
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1841–1848
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1841

Constrained Decoding for Computationally Efficient Named Entity
Recognition Taggers

Brian Lester, Daniel Pressel, Amy Hemmeter,
Sagnik Ray Choudhury, and Srinivas Bangalore

Interactions, Ann Arbor MI 48104
{blester,dpressel,ahemmeter,schoudhury,sbangalore}

@interactions.com

Abstract

Current state-of-the-art models for named en-
tity recognition (NER) are neural models with
a conditional random field (CRF) as the final
layer. Entities are represented as per-token la-
bels with a special structure in order to decode
them into spans. Current work eschews prior
knowledge of how the span encoding scheme
works and relies on the CRF learning which
transitions are illegal and which are not to fa-
cilitate global coherence. We find that by con-
straining the output to suppress illegal transi-
tions we can train a tagger with a cross-entropy
loss twice as fast as a CRF with differences
in F1 that are statistically insignificant, effec-
tively eliminating the need for a CRF. We ana-
lyze the dynamics of tag co-occurrence to ex-
plain when these constraints are most effective
and provide open source implementations of
our tagger in both PyTorch and TensorFlow.

1 Introduction

Named entity recognition (NER) is the task of find-
ing phrases of interest in text that map to real world
entities such as organizations (“ORG”) or locations
(“LOC”). This is normally cast as a sequence label-
ing problem where each token is assigned a label
that represents its entity type. Multi-token enti-
ties are handled by having special “Beginning” and
“Inside” indicators that specify which tokens start,
continue, or change the type of an entity. Rati-
nov and Roth (2009) show that the IOBES tagging
scheme, where entity spans must begin with a “B”
token, end with an “E“ token and where single to-
ken entities are labeled with an “S”, performs better
than the traditional BIO scheme. The IOBES tag-
ging scheme dictates that some token sequences are
illegal. For example, one cannot start an entity with
an “E” tag (such as a transition from an “O”, mean-
ing it is outside of an entity, to “E-ORG”) nor can
they change types in the middle of an entity—for

example, transitioning from “I-ORG” to “I-LOC”.
Most approaches to NER rely on the model learn-
ing which transitions are legal from the training
data rather than injecting prior knowledge of how
the encoding scheme works.

It is conventional wisdom that, for NER, mod-
els with a linear-chain conditional random field
(CRF) (Lafferty et al., 2001) layer perform better
than those without, yielding relative performance
increases between 2 and 3 percent in F1 (Ma and
Hovy, 2016; Lample et al., 2016). A CRF with
Viterbi decoding promotes, but does not guarantee,
global coherence while simple greedy decoding
does not (Collobert et al., 2011). Therefore, in a
bidirectional LSTM (biLSTM) model with a CRF
layer, illegal transitions are rare compared to mod-
els that select the best scoring tag for each token.

Due to the high variance observed in the per-
formance of NER models (Reimers and Gurevych,
2017) it is important to have fast training times to
allow for multiple runs of these models. However,
as the CRF forward algorithm is O(NT 2), where
N is the length of the sentence and T is the number
of possible tags, it slows down the training signifi-
cantly. Moreover, substantial effort is required to
build an optimized, correct implementation of this
layer. Alternately, training with a cross-entropy
loss runs in O(N) for sparse labels and popular
deep learning toolkits provide an easy to use, par-
allel version of this loss which brings the runtime
down to O(logN).

We believe that, due to the strong contextualized
local features with infinite context created by to-
day’s neural models, global features used in the
CRF do little more than enforce the rules of an en-
coding scheme. Instead of traditional CRF training,
we propose training with a cross-entropy loss and
using Viterbi decoding (Forney, 1973) with heuris-
tically determined transition probabilities that pro-
hibit illegal transitions. We call this constrained



1842

decoding and find that it allows us to train models
in half the time while yielding F1 scores compara-
ble to CRFs.

2 Method

Training a tagger with a CRF is normally done by
minimizing the negative log likelihood of the se-
quence of gold tags given the input, parameterized
by the model, where the probability of the sequence
is given by

P (y|x; θ) =
e
∑

i

∑
j wjfj(yi−1,yi,x,i))∑

y′∈Y e
∑

i

∑
j wjfj(y′i−1,y

′
i,x,i)

By creating a feature function, fj , that is span-
encoding-scheme-aware, we can introduce con-
straints that penalize any sequence that includes
an illegal transition by returning a large negative
value. Note the summation over all possible tag
sequences. While efficient dynamic programs exist
to make this sum tractable for linear-chain CRFs
with Markov assumptions, this is still a costly nor-
malization factor to compute.

In neural models, these feature functions are rep-
resented as a transition matrix that represents the
score of moving from one tag y at index i to another
at i+1. We implement a mask that effectively elim-
inates invalid IOBES transitions by setting those
scores to large negative values. By applying this
mask to the transition matrix we can simulate fea-
ture functions that down-weigh illegal transitions.

