The Role of Reentrancies in Abstract Meaning Representation Parsing

Ida Szubert*, Marco Damonte?*| Shay B. Cohen', Mark Steedman'
! University of Edinburgh, > Amazon Alexa, Cambridge UK
k.i.szubert@sms.ed.ac.uk,dammarco@amazon.com,
scohen@inf.ed.ac.uk, steedman@inf.ed.ac.uk

Abstract

Abstract Meaning Representation (AMR)
parsing aims at converting sentences into
AMR representations. These are graphs and
not trees because AMR supports reentrancies
(nodes with more than one parent). Following
previous findings on the importance of reen-
trancies for AMR, we empirically find and
discuss several linguistic phenomena respon-
sible for reentrancies in AMR, some of which
have not received attention before. We cate-
gorize the types of errors AMR parsers make
with respect to reentrancies. Furthermore, we
find that correcting these errors provides an in-
crease of up to 5% Smatch in parsing perfor-
mance and 20% in reentrancy prediction.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism used to annotate natural lan-
guage sentences as graphs. The task of AMR pars-
ing is to convert sentences into AMR graphs (Ba-
narescu et al., 2013) — rooted and directed acyclic
graphs where nodes represent concepts and edges
represent semantic relations between them. The
AMR for the sentence I want you to believe me is
shown in Figure 1.

One of the main properties of AMR, and the
reason why sentences are represented as graphs
rather than trees, is the presence of nodes with
multiple parents, called reentrancies, as demon-
strated in Figure 1, where the node I has two
parents. Reentrancies complicate AMR parsing
and require the addition of specific transitions in
transition-based parsing (Wang et al., 2015; Da-
monte et al., 2017) or of pre- and post-processing
steps in sequence-to-sequence parsing (van Noord
and Bos, 2017). Enabling AMR parsers to predict

* Equal contribution
T Work done while at University of Edinburgh

:ARGI

elieve—Ol

:ARGI

Figure 1: AMR for I want you to believe me.

reentrancy structures correctly is of particular im-
portance because it separates AMR parsing from
semantic parsing based on tree structures (Steed-
man, 2000; Liang, 2013; Cheng et al., 2017).
Reentrancy is however not an AMR-specific prob-
lem (Kuhlmann and Jonsson, 2015), and other for-
malisms can benefit from a better understanding of
how to parse such structures. Nevertheless, to our
knowledge, the AMR literature lacks any detailed
discussion of the types and linguistic causes of re-
entrant structures. We aim to fill the gap by de-
scribing the phenomena causing reentrancies and
quantifying their prevalence in the AMR corpus.
We identify sources of reentrancy which have not
been acknowledged in the AMR literature such as
adjunct control, verbalization, and pragmatics.

AMR parsers are evaluated using Smatch (Cai
and Knight, 2013), which however does not ex-
plicitly assess the parsers’ ability to recover reen-
trancies. Damonte et al. (2017) introduced a mea-
sure of reentrancy prediction, which computes the
Smatch score of the AMR subgraphs containing
reentrancies. It was observed that the performance
of parsers at recovering reentrancy structures is
generally poor. We analyze errors made by the
parsers and use an oracle to demonstrate that cor-
recting reentrancy-related errors leads to parsing
score improvement. Our contributions are as fol-
lows:

e We classify the phenomena causing reentran-

2198

Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2198-2207
November 16 - 20, 2020. (©2020 Association for Computational Linguistics

cies, some which have been neglected so far;

e We quantify their prevalence in the AMR cor-
pus automatically and, for a small sample of
sentences, manually;

e We categorize types of reentrancy errors
made by the parsers and perform oracle ex-
periments showing that correcting these er-
rors can lead to improvements of 20% in
reentrancy prediction and 5% overall parsing
(Smatch);!

e We establish baselines to correct the errors
automatically as a post-processing step.

