias0.MEAL DESCRIPTION, and
value → class type0. At inference time,
we enforce context-sensitive constraints that
eliminate production rules that are invalid given
the previous context. For example, in the WHERE
clause, the set of column name rules is limited
to columns that are part of previously mentioned
tables. These constraints reduce the number of
syntactically invalid programs, but do not eliminate
them completely.

DROP Grammar: We manually develop a
grammar over QDMR programs to perform

2We do not use their original split because we remove
duplicate question-program pairs and balance the number of
examples between the iid and program splits.

grammar-based decoding for DROP, similar to
Gupta et al. (2020). This grammar contains
typed operations required for answering questions,
such as, ARITHMETIC diff(NUM, NUM) →
NUM, SELECT num(PassageSpan) → NUM,
and SELECT → PassageSpan. Because
QDMR programs are executed over text paragraphs
(rather than a KB), QDMR operators receive string
arguments as inputs (analogous to KB constants),
which we remove for anonymization (Table 1).
This results in program templates that include only
the logical operations required for finding the an-
swer. While such programs cannot be executed as-
is on a database, they are sufficient for the purpose
of testing compositional generalization in semantic
parsing, and can be used as “layouts” in a neural
module network approach (Gupta et al., 2020).

5 Experiments

We now present our empirical evaluation of com-
positional generalization.

5.1 Experimental Setup

We create training/development/test splits using
both an iid split and a program split, such that
the number of examples is similar across splits.
Table 2 presents exact statistics on the number of
unique examples and program templates for all
datasets. There are much fewer new templates in
the development and test sets for the iid split than
for the program split, thus the iid split requires
less compositional generalization. In DROP, we
report results for the downsampled dataset (§3.4),
and analyze downsampling below.

Evaluation Metric We evaluate models using
exact match (EM), that is, whether the predicted
program is identical to the gold program. In addi-
tion, we report relative gap, defined as 1− EMprogram

EMiid
,

where EMprogram and EMiid are the EM on the pro-
gram and iid splits, respectively. This metric mea-
sures the gap between in-distribution generalization
and OOD generalization, and our goal is to mini-
mize it (while additionally maximizing EMiid).

We select hyper-parameters by tuning the learn-
ing rate, batch size, dropout, hidden dimension,
and use early-stopping w.r.t. development set EM
(specific values are in the appendix). The results re-
ported are averaged over 5 different random seeds.

Evaluated Models Our goal is to measure the
impact of various modeling choices on compo-
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Dataset: GEOQUERY
x: how many states border the state with the largest population?
z: select count( border info.border ) from border info as border info where
border info.state name in ( select state.state name from state as state where
state.population = ( select max( state.population ) from state as state ) )

Dataset: ATIS
x: what is the distance from airport code0 airport to city name0 ?
z: select distinct airport service.miles distant from airport as airport ,
airport service as airport service , city as city where airport.airport code
= "airport code0" and airport.airport code = airport service.airport code and
city.city code = airport service.city code and city.city name = "city name0"

Dataset: SCHOLAR
x: What papers has authorname0 written?
z: select distinct paper.paperid from author as author , paper as paper ,
writes as writes where author.authorname = "authorname0" and writes.authorid =
author.authorid and writes.paperid = paper.paperid

Dataset: ADVISING
x: Can undergrads enroll in the course number0 ?
z: select distinct course.advisory requirement , course.enforced requirement ,
course.name from course as course where course.department = "department0" and
course.number = number0

Dataset: DROP
x: How many yards longer was Johnson’s longest touchdown compared to his shortest touchdown of the first quarter?
z: ARITHMETIC diff( SELECT num( ARGMAX( SELECT ) ) SELECT num( ARGMIN( FILTER(
SELECT ) ) ) )

Table 1: Examples for the different datasets, of a question (x) and its corresponding program (z).