Contrast the CRF loss with the token-level cross-
entropy loss where y is the correct labels and ŷ is
the model’s predictions.

Lcross-entropy = −
∑
i

yi log(ŷi)

Here we can see that the loss for each element
in the input i can be computed independently due
to the lack of a global normalization factor. This
lack of a global view is potentially harmful, as we
lose the ability to condition on the previous label
decision to avoid making illegal transitions. We
hypothesize that, using our illegal transition heuris-
tics, we can create feature functions that do not
have to be trained, but can be applied at test time
and allow for contextual coherence while using a
cross-entropy loss.

We can use the mask directly as the transition
matrix to calculate the maximum probability se-
quence while avoiding illegal transitions for mod-
els that were not trained with a CRF. Using these
transitions scores in conjunction with cross-entropy
trained models, we can achieve comparable mod-
els that train more quickly. We call this method
constrained decoding.

Constrained decoding is relatively easy to im-
plement, given a working CRF implementation, all
one needs to do is apply the transition mask to the
CRF transition parameters to create a constrained
CRF. Replacing the transition parameters with the
mask yields our constrained decoding model. Start-
ing from scratch, one only needs to implement
Viterbi decoding, using the mask as transition pa-
rameters, to implement the constrained decoding
model—avoiding the need for the CRF forward
algorithm and the CRF loss.

For constrained decoding, we leverage the
IOBES tagging scheme rather than BIO tagging, al-
lowing us to inject more structure into the decoding
mask. Early experiments with BIO tagging failed
to show the large gains we realized using IOBES
tagging for the reasons mentioned in Section 4.

3 Experiments & Results

To test if we can replace the CRF with constrained
decoding we use two sequential prediction tasks:
NER (CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003), WNUT-17 (Derczynski et al., 2017),
and OntoNotes (Hovy et al., 2006)) and slot-filling
(Snips (Coucke et al., 2018)). For each (task,
dataset) pair we use common embeddings and hy-
perparameters from the literature. The baseline
models are biLSTM-CRFs with character composi-
tional features based on convolutional neural net-
works (Dos Santos and Zadrozny, 2014) and our
models are identical except we train with a cross-
entropy loss and use the encoding scheme con-
straints as transition probabilities instead of learn-
ing them with a CRF. Our hyper-parameters mostly
follow Ma and Hovy (2016), except we use mul-
tiple pre-trained word embeddings concatenated
together (Lester et al., 2020). For Ontonotes we
follow Chiu and Nichols (2016). See Section A.7
or the configuration files in our implementation for
more details.

As seen in Table 1, in three out of four datasets
constrained decoding performs comparably or bet-
ter than the CRF in terms of F1. OntoNotes is



1843

Dataset Model mean std max
CoNLL CRF 91.61 0.25 92.00

Constrain 91.44 0.23 91.90
WNUT-17 CRF 40.33 1.13 41.99

Constrain 40.59 1.06 41.71
Snips CRF 96.04 0.28 96.35

Constrain 96.07 0.17 96.29
OntoNotes CRF 87.43 0.26 87.57

Constrain 86.13 0.17 86.72

Table 1: Tagging results on a variety of datasets. The
CRF model is a standard biLSTM-CRF while the
Constrain model is a biLSTM trained with a cross-
entropy loss that uses heuristic transition scores, cre-
ated from the illegal transitions, for test time decoding.
OntoNotes is the only dataset where the difference in
performance between the CRF and constrained decdo-
ing is statistically significant (p < 0.5). All scores are
entity-level F1 and are reported across 10 runs.

the only dataset with a statistically significant dif-
ference in performance. We explore this discrep-
ancy in Section 4. Similarly, Table 2 shows that
when we apply constrained decoding to a variety
of internal datasets, which span a diverse set of
specific domains, we do not observe any statisti-
cally significant differences in F1 between CRF
and constrained decoding models.

The models were trained using Mead-Baseline
(Pressel et al., 2018), an open-source framework for
creating, training, evaluating and deploying models
for NLP. The constrained decoding tagger performs
much faster at training time. Even when compared
to the optimized, batched CRF provided by Mead-
Baseline, it trained in 51.2% of the time as the
CRF.

In addition to faster training times, training our
constrained models produces only 65% of the CO2

emissions that the CRF does. While GPU compu-
tations for the constrained model draw 1.3 times
more power—due to the greater degree of possi-
ble parallelism in the cross-entropy loss function—
than the CRF, the reduction in training time re-
sults in smaller carbon emissions as calculated in
Strubell et al. (2019).