2 Phenomena Causing Reentrancies

AMR reentrancies reflect the fact that an entity can
have more than one semantic role in the events
described by a sentence. Some of the causes of
reentrancies, such as control or coordination, are
mentioned in the AMR guidelines and are widely
recognized in the AMR literature. Here we present
a more in-depth and exhaustive catalogue of reen-
trancy sources (Table 1) in order to shed some light
on what difficult aspects of language and AMR
formalism conventions we have to contend with
during the task of AMR parsing.

In the analysis that follows we define an AMR
node as reentrant if it is a child of more than
one other node in the Penman linearization of the
graph provided in the corpus. Because of the fre-
quent use of inverse roles in AMR graphs, the di-
rectionality of the edges is not obvious. Normaliz-
ing inverse roles reverses the edge direction, which
changes the parent-child relations between nodes
and thus influences which nodes are reentrant, i.e.
have more than one parent. As Kuhlmann and
Oepen (2016) report, the percentage of reentrant
nodes in the AMR corpus increases from 5% to
19% when inverse roles are normalized. For in-
stance, in the relative clause example in Table 1 the
woman node would be reentrant in a graph with
normalized edges, but is not in the graph which
follows the corpus linearization. We decided not
to normalize the inverse roles for the purposes of
our analysis because of the following considera-
tions. Firstly, we assume that there is merit in ac-
cepting the edge directionality chosen by the an-
notator and encoded in the linearization. While

'Our source code of the heuristics and the ora-

cle is available at https://github.com/mdtux89/
amr-reentrancies.

different linearizations of the same graph are pos-
sible, as the AMR guidelines note, there is usually
one that is sensible and reflects the intuitive un-
derstanding of which nodes should be considered
reentrant. Second, most of the phenomena we dis-
cuss yield reentrancies regardless of whether the
edge direction is normalized or not. Those phe-
nomena tend to be the more linguistically interest-
ing ones, and the reentrancies which only appear
after normalization are largely formalism artefacts
(such as ones resulting from using inverse roles to
represent adjectives or ~-er”’ nouns), with relative
clauses admittedly being an exception.

With that in mind, we classify reentrancy trig-
gers into three broad types: syntactic, pragmatic,
and AMR-specific.

Syntactic triggers

We consider a reentrancy as syntactically triggered
if the syntactic structure of a sentence forces an
interpretation in which one entity performs more
than one semantic role. Below we illustrate the
syntactic triggers which are commonly discussed
in the AMR literature: some types of pronomi-
nal anaphora resolution (1), prototypical subject
and object control (3 and 4), and coordination
(2) (Groschwitz et al., 2017; van Noord and Bos,
2017).

(1) The man; saw himself; in the mirror.
(2) She; ate and ¢; drank.

(3) They; want ¢; to believe.

(4) Tasked you; ¢; to sing.

In addition to those, our inspection of the AMR
data revealed that other kinds of control structures,
primarily adjunct control, are frequent reentrancy
triggers. In adjunct control, the clause which lacks
a subject is an adjunct of the main clause, as in the
following examples:

(5) I; went home before €; eating.

(6) She; left the room ¢; crying.

Such adjuncts express various additional infor-
mation regarding the main clause, for example the
goal, reason, or timing of an event. Unlike the pro-
totypical cases of control, there is by definition no
finite list of verbs associated with adjunct control.

Ellipsis is another cause of reentrancies, as in
the sentence:

(7) Who can afford it and who can’t.

2199

https://github.com/mdtux89/amr-reentrancies
https://github.com/mdtux89/amr-reentrancies

Phenomenon Sentence

Coreference The man saw himself in the mirror
Coordination She ate and drank

Control 1 asked you to sing

Adjunct control

1 went home before eating

Ellipsis

Who can afford it and who can’t

Relative clause

1 saw the woman who won

Nominal ”control”

They have a right to speak

Verbalization

1 received instructions to act

Table 1: Several linguistic phenomena causing reentrancies in AMR.

