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Abstract

Automatic medical image report generation

has drawn growing attention due to its poten-

tial to alleviate radiologists’ workload. Ex-

isting work on report generation often trains

encoder-decoder networks to generate com-

plete reports. However, such models are af-

fected by data bias (e.g. label imbalance) and

face common issues inherent in text generation

models (e.g. repetition). In this work, we fo-

cus on reporting abnormal findings on radiol-

ogy images; instead of training on complete ra-

diology reports, we propose a method to iden-

tify abnormal findings from the reports in addi-

tion to grouping them with unsupervised clus-

tering and minimal rules. We formulate the

task as cross-modal retrieval and propose Con-

ditional Visual-Semantic Embeddings to align

images and fine-grained abnormal findings in

a joint embedding space. We demonstrate that

our method is able to retrieve abnormal find-

ings and outperforms existing generation mod-

els on both clinical correctness and text gener-

ation metrics.

1 Introduction

Understanding abnormal findings on radiographs

(e.g. chest X-Rays) is a crucial task for radiologists.

There has been growing interest in automatic radi-

ology report generation to alleviate the workload

of radiologists and improve patient care. Following

the success of neural network models in image-

to-text generation tasks (e.g. image captioning), re-

searchers have trained CNN-RNN encoder-decoder

networks to generate reports given radiology im-

ages (Shin et al., 2016; Kougia et al., 2019).

Although such models are able to generate fluent

reports, the generation quality is often limited by

biases introduced from training data or the train-

ing process. Figure 1 shows an example of chest
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X-rays (CXRs) and the associated reports from a

public dataset (Johnson et al., 2019), along with

the outputs generated by different models.1 One is-

sue is that models trained on complete reports tend

to generate normal findings as they dominate the

dataset (Harzig et al., 2019); another issue is that

such generation models struggle to generate long

and diverse reports as in other natural language

generation (NLG) tasks (Boag et al., 2019).

In this work, we focus on reporting abnormal

findings on radiology images which are of higher

importance to radiologists. To address issues of

data bias, we propose a method to identify abnor-

mal findings from existing reports and further use

K-Means plus minimal mutual exclusivity rules to

group these abnormal findings, which reduces the

substantial burden of curating templates of abnor-

mal findings. Given the fact that radiology reports

are highly similar and have a limited vocabulary

(Gabriel et al., 2018), we propose a cross-modal

retrieval method to capture relevant abnormal find-

ings from radiology images. Our contributions are

summarized as:

• We learn conditional visual-semantic embed-

dings on radiology images and reports, which

can be used to measure the similarity between

image regions and abnormal findings by opti-

mizing a triplet ranking loss.

• We develop an automatic approach to iden-

tify and group abnormal findings from large

collections of radiology reports.

• We conduct comprehensive experiments to

show that our retrieval-based method trained

on the abnormal findings largely outperforms

encoder-decoder generation models on clini-

cal correctness and NLG metrics.

1For a CXR report, ‘Findings’ is a detailed description and
the ‘Impression’ is a summary.
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Impression:
Retrocardiac opacity concerning for left lower lobe pneumonia. Follow-up radiographs after 
treatment are recommended to ensure resolution of this  finding.
Findings:
Heart size is normal. The mediastinal and hilar contours are within normal limits. Pulmonary 
vasculature is not engorged. Patchy retrocardiac opacities concerning for left lower lobe 
pneumonia. Right lung is clear. No pleural  effusion or pneumothorax is present. Clips are seen in 
the right upper quadrant of the abdomen likely denoting prior cholecystectomy.

Hier-CNN-RNN (Complete): no acute cardiopulmonary process. no evidence of pneumonia. there is no focal consolidation, pleural 
effusion, or pneumothorax. there is no focal consolidation, pleural effusion, or pneumothorax. the cardiomediastinal silhouette is within 
normal limits. no acute osseous abnormalities.
Hier-CNN-RNN (Abnormal): lung volumes are low.. low lung volumes.
CXR-CVSE (Abnormal): increased density projecting over the spine which could be due to additional atelectasis; however, pneumonia is 
also possible.. possible retrocardiac opacity could be prominent vessels but consolidation is not excluded and could represent 
pneumonia in the appropriate clinical setting.

Figure 1: Example of CXR images (frontal and lateral views) and the associated report. Bolded are abnormal

findings in the ground-truth and predictions. The CNN-RNN model trained on the complete reports tends to

generate normal findings. Both CNN-RNN models generate repetitive sentences.