Dataset Split # examples # new templates
(train / dev / test) (train / dev / test)

GEOQUERY
iid 409 / 103 / 95 192 / 32 / 24

Prog. 424 / 91 / 91 148 / 49 / 47

ATIS
iid 3014 / 405 / 402 830 / 48 / 65

Prog. 3061 / 373 / 375 645 / 140 / 148

SCHOLAR
iid 433 / 111 / 105 158 / 16 / 16

Prog. 454 / 97 / 98 112 / 37 / 37

ADVISING
iid 3440 / 451 / 446 203 / 0 / 0

Prog. 3492 / 421 / 414 163 / 20 / 17

DROP
iid 582 / 102 / 500 73 / 0 / 0

Prog. 582 / 102 / 385 73 / 0 / 38

Table 2: Dataset statistics for the iid split and the pro-
gram (prog.) split for all datasets. # new templates
indicates the number of templates unseen during train-
ing time for the development and test sets, and the total
number of templates for the training set.

sitional generalization. We term our baseline
sequence-to-sequence semantic parser SEQ2SEQ,
and denote the parser that uses grammar-based de-
coding by GRAMMAR (§3.2). Use of contextu-
alized representations in these parsers is denoted
by +ELMO and +BERT (§3.1). We also experi-
ment with the proposed additions to the decoder
attention (§3.3). In a parser, use of (a) auxiliary
attention supervision obtained from FastAlign is
denoted by +ATTNSUP, (b) use of attention over

Model iid Program Rel.
split split gap

SQL
SEQ2SEQ 74.9 10.8 84.6

+ELMO 76.2 15.9 77.9
+BERT 77.5 10.5 85.7

GRAMMAR 70.1 14.1 78.1
+ELMO 65.5 11.2 81.4
+BERT 67.6 8.4 86.7

DROP
SEQ2SEQ 45.4 1.6 96.4

+ELMO 53.2 2.1 96.0
+BERT 50.0 0.0 100

GRAMMAR 49.2 2.6 94.7
+ELMO 57.8 13.2 77.1
+BERT 64.6 3.9 93.9

Table 3: Test results for contextualized representations
and grammar-based decoding.

constituent spans by +ATTNSPAN, and (c) use of
attention-coverage mechanism by +COVERAGE.

5.2 Main Results

Below we present the performance of our various
models on the test set, and discuss the impact of
these modeling choices. For SQL, we present re-
sults averaged across the four datasets, and report
the exact numbers for each dataset in Table 9.
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Model iid Program Rel.
split split gap

SQL
SEQ2SEQ 74.9 10.8 84.6

+ATTNSUP 73.3 18.5 73.2
+ELMO 76.2 15.9 77.9
+ELMO+ATTNSUP 73.7 20.3 70.6

GRAMMAR 70.1 14.1 78.1
+ATTNSUP 73.3 15.8 75.3
+ELMO 65.5 11.2 81.4
+ELMO+ATTNSUP 69.1 11.8 81.6

DROP
SEQ2SEQ 45.4 1.6 96.4

+ATTNSUP 49.4 1.3 97.3
+ELMO 53.2 2.1 96.0
+ELMO+ATTNSUP 58.2 2.6 95.5

GRAMMAR 49.2 2.6 94.7
+ATTNSUP 55.8 4.7 91.5
+ELMO 57.8 13.2 77.1
+ELMO+ATTNSUP 59.8 12.2 79.5

Table 4: Test results for auxiliary attention supervision.

Model iid Program Rel.
split split gap

SQL
SEQ2SEQ 74.9 10.8 84.6

+COVERAGE 75.3 17 76.2
+ATTNSUP 72.4 23.5 65.8

+ELMO 76.2 15.9 77.9
+ELMO+COVERAGE 76.2 24.1 66.5

+ATTNSUP 72 25.4 62.2

DROP
SEQ2SEQ 45.4 1.6 96.4

+COVERAGE 47.2 2.1 95.5
+ELMO 53.2 2.1 96.0
+ELMO+COVERAGE 64.4 4.4 93.1

Table 5: Test results for attention-coverage.

Baseline Performance The top-row in Table 3
shows the performance of our baseline SEQ2SEQ

model using GloVe representations. In SQL, it
achieves 74.9 EM on the iid split and 10.8 EM on
the program split, and in DROP, 45.4 EM and a
surprisingly low 1.6 EM on the iid and program
splits, respectively. A possible reason for the low
program split performance on DROP is that pro-
grams include only logical operations without any
KB constants (§4), making generalization to new
compositions harder than in SQL (see also analy-
sis in §5.3). As observed by Finegan-Dollak et al.
(2018), there is a large relative gap in performance
on the iid vs. program split.