2200

in which the node if has two incoming edges, cre-
ating a reentrancy.

As mentioned before, one would expect rela-
tive clauses to be one of the syntactic reentrancy
triggers, because the noun involved has a semantic
role in both the main and relative clause:

(8) I saw the woman; who ¢; won.

In the example above, the woman is the object of
seeing and the subject of winning. However, ac-
cording to the AMR guidelines (Banarescu et al.,
2013) relative clauses should be annotated as at-
taching to the noun with an inverse role, thereby
avoiding a reentrancy (see Table 1).

Pragmatic triggers

Human annotators resolve coreferences even in
the absence of definite syntactic clues, giving rise
to pragmatically triggered reentrancies. To this
class belong for instance the cases of pronominal
anaphora resolution where the anaphora is not syn-
tactically bound (unlike in 1). While coreference
is, in general, a discourse phenomenon (Hobbs,
1979), it is also applicable to individual sentences
such as those in the AMR corpora:

(9) The coach of FC Barcelona said the team
had a good season.

It is pragmatically understood that FC Barcelona
and the team refer to the same entity, even though
the coach could have been talking about another
team.

Another example is provided by control-like
structures within nominal and adjectival phrases:

(10) They; have a right €; to speak freely.

(11) He; was crazy ¢; to trust them.

An AMR annotation will state that in example 10
the possessor of the right and the subject of speak-
ing are the same, and in example 11 the the same
person is crazy and is trusting them. The recov-
ery of the subject of the infinitival clause in such
constructions is driven by semantics or pragmatics
rather than syntax (Huddleston and Pullum, 2002).

AMR conventions

Finally, the last source of reentrancies is AMR
conventions. The AMR guidelines instruct anno-
tators to use OntoNotes predicates whenever pos-
sible, regardless of the part of speech of the word.
This encourages verbalization of elements of the

sentence which would not usually be considered
predicative.

(12) Ireceived instructions to act.

(13) The opium trade finances corrupt officials.

In example 12 the plural noun instructions appears
in the AMR graph as a predicate node instruct-
01. This encourages explicitly annotating inferred
semantic roles and so / becomes an object of in-
structing as well as of receiving, causing a reen-
trancy. Additionally, because of the control-like
structure, / is also annotated as an object of act-
ing. In example 13 the adjective corrupt becomes
in the AMR graph a predicate whose subject are
the officials.

We consider this class as separate from prag-
matical triggers, because the inference made by
annotators goes beyond pragmatics and is moti-
vated by the constraints of the formalism rather
than by what is actually expressed by the sentence.
There are other conventions besides verbalization
which introduce reentrancies, in particular if in-
verse roles were normalized”. Our choice to nor
normalize edge direcionality was partially moti-
vated by a desire to avoid including those phenom-
ena in our analysis.

3 Quantifying Reentrancy Causes

In order to assess the prevalence of the vari-
ous reentrancy triggers, we designed heuristics
to assign each reentrancy in the AMR corpus to
one of the above phenomena. We automatically
align AMR graphs to their source sentences us-
ing JAMR (Flanigan et al., 2014) and identify the
spans of words associated with re-entrant nodes.’
Heuristics based on Universal Dependency (UD)
parses (Manning et al., 2014) and automatic co-
reference resolution are applied to the spans and
the AMR subgraphs containing the reentrancy to
classify the cause.* We use the NeuralCoref
project for coreference resolution.’