Constrained decoding can also be applied to a
CRF. The CRF does not always learn the rules of
a transition scheme, especially in early training it-
erations. Applying the constraints to the CRF can
improve both F1 and convergence speed. We estab-
lish this by training biLSTM-CRF models with and
without constraints on CoNLL 2003. We find that

Task Domain ∆

NER Generic NER 0.80
Slot Filling Customer Service 0.21

Automotive -0.68
Cyber Security 0.84

Table 2: Entity-level F1 comparing a constrained CRF
model with a constrained decoding model. Due to the
nature of the the data we present the relative perfor-
mance difference between the two models. We see
some improvements and some drops in performance
but, once again, there is not a statistically significant
difference between the CRF and constrained decoding.

Task Dataset ∆

NER CoNLL -0.03
WNUT-17 0.65
OntoNotes -1.48
Snips 0.03

Table 3: Results on well-known datatsets presented as
relative differences to help frame results in Table 2

the constraint mask yields a small (albeit statisti-
cally insignificant) boost in F1 as shown in Table
4.

Our experiments suggest that injecting prior
knowledge of the transition scheme helps the model
to focus on learning the features for sequence tag-
ging tasks (and not the transition rules themselves)
and train faster. Table 5 shows that our constrained
model converged 1 on CoNLL 2003 faster on aver-
age than an unconstrained CRF.

4 Analysis

The relatively poor performance of constrained de-
coding on OntoNotes suggests that there are several
classes of transition that it cannot model. For exam-
ple, the transition distribution between entity types,

1We define convergence as the epoch where development
set performance stops improving

Model mean std max
Unconstrained 91.55 0.26 91.79
Constrained 91.61 0.25 92.00

Table 4: Results of biLSTM-CRF models with and
without constraints evaluated with entity-level F1 on
the CoNLL 2003 dataset. Scores are reported across
10 runs. We see that while, in theory, the CRF should
learn the constraints, injecting this knowledge gives a
gain in performance.



1844

Model mean std min max
Unconstrained 72.4 21.0 16 97
Constrained 60.6 23.3 37 89

Table 5: Using the constraints while training a biLSTM-
CRF tagger on the CoNLL dataset result in a statisti-
cally significant (p < 0.5) decrease in the number of
epochs until convergence. Scores are reported across
30 runs.

or the prior distribution of entities. We analyzed
the datasets to identify the characteristics that cause
constrained decoding to fail.

One such presumably obvious characteristic is
the number of entity types. However, our experi-
ments suggest that number of entity types does not
affect performance: Snips has more entity types
than OntoNotes yet constrained decoding works
better for Snips.

We define an ambiguous token as a token whose
type has multiple tag values in the dataset. For
example the token “Chicago” could be “I-LOC” or
“I-ORG” in the phrases “the Chicago River” and
“the Chicago Bears” respectively. Such ambiguous
tokens are the ones for which we expect global
features to be particularly useful. A “strictly dom-
inated token” is defined as a token that can only
take on a single value due to the legality of the tran-
sition from the previous tag. In the above example
given that “the” was a “B-LOC” then “Chicago”
is strictly dominated and forced to be an “I-LOC’.
Contrast this with a non-strictly dominated token
that can still have multiple possible tag values when
conditioned on the previous tag. As constrained
decoding eliminates illegal transitions we would
expect that it would perform well on datasets where
a large proportion of ambiguous tokens are strictly
dominated. This tends to hold true—only 15.9%
of OntoNotes’ ambiguous tokens are strictly domi-
nated while 70.7% of CoNLL’s tokens are and for
WNUT-17 73.6% are.

We believe that the ambiguity of the first and last
token of an entity also plays a role. Once we start
an entity, constrained decoding vastly narrows the
scope of decisions that need to be made. Instead
of making a decision over the entire set of tags, we
only decide if we should continue the entity with
an “I-” or end it with an “E-”. Therefore, we expect
constrained decoding to work well with datasets
that have fairly unambiguous entity starts and ends.
We quantify this by finding the proportion of enti-
ties that begin (or end) with an unambiguous type,

that is, the first token of an entity only has a single
label throughout the dataset, for example, “Kuwait”
is only labeled with “S-LOC” in the CoNLL dataset.
We call these metrics “Easy First” and “Easy Last”
respectively and find that datasets with higher con-
strained decoding performance also have a higher
percentages of entities with an easy first or last to-
ken. A summary of these characteristics for each
dataset is found in Table 6.

This also explains why constrained decoding
doesn’t work as well for BIO-encoded CoNLL as
it does for IOBES. When using the IOBES format,
more tokens are strictly dominated. The other stark
difference is the proportion of “Easy Last” entities.
Without the “E-” token, much less structure can
be injected into the model, resulting in decreased
performance of constrained decoding. These trends
also hold true in internal datasets, where the Auto-
motive dataset had the fewest incidences of each of
these phenomena.