Contextualized Representations Table 3 shows
that contextualized representations consistently im-
prove absolute performance and reduce the relative

Model iid Program Rel.
split split gap

SQL
SEQ2SEQ 74.9 10.8 84.6

+ATTNSPAN 73.8 14.3 79.5
+ELMO 76.2 15.9 77.9
+ELMO+ATTNSPAN 75.5 16.3 77.2

DROP
SEQ2SEQ 45.4 1.6 96.4

+ATTNSPAN 48.6 3.1 93.6
+ELMO 53.2 2.1 96.0
+ELMO +ATTNSPAN 56.2 1.6 97.1

Table 6: Test results for attention over spans.

Model iid split Program split

w/o DS w/ DS w/o DS w/ DS

SEQ2SEQ 49.8 45.4 0.0 1.6
GRAMMAR 51.6 49.2 0.0 2.6

+ELMO 52.8 57.8 0.8 13.2

Table 7: Reducing training data bias in DROP by
downsampling examples for frequent templates leads
to better compositional generalization in all models.

gap in DROP. In SQL, contextualized representa-
tions improve absolute performance and reduce the
relative gap in the SEQ2SEQ model, but not in the
GRAMMAR model. The relative gap is reduced by
roughly 7 points in SQL, and 17 points in DROP.
As ELMO performs slightly better than BERT, we
present results only for ELMO in some of the sub-
sequent experiments, and report results for BERT
in Table 9.

Grammar-based Decoding Table 3 shows that
grammar-based decoding both increases accuracy
and reduces the relative gap on DROP in all cases.
In SQL, grammar-based decoding consistently de-
creases the absolute performance compared to
SEQ2SEQ. We conjecture this is because our SQL
grammar contains a large set of rules meant to
support the normalized SQL structure of Finegan-
Dollak et al. (2018), which makes decoding this
structure challenging. We provide further in-depth
comparison of performance in §5.3.

Attention Supervision Table 4 shows that at-
tention supervision has a substantial positive ef-
fect on compositional generalization, especially in
SQL. In SQL, adding auxiliary attention supervi-
sion to a SEQ2SEQ model improves the program
split EM from 10.8 → 18.5, and combining with
ELMO leads to an EM of 20.3. Overall, using
ELMO and ATTNSUP reduces the relative gap from
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84.6 → 70.6 compared to SEQ2SEQ. In DROP,
attention supervision improves iid performance
and reduces the relative gap for GRAMMAR using
GloVe representations, but does not lead to addi-
tional improvements when combined with ELMO.

Attention-coverage Table 5 shows that
attention-coverage improves absolute performance
and compositional generalization in all cases.
Interestingly, in SQL, best results are obtained
without the attention coverage loss term, but still
providing the coverage vector as additional input
to the decoder. In SQL, adding attention-coverage
improves program split EM from 10.8 → 17.
Combining coverage with ELMO and ATTNSUP

leads to our best results, where program split EM
reaches 25.4, and the relative gap drops from
84.6→ 62.2 (with a slight drop in iid split EM). In
DROP, using attention-coverage mechanism with
auxiliary coverage loss improves iid performance
from 53.2 → 64.6 and reduces the relative gap
from 96 → 93.1.

Attention over Spans Table 6 shows that, with-
out ELMO, attention over spans improves iid and
program split EM in both SQL and DROP, but
when combined with ELMO differences are small
and inconsistent.

Downsampling Frequent Templates Table 7
shows that for DROP, where the distribution over
program templates is extremely skewed, down-
sampling training examples for frequent templates
leads to better compositional generalization in all
models. For example, without downsampling (w/o
DS), program split EM drops from 13.2→ 0.8 for
the GRAMMAR+ELMO model.

Takeaways We find that contextualized represen-
tations, attention supervision, and attention cover-
age generally improve program split EM and re-
duce the relative gap, perhaps at a small cost to
iid split EM. In DROP, grammar-based decoding
is important, as well as downsampling of frequent
templates. Overall the gap between in-distribution
and OOD performance dropped from 84.6→ 62.2
for SQL, and from 96.4→ 77.1 for DROP. While
this improvement is significant, it leaves much to be
desired in terms of models and training procedures
that truly close this gap.