2 Related Work

2.1 Hierarchical encoder-decoder models

Jing et al. (2017) proposed a co-attention based Hi-

erarchical CNN-RNN model that jointly trains two

tasks: report generation and Medical Text Indexer

(MTI) prediction. The model first predicts MTI

tags and the semantic embeddings of the predic-

tions are fed into the cascaded decoder for genera-

tion. Similarly, Yuan et al. (2019) extracted medi-

cal concepts from the CXR reports using SemRep2

as alternatives to MTI tags. To address data bias,

Harzig et al. (2019) proposed a CNN-RNN model

with dual word-level decoders: one for abnormal

findings and the other for normal findings. It jointly

predicts whether the next sentence is a normal or

abnormal finding, and uses the corresponding de-

coder to generate the next sentence. However, it

still formulates the task as text generation and has

the limitations of such models.

2.2 Hybrid retrieval-generation models

There has been increasing interest in studying hy-

brid retrieval-generation models to complement

generation. Li et al. (2018) introduced a hybrid

retrieval-generation framework which decides at

each step whether it retrieves a template or gen-

erates a sentence. Li et al. (2019) proposed a

model based on abnormality graphs, which first

predicts existing abnormalities on the radiology im-

ages, then retrieves and paraphrases the templates

of that abnormality. However, such models usu-

ally require non-trivial human effort to construct

high quality prior knowledge (e.g. sentence tem-

2https://semrep.nlm.nih.gov/

plates, abnormality terms). Unlike previous work,

we leverage unsupervised methods and minimal

rules to group sentences into different abnormality

clusters, seeking to minimize human effort.

2.3 Visual-semantic embeddings for
cross-modal retrieval

Learning visually grounded semantics to facilitate

cross-modal retrieval (i.e., image-to-text and text-

to-image) is a challenging task for cross-modal

learning (Faghri et al., 2018; Wu et al., 2019). Dif-

ferent from image captioning tasks, radiology re-

ports are often longer and consist of multiple sen-

tences, each related to different abnormal findings;

meanwhile, there are fewer distinct objects in ra-

diology images and the differences among images

are more subtle.

3 Approach

Given radiology images If and Il from the frontal

and lateral view, Hierarchical CNN-RNN based

methods predict complete medical reports R =
{s1, s2, . . . , sN}, consisting of N sentences. Each

sentence si is generated hierarchically:

P (si) =

Ti∏

t=1

P (wt
i |w<t

i , s<i, Ef , El), (1)

where Ef and El are the feature maps of the images

If and Il generated by the CNN encoder, and wt
i is

the t-th word at the i-th sentence.

Instead of training such generation models, we

approach the task as a cross-modal retrieval method.

In particular, we propose a model that (1) measures

the similarity between images and abnormal find-
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ings, and (2) identifies fine-grained relevant image

regions for each abnormal finding.

3.1 Problem definition

Assume each report Ra = {a1, a2, . . . , aM}
includes M abnormal findings (i.e., sentences).

Ra is a subset of the complete report R =
{s1, s2, . . . , sN}, where si can either be an abnor-

mal sentence ai or not.

Let v ∈ R
d1 be the semantic embedding of an

abnormal finding a of this report, and E = {mj ∈
R
d2}w×h

j=1 be the feature maps of the radiology im-

age I associated with Ra, where j means the j-th

region of the feature map. We first transform them

into the joint embedding space R
d with separate

linear projection layers:

v = norm(linear(v));mj = norm(linear(mj)),

where we apply l2 normalization on the joint em-

beddings to improve training stability, following

work in visual-semantic embeddings (Faghri et al.,

2018).

Next, we need to measure the similarity between

the semantic and visual embeddings. As differ-

ent regions may include details about different ab-

normal findings, we propose Conditional Visual-

Semantic Embeddings (CVSE) to learn the fine-

grained matching between regions and a target ab-

normal finding:

d(a, I) = −
∑

1≤j≤w×h

αj ||mj − v||2,

α̂j = vα
�(Wα[mj ;v] + bα),

α = softmax(α̂),

(2)

where αj is the attention score that represents the

relevance between the region mj and the abnor-

mal finding v, d(a, I) is the similarity score be-

tween image I and the abnormal finding a, which

is calculated as an attention-weighted sum over the

similarity scores of each region with the abnormal

finding. We use the (negative) squared l2 distance

to measure similarity. Since each report has both

frontal and lateral views, the final similarity score

is calculated as the average:

d∗(a, I) =
1

2
(d(a, If ) + d(a, Il)). (3)

Finally, we optimize the hinge-based triplet rank-

ing loss to learn the visual-semantic embeddings:

L =
∑

I

[d∗(a−, I)− d∗(a+, I) + δ]+

+
∑

a

[d∗(a, I−)− d∗(a, I+) + δ]+,
(4)

where δ is the margin, [x]+ = max (x, 0) is the

hinge loss, a+ (I+) denotes a matched abnormal

finding (image) from the training set while a−(I−)

denotes an unmatched abnormal finding (image)

sampled during training.