We recognize syntactic reentrancy triggers pri-
marily with UD-based heuristics. For prototyp-
ical cases of control we look for common con-

Zrepresentation of -er” nouns with their corresponding
predicate and a person node; the convention for representing
government; special frames for roles

3https://github.com/jflanigan/jamr

“https://stanfordnlp.github.io/CoreNLP

Shttps://github.com/huggingface/neuralcoref

2201

Phenomenon Frequency
heuristics total
Coreference 18% 37%
Adjunct control 14% 16%
Control verbs 2% 4%
Coordination 11% 17%
Verbalization 9% 14%
Unclassified 46% -
Pragmatic overreach - 3%
Ellipsis - 2%
Control-like structure - 2%
Annotation mistakes - 5%
Table 2: Percentage of reentrancies in the

LDC2015E86 training set. = The heuristics col-
umn reports automatically detected frequencies for
the whole training set. The total column reports
frequencies estimated by combining automatic and
manual annotation. “Unclassified” are all reentrancies
for which our heuristics fail to detect the cause.

trol verbs such as want, try, and persuade,6 with
an outgoing xcomp dependency. To identify other
types of control, such as adjunct control, we look
for xcomp, ccomp or advcl dependency between
words aligned to parents of a re-entrant node. For
coordination we only check the AMR itself, look-
ing for coordination nodes (i.e., nodes labeled with
and, contrast-01, or or). For coreference, we look
for re-entrant nodes associated with more than one
span and check if those spans corefer.

Finally, for verbalization, we look for nouns
or adjectives aligned with OntoNotes predicates
in the AMR graph. We tried to identify nomi-
nal control-like structures by looking for nominals
with an acl dependent infinitive or gerund subject-
less verb. However, as the precision of the rule is
low, and most examples uncovered by this heuris-
tic also fall into the verbalization category, we do
not include it in our statistics.

The results of this analysis are in Table 2 in
the heuristics column. The most common cause
of reentrancy appears to be coreference. Con-
trol is almost as frequent, with adjunct control be-
ing much more common than prototypical control
verbs.

We note that our heuristics cannot find the cause
for 46% of all reentrancies. This can happen
for several reasons. There are sources of reen-
trancy (ellipsis, nominal control-like structures)

Shttps://en.wiktionary.org/wiki/Category:English_con-
trol_verbs

for which we do not have heuristics due to the
difficulty of defining them in terms of UD parses.
The heuristics we do define are of high precision if
provided with correct input, but all of the systems
we use to provide that input — AMR aligner, POS
tagger, UD parse, and coreference resolution sys-
tem — are in fact noisy. Moreover, what is consid-
ered to co-refer in AMR does not necessarily agree
with the notion implicit in the coreference resolu-
tion system. Consider the following sentence:

(14) The countries signed an agreement that
binds the signatories.

The coreference resolution system does not fol-
low the looser definition of coreference used in the
AMR annotation guidelines, where The countries
and the signatories are labeled as coreferential. Fi-
naly, some of the reentrancies unaccounted for by
the heuristics are due to annotation mistakes. For
example in the sentence A nuclear team will make
a visit to inspect the nuclear site. The AMR for
this sentence contains a reentrancy for the nucleus
node, which is used to modify both the feam and
the site, while there should be two separate nu-
cleus nodes.

To estimate the overall prevalence of reentrancy
triggers, including cases for which the heuristics
do not work, we manually annotated causes of un-
accounted for reentrancies (79 cases) in a sam-
ple of 50 sentences. We combine the results of
that manual analysis with the frequencies obtained
through the use of heuristics to obtain the overall
trigger frequency estimate. The results are shown
in Table 2 in the fotal column.

We find that triggers not covered by heuris-
tics account for estimated 4% of total cases, and
34% of unclassified triggers belong to categories
for which we do have heuristics, which illustrated
the noisiness of the systems used for the heuristic
analysis. The final 3% consist of examples of what
we consider to be AMR annotators overreaching
in their pragmatic interpretation of the sentence.
Consider the sentence:

(15) The group said the foreign broadcasters
are battering their culture and that it is in-
sulting behavior.