5.3 Analysis
Error Analysis We analyze the errors of each
model on the program split development set for all

Model Seen New Invalid
program program syntax

SEQ2SEQ 75.7 19.6 4.7
+ELMO 64.9 26.2 8.9
+ATTNSUP 62.6 29 8.3

+ELMO 57.4 32.4 10.2
+COVERAGE 59.8 28.9 11.3

+ELMO 40.5 41.3 18.1
+ATTNSPAN 70.2 22.2 7.5

+ELMO 63.1 29.3 7.6

GRAMMAR 26.2 70.4 3.4
+ELMO 22 71.7 6.3
+ATTNSUP 25.7 68.6 5.7

+ELMO 26.8 69.3 3.9

Table 8: Analysis of program split development set
results across all SQL datasets.

SQL datasets and label each example with one of
three categories (Table 8): Seen programs are errors
resulting from outputting program templates that
appear in the training set, while new programs are
wrong programs that were not observed in the train-
ing set. Invalid syntax errors are outputs that are
syntactically invalid programs. Table 8 shows that
for SEQ2SEQ models, those that improve composi-
tional generalization also increase the frequency of
new programs and invalid syntax errors. Grammar-
based models output significantly more new pro-
grams than SEQ2SEQ models, and less invalid syn-
tax errors.3 Overall, the correlation between suc-
cessful compositional generalization and the rate
of new programs is inconsistent.

We further inspect 30 random predictions of mul-
tiple models on both the program split and the iid
split (Table 10). Semantically equivalent errors
are predictions that are equivalent to the target pro-
grams. Semantically similar is a relaxation of the
former category (e.g., an output that represents

“flights that depart at time0”, where the gold pro-
gram represents “flights that depart after time0”).
Limited divergence or significant divergence corre-
sponds to invalid programs that slightly or signifi-
cantly diverge from the target output, respectively.

Table 10 shows that adding attention-
supervision, attention-coverage, and attention over
spans increases the number of predictions that are
semantically close to the target programs. We also
find that the frequency of correct typed variables
in predictions is significantly higher when using

3The grammar can still produce invalid outputs (see §4 -
SQL Grammar), thus it does not eliminate these errors entirely.
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iid split Prog. split Rel. gap iid split Prog. split Rel. gap iid split Prog. split Rel. gap iid split Prog. split Rel. gap

SEQ2SEQ 90.0 0.1 99.9 70.5 12.3 82.6 70.1 19.1 72.8 69.1 11.6 83.2
+ELMO 91.7 1.9 97.9 71.6 21.1 70.5 73.7 27.9 62.1 68.0 12.9 81.0
+BERT 91.5 0.1 99.9 72.2 17.0 76.5 74.7 18.0 75.9 71.4 6.7 90.6

+ATTNSUP 87.4 1.1 98.7 69.6 28.3 59.3 72.4 25.9 64.2 64.0 18.8 70.6
+ELMO 89.1 0.4 99.6 71.4 28.3 60.4 71.6 32.5 54.6 62.7 20.2 67.8
+BERT 90.2 2.3 97.5 70.1 29.9 57.3 74.7 29.2 60.9 64.8 16.3 74.8

+COVERAGE 90.1 1.9 97.9 70.7 23.7 66.5 72.4 27.7 61.7 67.8 14.5 78.6
+ELMO 91.9 5.4 94.1 74.5 34.4 53.8 73.3 28.4 61.3 65.1 28.2 56.7
+BERT 92.4 5.0 94.6 73.6 31.7 56.9 76.6 28.6 62.7 73.0 23.9 67.3
+ATTNSUP 85.9 3.2 96.3 71.1 31.4 55.8 72.6 34.7 52.2 60 24.7 58.8

+ELMO 88.6 5 94.4 71 34.3 51.7 70.5 34.1 51.6 57.7 28.2 51.1
+BERT 89.1 4.9 94.5 71.8 33.6 53.2 73.9 31.6 57.2 63.2 27.6 56.3

+ATTNSPAN 89.3 3.4 96.2 70.4 17.9 74.6 70.5 22.2 68.5 65.1 13.9 78.6
+ELMO 92.2 4.8 94.8 72.4 23.5 67.5 69.5 24.8 64.3 67.8 12.2 82.0
+BERT 91.9 0.0 100.0 71.5 22.6 68.4 72.0 21.1 70.7 65.3 9.4 85.6