3.2 Extracting and clustering abnormal
findings

To identify abnormal findings in radiology reports,

we train a sentence-level classifier which deter-

mines whether a sentence includes abnormal find-

ings or not. We fine-tuned BERT (Devlin et al.,

2019) on an annotated sentence-level dataset re-

leased by Harzig et al. (2019), which is a labeled

subset of the Open-I dataset (Demner-Fushman

et al., 2016). We achieve an F1-score of 98.3 on

the held-out test set. We then use it to distantly

label the reports from the MIMIC-CXR dataset

(Johnson et al., 2019), which is the largest public

CXR imaging report dataset.

Given that most medical reports are written fol-

lowing certain templates, many abnormal findings

are often paraphrases of each other. We obtain

the sentence embeddings via pre-trained models

and apply K-Means to cluster the sentences about

similar abnormal findings into 500 groups. We

also design several simple mutual exclusivity rules

to refine the groupings. We consider critical at-

tributes such as position (e.g. left, right), severity

(e.g. mild, severe) which often are not present at the

same time. Then we apply these rules to separate

each group formed by K-Means. Ultimately, we

obtained 1,306 groups of abnormal findings.

4 Experiments

We compare CVSE with the state-of-the-art report

generation models and simple baseline models to

answer two research questions—RQ1: Does our

retrieval-based method outperform generation mod-

els? RQ2: Do the visual-semantic embeddings

capture abnormal findings grounded on images?

4.1 Baselines

We consider (1) the Hier-CNN-RNN model (Jing

et al., 2017; Liu et al., 2019), as denoted in eq. (1);
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Table 1: Comparisons of different models’ clinical accuracy and NLG metrics. Accuracy, precision and recall are

the macro-average across all 14 diseases.

Model Accuracy Precision Recall BLEU-4 BLEU-1 ROUGE-L METEOR

MIMIC-CXR (Abnormal)
CVSE + mutual exclusivity 0.863 0.317 0.224 0.036 0.192 0.153 0.077
CVSE 0.856 0.303 0.218 0.032 0.197 0.153 0.088
Hier-CNN-RNN 0.850 0.261 0.157 0.019 0.084 0.149 0.059
Hier-CNN-RNN + shuffle 0.853 0.172 0.117 0.013 0.064 0.130 0.046

MIMIC-CXR (Complete)
Hier-CNN-RNN + complete 0.835 0.145 0.135 0.096 0.258 0.257 0.121
Hier-CNN-RNN + co-attention 0.843 0.156 0.127 0.098 0.281 0.252 0.120
Hier-CNN-RNN + dual 0.843 0.194 0.142 0.095 0.282 0.256 0.123

(2) Hier-CNN-RNN + co-attention (Jing et al.,

2017) with co-attention on both the images and the

predicted medical concepts; (3) Hier-CNN-RNN

+ dual, with the dual word-level decoders (Harzig

et al., 2019). We also implement two simple vari-

ants: (4) Hier-CNN-RNN + complete, which con-

siders the complete medical reports (i.e., both nor-

mal and abnormal findings) as input; (5) Hier-CNN-

RNN + shuffle, whose input reports have a shuffled

sentence order. Vinyals et al. (2015) has shown that

input order affects the performance for encoder-

decoder models and (5) could potentially address

the training issue due to the static input order.

In all experiments, the abnormal set and com-

plete set consist of the same (image, report) pairs.

As discussed in Section 3.1, the abnormal set only

considers the abnormal finding sentences of the re-

port, which is a subset of sentences of the complete

report. We compare these two sets to show that

models trained on the abnormal sentences would

achieve substantial improvement than those trained

on the complete reports, which has not been studied

before.

We use the CheXpert labeler to evaluate the clin-

ical accuracy of the abnormal findings reported by

each model, which is the state-of-the-art medical

report labeling system (Irvin et al., 2019; Johnson

et al., 2019). Given sentences of abnormal findings,

CheXpert will give a positive and negative label

for 14 diseases. We then calculate the Precision,

Recall and Accuracy for each disease based on the

labels obtained from each model’s output and from

the ground-truth reports.