In its AMR, the node insult-01 takes group as its
:ARGI, making an arguably unwarranted assump-
tion that the behavior is insulting to the group. We
note that the inclusion of this type of reentran-
cies in AMR is controversial as it annotates be-

2202

yond what semantics should represent. Finally,
5% of the unaccounted reentrancies were due to
mistakes in the AMR annotations. In the following
sentence, the annotator redundantly created both
an edge expressing that make-19 is the purpose
of remove-01, as well as an edge showing that
remove-01 is :ARGO of make-19, leading to an un-
necessary reentrancy for the remove-01 node.

(16) People were removed from their homeland
to make way for the base.

4 Reentrancy-related Parsing Errors

We propose a method, independent from the AMR
parser used, to classify the errors that AMR
parsers typically make when predicting such struc-
tures. In order to identify the errors, we compare
the predicted AMR graphs with the gold standard.
We use Smatch to find the best alignments be-
tween variables of the predicted and gold graph.
We can then find cases where the predicted graph
is either missing a reentrancy or contains an un-
necessary one.

Due to the aforementioned noise in the heuris-
tics of Section 3, we did not follow the fine-
grained classification of linguistic causes. We in-
stead follow a coarser structural classification of
the errors. A typical reentrancy error involves the
parser generating two nodes in place of one in the
gold standard. This is often the case for reentran-
cies caused by coreference, as shown in Figure 2.
The parser may not realize that two entity corefer,
hence erroneously generating two different nodes.
The opposite is also possible, where two nodes are
erroneously collapsed.

Re-entrant edges can also occur between sib-
lings. This is often the case for reentrancies caused
by control verbs, as shown in Figure 3.

4.1 Oracle

We introduce corrections for reentrancy errors,
implemented as actions that modify the edges and
nodes of the predicted AMR. We then define an or-
acle, a deterministic method that, given a predicted
AMR and the relative gold AMR, returns the set of
actions that correct errors in the predicted AMR.

Let the predicted graph, containing n nodes, be
defined as:

S: (V:?’ES)7
‘/82{517327"'1871,}7
Es =C Vi x V.

and the target graph, containing m nodes, be de-
fined as:

T = (%7Et)7
‘/t == {t17t27 cee 7tm}7
E, =CV, x V.

Let A(-) be an alignment (computed using
Smatch) that maps a node in V; to a node in V4, or
nil if the node is not in present in V;, and A~1()
be an alignment that maps a node in V; to a node in
Vs, or nil if the node is not in present in V. Given
a source node s;, we define t; = A(s;). We can
then define the following actions:

e ADD: A reentrancy edge is added (Figure 4a).

e ADD-ADDN A reentrancy edge and a node are
added (Figure 4b).

e REMOVE A reentrancy edge is removed (Fig-
ure 4c).

e REMOVE-RMN A reentrancy edge and a node
are removed (Figure 4d).

e MERGE Two nodes are merged (Figure 5a).

e MERGE-RMN Two nodes are merged and a node
is removed (Figure 5b).

e SPLIT A node is split in two already existing
nodes (Figure 5c).

e SPLIT-ADDN A node is split in one existing
node and a new node (Figure 5d).

e ADD-SIB An edge between siblings is added
(Figure 6a).

e ADD-SIB-ADDN A node is added and an edge
with one of its siblings is added (Figure 6b).

e REMOVE-SIB An edge between siblings is re-
moved (Figure 6¢).

e REMOVE-SIB-RMN An edge between siblings
and one of the siblings are removed (Figure 6d).

In order to identify the errors and generate the
respective oracle actions, we use Smatch to align
the variables of predicted and gold graphs. For in-
stance, for the action ADD (Figure 4a), we identify
three variables s,, sp, s and the aligned variable
in the target graph ¢4, ¢, t. such that:

(Say Sb) S ES) (567 Sb) g ES7
(ta,tb) € Ey, (tc,tb) € b

When such a pattern is found, the oracle algorithm
determines that an edge between the siblings has
to be created:

Es = Eg U (8¢, Sp)-

2203

sinstrument

Figure 2: On the left, a coreference-related reentrancy error for the sentence He ate the pizza with his fingers. On
the right, the correct reentrancy. The difference is highlighted in red.