GRAMMAR 88.5 3.0 96.6 65.8 18.1 72.5 63.2 21.8 65.5 61.1 13.7 77.6
+ELMO 90.0 3.1 96.6 61.3 21.3 65.3 58.1 16.3 71.9 52.6 4.3 91.8
+BERT 90.7 2.3 97.5 62.4 7.1 88.6 63.2 20.0 68.4 54.1 4.1 92.4

+ATTNSUP 87.4 5.9 93.2 63.8 24.2 62.1 64.2 20.4 68.2 63.8 14.3 77.6
+ELMO 89.1 2.0 97.8 65.0 15.9 75.5 62.9 22.4 64.4 59.2 6.7 88.7
+BERT 89.8 3.5 96.1 61.4 3.5 94.3 66.5 12.5 81.2 54.3 3.9 92.8

Table 9: Test EM for all models and SQL datasets. All results are averages over 5 different random seeds.

Model Semantically Semantically Limited Significant
equivalent similar divergence divergence

program split
SEQ2SEQ+ELMO 4 7 4 15
+ATTNSUP 7 7 5 11
+COVERAGE 4 11 2 13
+ATTNSPAN 5 9 0 16

iid split
SEQ2SEQ 6 8 4 12
GRAMMAR 6 11 7 6

Table 10: Manual categorization of 30 random predic-
tions on the iid and program splits development sets.

attention-supervision and attention-coverage
compared to the baseline model (p < 0.05). In
addition, the errors of the GRAMMAR model tend
to be closer to the target program compared to
SEQ2SEQ.

Compositional Generalization in DROP Our
results show that compositional generalization in
DROP is harder than in the SQL datasets. We hy-
pothesized that this could be due to the existence
of KB relations in SQL programs after program
anonymization, while QDMR programs do not con-
tain any arguments. To assess that, we further
anonymize the predicates in all SQL programs in
all four datasets, such that the SQL programs do not
contain any KB constants at all (similar to DROP).
We split the data based on this anonymization, and
term it the KB-free split. On the development set,
when moving from a program split to a KB-free
split, the average accuracy drops from 14.5→ 9.8.
This demonstrates that indeed a KB-free split is
harder than the program split from Finegan-Dollak
et al. (2018), partially explaining the difference
between SQL and DROP.

6 Conclusion

We presented a comprehensive evaluation of com-
positional generalization in semantic parsers by
analyzing the performance of a wide variety of
models across 5 different datasets. We experi-
mented with well-known extensions to sequence-
to-sequence models and also proposed novel exten-
sions to the decoder’s attention mechanism. More-
over, we proposed reducing dataset bias towards a
heavily skewed program template distribution by
downsampling examples from frequent templates.

We find that our proposed techniques improve
generalization to OOD examples. However, the
generalization gap between in-distribution and
OOD data remains high. This suggests that future
research in semantic parsing should consider more
drastic changes to the prevailing encoder-decoder
approach to address compositional generalization.
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A SQL Style

SQL programs vary in style across datasets. We
address a specific difference concerning the syn-
tax to neutralize an interaction with the models
analyzed in this analysis, and allow comparabil-
ity across models and datasets. We standard-
ize the form <table1> <join> <table2>
ON <condition> by replacing <join> with a
comma and adding <condition> to the WHERE
clause.

B SQL Grammar Development

Our SQL grammar is a context-free grammar. We
fit an existing implementation for text-to-SQL (Lin
et al., 2019) to the datasets we experimented with.
Examples for grammar rules are in Table 12. At
each step, a sequence of non-terminal or terminal
expressions (right side) is derived from some non-
terminal (left side).

The SQL programs in the text-to-SQL datasets
have aliases for all tables, sub-queries, and custom
fields. Also, each column in the program is pre-
ceded by an aliased table or a sub-query. To allow
the model to generate all aliases, we add terminal
rules based on the dataset schema. We modify the
rules to create sub-queries and fields so that the use
of aliases is enforced, and we add the alias patterns
for custom field and tables. We add the table names
in the schema, concatenated with the alias patterns,
to table name. We define col ref as the concatena-
tion of an aliased table and a column of this table.
Additionally, we add valid combinations of aliased
variables and schema entities.