4.2 Implementation details

We consider CXRs from the MIMIC-CXR dataset

with both frontal and lateral views which include

at least one abnormal finding. Ultimately, we ob-

tain 26,946/3,801/7,804 CXRs for the train/dev/test

sets, respectively. For the CVSE model, we set α to

0.2 and for each sample we randomly pick 8 nega-

tive samples. We use the pre-trained DenseNet-121

to obtain the feature maps of the CXR images. We

use the pre-trained biomedical sentence embed-

dings (Zhang et al., 2019) to obtain initial embed-

dings for the abnormal findings.3 The final dimen-

sion of the joint embedding d is set to 512. We take

the top 3 retrieval results as the predicted abnormal

findings. For all CNN-RNN based models, we use

a VGG-19 model as the encoder, a 1-layer LSTM

as the sentence decoder and a 2-layer LSTM as

the word decoder. All dimensions are set to 512.

Greedy search is applied during the decoding stage,

following Jing et al. (2017). Our code are available

online.4

4.3 Performance comparison

We conduct experiments on both the abnormal and

complete set of the MIMIC-CXR dataset which

consider the abnormal findings in reports and the

complete reports, respectively. As shown in Ta-

ble 1, adding co-attention over medical concepts

and dual decoders both improve the vanilla Hier-

CNN-RNN model’s clinical accuracy on the com-

plete dataset. However, simply training the Hier-

CNN-RNN model on the abnormal set would

achieve better clinical accuracy. This shows the

importance of addressing dataset bias. We also ob-

serve that the Hier-CNN-RNN model with a shuf-

fled sentence order doesn’t improve performance,

which indicates the difficulty of addressing order

bias during training of encoder-decoder models.

Our CVSE model outperforms all baselines on

clinical accuracy metrics, which demonstrates its

capability to accurately report abnormal findings.

Notably, CVSE achieves significant improvements

3https://github.com/ncbi-nlp/BioSentVec
4https://github.com/nijianmo/chest-xray-cvse
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Real: pa and lateral chest radiographs demonstrate a
left basilar opacity most consistent with atelectasis ,
though an underlying infectious process can not be 
excluded
Prediction: increased density projecting over the spine 
which could be due to additional atelectasis; however, 
pneumonia is also possible.

Real: heart size is mildly enlarged 
Prediction: interval increase in 
heart size. 

Real: sternotomy wires and post-surgical clips
project over the cardiac silhouette
Prediction: sternotomy wires and mediastinal 
clips are again noted.

Figure 2: Visualization of the attention maps from our method. ‘Real’ and ‘Prediction’ indicates the ground-truth

and predicted abnormal findings.

on precision and recall. On the other hand, the

baseline models will always miss abnormal find-

ings thus leading to 0 precision and recall for many

disease classes. More detailed results are included

in the appendices.

Refining the groups with mutual exclusivity

rules further improves the performance of CVSE.

We also report the automatic evaluation of NLG

metrics. As shown in Table 1, CVSE achieves

higher scores than other baselines on the abnormal

set.5

4.4 Qualitative analysis
We performed a human evaluation in which we

sampled 20 images and asked a board-certified ra-

diologist to give Likert scores (1 to 10) based on

how closely the results generated by the model re-

late to the input images. The ground-truth obtained

an average score of 7.85; our CVSE achieved a

score of 6.35, higher than Hier-CNN-RNN trained

on the abnormal set which obtained 6.15. The radi-

ologist commented that Hier-CNN-RNN’s outputs

were simpler predictions, with less details; mean-

while, CVSE covered more abnormalities but may

included false information sometimes.

In Figure 2, we visualize the attended regions

on CXRs to investigate what part is important for

reporting abnormal findings. We observe that our

attention mechanism is able to detect relevant re-

gions (e.g. heart, left opacity, wires) to determine

which abnormal findings reside in the CXRs.