ARGI

believe-01

Figure 3: On the left, a control-related reentrancy error for the sentence The boy wants to believe the girl. On the

right, the correct reentrancy.

Figure 4: Actions to solve errors caused by missing or
extra reentrancies.

The definition of all actions is reported in Ap-
pendix A.

We also consider the combination of all actions
(ALL). We do so by correcting one error type at
the time in a pre-determined order:” for each error
type, we re-run the oracle to find all errors after

"We sorted the actions by the reentrancy prediction score
on LDC2017T10 in decreasing order.

a) MEﬂE aa
OO OO

b): MEMMN a
OO

PLIT-
c) e SPLIT-A DN
) () ()

d) M
OO,) ()

Figure 5: Actions to solve errors due to duplicated or
collpased nodes.

the actions for the previous type were applied.

4.2 Oracle Results

We run oracle experiments to explore the impact
of the error types on both overall parsing score
and reentrancy prediction. For reentrancy predic-
tion, we use the measure introduced by Damonte
et al. (2017), which computes the Smatch score

2204

LDC2015E86 LDC2017T10
Action Freq. Smatch Reent. Freq. Smatch Reent.
VANILLA - 73.9 54.3 - 75.2 56.9
ALL 3108.3 (11.59) +4.6 +18.8 3093.7 (10.12) +4.4 +18.0
ADD 1292.0 (7.94) +1.7 +10.4 1305.7 (3.21) +1.7 +10.3
ADD-ADDN 330.0 (4.36) +0.8 +4.2 281.3 (5.51) +0.7 +3.1
RM 545.7 (3.06) +0.4 -0.1 572.3 (4.04) +0.4 -0.1
RM-RMN 217.0 (2.00) +0.3 +0.6 224.7 (3.06) +0.2 +0.8
MERGE 187.3 (1.53) +0.4 +1.6 193.3 (3.06) +0.4 +1.7
MERGE-RMN 94.3 (1.15) +0.3 +1.0 84.0 (2.00) +0.2 +0.9
SPLIT 574.7 (3.21) +1.2 +1.8 541.3 (4.16) +1.1 +1.7
SPLIT-ADDN 333.0 (1.00) +0.9 -0.2 347.3 (3.79) +0.9 -0.0
ADD-SIB 128.0 (1.00) +0.2 +1.3 119.7 (1.15) +0.1 +1.2
ADD-SIB-ADDN 99.7 (3.06) +0.1 -0.1 104.3 (1.53) +0.1 -0.0
RM-SIB 69.3 (0.58) +0.1 +0.2 89.3 (0.58) +0.0 +0.2
RM-SIB-RMN 0.0 (0.00) +0.0 -0.1 0.0 (0.00) +0.0 +0.0

Table 3: Relative Smatch improvements with respect to Lyu and Titov (2018) of all actions on the test split of
LDC2015E86 and LDC2017T10. Freq. is the number of times the action could be applied, Smatch is the parsing
score and Reent. is the reentrancies prediction score. ALL is the combination of all actions. VANILLA are the
scores obtained by the original parsers. In parentheses, we report the standard deviation of the actions’ frequency.
The standard deviation for the Smatch and reentrancy prediction scores is less or equal than 0.12.

a) @

ADD-SI
=

b) ADD&\)DDN
()

<) g RE%SIB
& (=) () ()

d) g REMOVE_—SIE-RMN
& (= ()

Figure 6: Actions to solve errors due to reentrancies
between siblings.

of the subgraphs containing reentrancies.® We ex-
periment with the parser of Lyu and Titov (2018)
on the test set of LDC2015E86 and LDC2017T10.
We rely on Smatch to identify the errors. Because

$https://github.com/mdtux89/
amr—-evaluation

Smatch is randomized, different runs can identify
different errors to correct. To account for this, we
compute the mean and standard deviation of three
runs.