To allow comparability with SEQ2SEQ models,
we use only examples that are parsed by the gram-
mar in the development and test sets, eliminating
39 examples from ADVISING, 18 from ATIS and
one example from GEOQUERY. The grammar cov-
ers at least 95% of each train set.

During inference we enforce contextual rules.
For example, forcing the derivation of from clause
to have the tables that were selected in se-
lect results. We check validity by executing the pro-
grams against the dataset database in Mysql server
5.7. Some of the programs in our datasets were
not executable due to inconsistent use of aliases,
or partial column references. We were not able
to automatically fix all the programs. We relaxed
our constraints to allow the generation of all target
programs, hence allowing some invalid outputs.

Model ADVISING ATIS GEOQUERY SCHOLAR

SEQ2SEQ 0.7 2.4 0.4 0.2
+ELMO 0.8 7.1 0.3 0.6
+BERT 1.7 3.3 0.3 0.5

+ATTNSUP 3.2 6.0 0.6 0.6
+ELMO 0.6 4.2 0.6 1.2

+COVERAGE 8.0 11.9 0.6 1.0
+ATTNSPAN 4.0 6.1 0.5 0.6

+ELMO 4.1 7.2 0.7 0.7

GRAMMAR 18.8 25.5 1.7 0.6
+ELMO 8.8 22.1 0.8 1.0
+BERT 20.7 36.0 1.5 1.4

+ATTNSUP 25.6 37.3 1.8 1.5
+ELMO 28.6 40.3 6.2 2.4

Table 11: Average training duration in hours for models
trained on SQL datasets.

C Training

We implement and train our models using Al-
lenNLP with PyTorch as backend, and conduct
experiments on 2 machines each with 4 NVIDIA
GeForce GTX 1080 GPUs and 16 Intel(R) Xeon(R)
CPU E5−1660 v4 CPUs. The OS is Ubuntu 18.04
LTS. Averaged running time per model are detailed
in Table 11.

SQL hyper-parameters We use Adam
optimizer with learning rate selected from
{0.001, 0.0001}. Batch size is selected from
{1, 4}, and we use patience of 15 epochs. We use
EM on the development set as a metric for early
stopping and selecting the best hyper-parameters.
For all models, we use pre-trained GloVe em-
beddings of size 100, and the target embedding
dimension is 100.Encoder hidden size is selected
from {200, 300}. Dropout is kept fixed at p = 0.5.
We train each model with five random seeds. We
perform a grid-search and use accuracy on the
development set for model selection.

ELMO and BERT representations are con-
catenated to the trainable 100 dimension GloVe
embeddings. For BERT we use the top layer
of the bert-base-uncased model. ELMO and
BERT based models are trained with Noam
learning scheduler, with 800 600, or 400 warm-
up steps. For the ATTNSUP and COVER-
AGEmodels, the additional loss term scaling
hyper-parameter was tuned using the values
{0.0, 0.1, 0.5, 1.0, 2.5, 5.0}. For our best perform-
ing models, SEQ2SEQ+COVERAGE+ELMO, on all
datasets, we used an encoder-decoder hidden size
of 300, with coverage loss parameter 0. Learning
rate was set to 0.0001 for ATIS, and 0.001 for the
other datasets.
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Global structure
query select core, groupby clause, orderby clause, limit
select core select with distinct , select results, from clause, "WHERE", where clause

Select clause
select results select result, ",", select result
select result function

From clause
source single source, ",", source
single source source subq
source subq "(", query,")", "AS", subq alias
source table "TABLE PLACEHOLDER", "AS", table name

Where clause
where clause expr, ",", where conj
where conj "AND", where clause

Group by clause
groupby clause "GROUP BY", group clause
group clause expr, group clause

Expressions
expr value, "BETWEEN", value, "AND", value
value col ref

Terminal rules
table name "FLIGHTalias0"
column name "FLIGHT ID"
col ref "FLIGHTalias0.FLIGHT ID"
col alias "DERIVED FIELDalias0"
subq alias "DERIVED TABLEalias0"

Table 12: Examples for different types of SQL grammar rules. Non-terminal and terminal expressions (in quotation
marks) are derived from a non-terminal (left hand side).