5 Conclusions

In this paper, we study how to build assistive medi-

cal imaging systems that report abnormal findings

5Models trained on the complete set can match the pre-
dominant normal findings thus leading to higher NLG metrics.

on the medical images in the form of detailed de-

scriptions. We formulate the problem as a cross-

modal retrieval task and apply a metric learning-

based method to align visual and semantic features

(i.e., image regions and textual descriptions of ab-

normal findings) without explicit labels. Our exper-

iments show that the retrieval-based method outper-

forms generation-based models by mitigating their

weaknesses in generating repetitive sentences and

bias toward normal findings. In the future, we will

extend our method to other medical image datasets

and explore transfer learning.
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A Implementation details

A.1 Mutual exclusive rules to refine
groupings

Though advanced sentence embedding methods

allow for effective groupings of sentences in radi-

ology reports describing similar clinical features,

they fail to distinguish antonyms such as right vs.

left because antonyms share highly similar con-

texts and are considered to be semantically similar

by these embedding methods. For our purposes,

however, it is important to distinguish some of the

antonyms because they describe mutually exclusive

image features. For example our grouping based

on a sentence embedding results clustered these

sentences in the same group:

• continued right lung volume loss.
• there is right lung volume loss again noted.
• right lung volume loss is again noted.
• there is volume loss of the left upper lung.
• left upper lobectomy changes including left

lung volume loss.
• left upper lobe volume loss is present.
To separate those denoting right lung volume

loss from those denoting left we wrote simple

matching rules to identify selected words in sen-

tences in the same group that are mutually exclu-

sive and encode their occurrences as one-hot vec-

tors. Then we applied the DBSCAN clustering

method in the sklearn6 library to divide the group

further into on average three subgroups based on

the one-hot vector encoding. We considered six

sets of mutually exclusive terms:

• right, left, bilateral.

• small, great|large.

• low, high.

• elevate|enlarge|increase|widen,

shrink|decrease.

6https://scikit-learn.org/stable/
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Table 2: Detailed Accuracy, precision and recall for different models.

Model CVSE + mutual exclusiveness Hier-CNN-RNN (abnormal)

Disease Accuracy Precision Recall Accuracy Precision Recall

No Finding 0.769 0.346 0.265 0.766 0.336 0.259
Enlarged Cardiomediastinum 0.926 0.063 0.060 0.959 0.000 0.000
Cardiomegaly 0.801 0.512 0.606 0.813 0.570 0.338
Lung Lesion 0.921 0.192 0.121 0.943 0.000 0.000
Lung Opacity 0.692 0.635 0.237 0.658 0.500 0.021
Edema 0.920 0.405 0.206 0.927 0.490 0.084
Consolidation 0.876 0.130 0.181 0.935 0.079 0.006
Pneumonia 0.859 0.364 0.214 0.855 0.306 0.154
Atelectasis 0.773 0.525 0.320 0.599 0.284 0.469
Pneumothorax 0.964 0.073 0.051 0.977 0.000 0.000
Pleural Effusion 0.894 0.640 0.465 0.696 0.262 0.703
Pleural Other 0.962 0.145 0.036 0.968 0.000 0.000
Fracture 0.917 0.063 0.050 0.935 0.072 0.029
Support Devices 0.808 0.348 0.321 0.863 0.752 0.130
Macro-Average 0.863 0.317 0.224 0.850 0.261 0.157

• improve|resolve|clear, worsen.

• mild, severe.

A.2 Parameter settings
We use PyTorch to implement all models and run

them on 2 1080Ti GPUs. We resize all images into

size of 512 × 512 for both models. For all exper-

iments, we save the models that perform best on

the validation set. For CVSE, we measure recall on

validation set; for CNN-RNN models, we consider

perplexity on validation set.

For CVSE we use an Adam optimizer with a

learning rate 0.001 and training continues for 40

epochs. For all Hier-CNN-RNN models, we set

the learning rate for encoder and decoder as 5e−6

and 2e−4, respectively. We train the models for

100 epochs. We use a VGG-19 model as the en-

coder, a 1-layer LSTM as the sentence decoder

and a 2-layer LSTM as the word decoder. We ob-

serve slightly better performance from VGG-19

compared to DenseNet-121 for the generation mod-

els. For models that require medical concepts, we

use SemRep (i.e. a UMLS-based program released

by NIH) to extract 93 highly frequent medical con-

cepts from the training set.

B Experiments on MIMIC-CXR

B.1 Detailed clinically accuracy results on 14
diseases

Table 2 shows the detailed accuracy, precision and

recall on all 14 diseases from our CVSE model

with mutual exclusiveness rules and the Hier-CNN-

RNN model trained on the abnormal set. Over-

all, CVSE outperforms Hier-CNN-RNN on the

macro-average of accuracy, precision and recall.

Notably, CVSE achieves higher recall on 12 out of

14 diseases with a comparative or higher precision.

Meanwhile, Hier-CNN-RNN outputs 0 positive pre-

dictions on 4 disease types that are dominated by

the negative findings, which shows its limited ca-

pability to generate diverse predictions.