Results are shown in Table 3. While the largest
improvements are observed when correcting all
error types, the most relevant single oracle ac-
tion is ADD. For this action, we obtain consider-
able improvements for both corpora, especially for
reentrancy prediction (increase by 10.4 and 10.3
points), but also for Smatch (increase by 1.7 points
for both corpora). The ADD corrections provide
more than half of the reentrancy score improve-
ment provided by ALL corrections, and slightly
less than half of the Smatch improvement.

Because of the use of noisy alignment in ora-
cle action prediction, the oracle provides a lower
bound estimate of the possible gains. Over-
all, we argue that the room for improvement is
large enough to warrant more careful treatment of
reentrancies, either during training or as a post-
processing step.

°To find and correct errors, we act directly on the triples,
not on the PENMAN notation used by Smatch. We therefore
implemented a variant of Smatch that directly read triples.

2205

https://github.com/mdtux89/amr-evaluation
https://github.com/mdtux89/amr-evaluation

System Reentrancies
VANILLA 56.9 (0.00)
ORACLE +10.3 (0.00)
RANDOM -4.2 (0.06)
SEQ2SEQ -0.1 (0.25)

Table 4: Relative improvements in reentrancy predic-
tion scores on the test set of LDC2017T10, obtained by
the oracle and the proposed baselines. VANILLA are
the scores obtained by Lyu and Titov (2018).

5 Automatic Error Correction

We further provide baseline systems that learn
when to apply ADD, the most impactful action.
First, we experiment with a system that randomly
selects two nodes in the predicted graph that are
not connected by any edge and add an edge with
ARGO, the most frequent label. We also train
a OpenNMT-py (Klein et al., 2017) sequence-to-
sequence model (Bahdanau et al., 2015) with a
copy mechanism (Gulcehre et al., 2016). The in-
put sequence is the predicted graph and the output
sequence is the sequence of edges to add. For each
edge, the output contains three tokens: the parent
node, the child node, and the edge label.

Table 4 shows that the baselines do not improve
the predictions of the original parsers (VANILLA).
While sequence modeling of the output is conve-
nient, other options can be attempted. We are also
only exploiting the input AMR parse but not the
input sentence. We leave it to future work to ad-
dress these issues and achieve better results.

6 Related Work

Our classification of phenomena causing reen-
trancies extends previous work in this direction
(Groschwitz et al., 2017). van Noord and Bos
(2017) previously attempted to improve the pre-
diction of reentrancies in a neural parser. They
experiment with several pre- and post-processing
techniques and showed that co-indexing reen-
trancies nodes in the AMR annotations yields
the best results. Transformation-based learning
(Brill, 1993) inspired the idea of correcting exist-
ing parses. This approach has been mostly used
for tagging (Ramshaw and Marcus, 1999; Brill,
1995; Nguyen et al., 2016) but it has also shown
promises for semantic parsing (Juréicek et al.,
2009). A similar approach has been also used to
add empty nodes in constituent parses (Johnson,

2002), with considerable success. The SEQ2SEQ
baseline is an adaptation of the popular sequence-
to-sequence modeling (Bahdanau et al., 2015).
An alternative approach to reduce reentrancy er-
rors is to better inform training so that the errors
are avoided in the first place. A recent AMR parser
(Zhang et al., 2019) outperforms the previous state
of the art (Lyu and Titov, 2018) by implementing
a copy mechanism aimed at recovering reentran-
cies, confirming that reentrancies are critical for
achieving good AMR parsing performance.

7 Conclusions

Building upon previous observations that AMR
parsers do not perform well at recovering reen-
trancies, we analyzed the linguistic phenomena
responsible for reentrancies in AMR. We found
sources of reentrancies which have not been ac-
knowledged in the AMR literature such as adjunct
control, verbalization, and pragmatics. The inclu-
sion of reentrancies due to pragmatics is contro-
versial; we hope that this work can spur new dis-
cussions on the role of reentrancies. Our heuris-
tics fail to detect the causes of many reentrancies.
For a more precise estimate of the most common
causes of reentrancies, it is necessary to manually
annotate the reentrancies in the AMR corpora.