DROP hyper-parameters Similar to SQL, we
perform a grid-search to choose hyper-parameters
based on the development set accuracy. We tune
the following parameters in the specified range and
select a single value for all experiments (denoted by
bold): learning rate for Adam optimizer in range
{0.001, 0.0005}, batch-size in {4, 16, 32, 64}, and
hidden-size for the encoder-decoder LSTMs in
{100, 200}. Dropout is kept fixed at p = 0.2, gra-
dient clipping is performed with norm-threshold=
5.0, beam-size is set to 5, and training is stopped
early if the development set accuracy does not im-
prove for 15 consecutive epochs.

D Development Results

Table 13 contains the development set EM for all
models on the DROP dataset. Table 14 contains
the development set EM for all models on all SQL
datasets.

Model iid split

SEQ2SEQ 56.9
+ELMO 59.8
+BERT 54.9
+ATTNSUP 55.9

+ELMO 62.7
+COVERAGE 54.9

+ELMO 65.7
+ATTNSPAN 57.8

+ELMO 59.8

GRAMMAR 60.8
+ELMO 67.6
+BERT 65.7
+ATTNSUP 62.7

+ELMO 69.6

Table 13: iid development set exact match for all mod-
els on the DROP dataset. We no not create a program-
split development set for DROP, one containing tem-
plates not seen in training or test. Instead, we use the
same iid development set to choose the best model for
both iid and program split settings. Note that this is
a more challenging setting, since the model selection
for the program split is also done on the basis of an
in-distribution development set.
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iid split Prog. split Rel. gap iid split Prog. split Rel. gap iid split Prog. split Rel. gap iid split Prog. split Rel. gap

SEQ2SEQ 92.9 9.8 89.5 76 11.5 84.9 67.6 27.5 59.3 73 9.3 87.3
+ELMO 94.6 15.2 83.9 76.9 17.4 77.4 69.1 38.2 44.7 75.9 12 84.2
+BERT 94.1 14.1 85 77.8 14.8 81 71.1 31.4 55.8 77.3 7.4 90.4

+ATTNSUP 92.1 18 80.5 74.4 22.9 69.2 67.2 43.5 35.3 69.5 13.2 81
+ELMO 92.4 21.1 77.2 75.6 23 69.6 67 47.7 28.8 74.2 13.8 81.4
+BERT 93 18.5 80.1 75.5 20.3 73.1 68 47.5 30.1 73.7 13.6 81.5

+COVERAGE 93.2 16.9 81.9 75.6 19.7 73.9 70.7 43.5 38.5 74.2 9.5 87.2
+ELMO 94.9 23.2 75.6 78.4 28.9 63.1 72.2 51.2 29.1 77.8 17.5 77.5
+BERT 95.4 16.8 82.4 79 26.1 67 74.2 51 31.3 79.1 18.4 76.7

+ATTNSPAN 92.4 13.1 85.8 75.7 12.8 83.1 64.5 32.3 49.9 73.2 8.9 87.8
+ELMO 94.2 10.3 89.1 77.6 19.3 75.1 65.4 40.7 37.8 73.9 11.8 84
+BERT 94.6 14.9 84.2 76.6 15.1 80.3 67.6 35.6 47.3 75 13.6 81.9

GRAMMAR 91.1 22.5 75.3 70.1 13 81.5 63.5 24.8 60.9 65.4 14.6 77.7
+ELMO 91.4 15.6 82.9 60.8 13.5 77.8 58.1 21.1 63.7 66.3 14.4 78.3
+BERT 93.9 17.9 80.9 61.7 5.3 91.4 64.3 19.8 69.2 66.8 13.6 79.6

+ATTNSUP 91 23.5 74.2 65.9 23.6 64.2 66.6 26.8 59.8 65.2 14.8 77.3
+ELMO 91 19.4 78.7 67 14.6 78.2 65.6 22.2 66.2 63.8 15.1 76.3
+BERT 91.2 14.9 83.7 59.7 3.5 94.1 65 19.1 70.6 64 12.4 80.6

Table 14: Dev EM for all models and all SQL datasets.