Our oracle experiments show that there is room
for improvement in predicting reentrancies, which
in turn can translate to better parsing results.
Stronger baselines that can learn how to correct the
errors automatically are left to future work. While
the parser we experimented with no longer gives
state-of-the-art results (but also not far from them),
newer parsers (Zhang et al., 2019; Cai and Lam,
2020) also report relatively low accuracy on reen-
trancies (using the metrics from Damonte et al.
2017), and as such we believe our work is relevant
to these parsers.

Acknowledgments

The authors would like to thank anoymous review-
ers, Adam Lopez, Bonnie Webber, Nathan Schnei-
der, Sameer Bansal, and Yevgen Matusevych for
their help and comments. This research was sup-
ported by a grant from Bloomberg as well as by the
European Union H2020 project SUMMA, under
grant agreement 688139 and the project SEMAN-
TAX, which has received funding from the Euro-
pean Research Council (ERC) under the European

2206

Unions Horizon 2020 research and innovation pro-
gramme, under grant agreement No. 742137.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. Proceedings of Linguistic Annota-
tion Workshop.

Eric Brill. 1993. Transformation-Based Learning.
Ph.D. thesis, PhD thesis, Univ. of Pennsylvania.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational lin-
guistics, 21(4):543-565.

Deng Cai and Wai Lam. 2020. Amr parsing via
graph-sequence iterative inference. arXiv preprint
arXiv:2004.05572.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. Proceed-
ings of ACL.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2017. Learning structured natural
language representations for semantic parsing. In
Proceedings of ACL.

Marco Damonte, Shay B Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of EACL.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. Proceedings of ACL.

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson,
and Alexander Koller. 2017. A constrained graph
algebra for semantic parsing with amrs. In IWCS
2017-12th International Conference on Computa-
tional Semantics-Long papers.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. Proceedings of ACL.

Jerry R Hobbs. 1979. Coherence and coreference.
Cognitive science, 3(1):67-90.

Rodney Huddleston and Geoffrey K. Pullum. 2002.
Non-finite and verbless clauses, page 11711272.
Cambridge University Press.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics,
pages 136-143. Association for Computational Lin-
guistics.

Filip Jurc¢icek, M GaSi¢, Simon Keizer, Francois
Mairesse, Blaise Thomson, Kai Yu, and Steve
Young. 2009. Transformation-based learning for se-
mantic parsing. In Tenth Annual Conference of the
International Speech Communication Association.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proceedings of ACL.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing
to noncrossing dependency graphs. Transactions
of the Association for Computational Linguistics,
pages 559-570.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics, 42(4):819-827.

Percy Liang. 2013. Lambda dependency-based
compositional semantics. arXiv preprint
arXiv:1309.4408.

Chunchuan Lyu and Ivan Titov. 2018. Amr parsing as
graph prediction with latent alignment. Proceedings
of ACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of ACL.

Dat Quoc Nguyen, Dai Quoc Nguyen, Dang Duc
Pham, and Son Bao Pham. 2016. A robust
transformation-based learning approach using ripple
down rules for part-of-speech tagging. Al Commu-
nications, 29(3):409-422.

Rik van Noord and Johan Bos. 2017. Dealing with co-
reference in neural semantic parsing. In Proceed-
ings of the 2nd Workshop on Semantic Deep Learn-
ing.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157-176. Springer.

Mark Steedman. 2000. The syntactic process. The
MIT Press.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015. Boosting transition-based AMR parsing with
refined actions and auxiliary analyzers. Proceedings
of ACL.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. Amr parsing as sequence-to-
graph transduction. In Proceedings of ACL.

2207

https://doi.org/10.1017/9781316423530.015