While not perfect predictors for the performance
of constrained decoding, the metrics chosen are
good proxies and can be used as a prescriptive
measure for new datasets.

5 Previous Work

Our approach is similar in spirit to previous work
in NLP where constraints are introduced during
training and inference time (Roth and Yih, 2005;
Punyakanok et al., 2005) to lighten the computa-
tional load, and to Strubell et al. (2018) where prior
knowledge is injected into the model by manual
manipulation. In our approach, however, we fo-
cus specifically on manipulating the model weights
themselves rather than model features.

There have been attempts to eliminate the CRF
layer, notably, Shen et al. (2017) found that an
additional LSTM greedy decoder layer is compet-
itive with the CRF layer, though their baseline is
much weaker than the models found in other work.
Additionally, their decoder has an auto-regressive
relationship that is difficult to parallelize and, in
practice, there is still significant overhead at train-
ing time. Chiu and Nichols (2016) mention good
results with a similar technique but don’t provide
in-depth analysis, metrics, or test its generality.

6 Conclusion

For sequence tagging tasks, a CRF layer introduces
substantial computational cost. We propose replac-
ing it with a lightweight technique, constrained



1845

Dataset Tag Types Ambiguity Strictly Dominated Easy First Easy Last
CoNLL (IOBES) 4 8.8% 71.2% 58.3% 94.0%
CoNLL (BIO) 4 7.4% 59.6% 68.5% 57.4%
WNUT-17 6 3.6% 74.3% 82.9% 97.0%
OntoNotes 18 14.9% 15.9% 16.2% 55.9%
Snips 39 24.5% 26.7% 32.4% 91.1%

Table 6: Analysis of the tag dynamics and co-occurrence. We see that OntoNotes is an outlier in the percentage
of ambiguous tokens that are strictly dominated by their context, the entities that have easy to spot starting tokens,
and entities with clearly defined ends. All of these quirks of the data help explain why we only see a statistically
significant performance drop for OntoNotes.

decoding, which doubles the speed of training with
comparable F1 performance. We analyze the algo-
rithm to understand where it might work or fail and
propose prescriptive measures for using it.

The broad theme of the work is to find simple
and computationally efficient modifications of cur-
rent networks and suggest possible failure cases.
While larger models have shown significant im-
provements, we believe there is still relevance in
investigating small, targeted changes. In the fu-
ture, we want to explore similar techniques in other
common NLP tasks.

References
Jason P.C. Chiu and Eric Nichols. 2016. Named En-

tity Recognition with Bidirectional LSTM-CNNs.
Transactions of the Association for Computational
Linguistics, 4:357–370.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research,
12:2493–2537.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips Voice Platform: an Embed-
ded Spoken Language Understanding System for
Private-by-design Voice Interfaces. arXiv preprint,
arXiv:1805.10190.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
Shared Task on Novel and Emerging Entity Recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Cı́cero Nogueira Dos Santos and Bianca Zadrozny.
2014. Learning Character-level Representations for
Part-of-speech Tagging. In Proceedings of the 31st

International Conference on International Confer-
ence on Machine Learning - Volume 32, ICML’14,
pages II–1818–II–1826. JMLR.org.

G.D. Forney. 1973. The Viterbi Algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% Solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, NAACL-Short
’06, pages 57–60, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, pages 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, San Diego California, USA, June 12-17, 2016,
pages 260–270.

Brian Lester, Daniel Pressel, Amy Hemmeter, Sag-
nik Ray Choudhury, and Srinivas Bangalore.
2020. Multiple Word Embeddings for Increased
Diversity of Representation. arXiv preprint
arXiv:2009.14394.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word Rep-
resentations in Vector Space.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word

https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#CollobertWBKKK11
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#CollobertWBKKK11
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
http://dl.acm.org/citation.cfm?id=3044805.3045095
http://dl.acm.org/citation.cfm?id=3044805.3045095
http://dl.acm.org/citation.cfm?id=1614049.1614064
http://dl.acm.org/citation.cfm?id=1614049.1614064
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://aclweb.org/anthology/N/N16/N16-1030.pdf
http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101
http://www.aclweb.org/anthology/P16-1101
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162


1846

Representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A Li-
brary for Rapid Modeling, Experimentation and De-
velopment of Deep Learning Algorithms Targeting
NLP. In Proceedings of Workshop for NLP Open
Source Software (NLP-OSS), pages 34–40. Associa-
tion for Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2005. Learning and Inference over Con-
strained Output. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence,
IJCAI’05, pages 1124–1129, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition.
In CoNLL 2009 - Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learn-
ing, pages 147–155.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 338–348, Copenhagen, Denmark. Association
for Computational Linguistics.

Dan Roth and Wen-tau Yih. 2005. Integer Linear Pro-
gramming Inference for Conditional Random Fields.
In Proceedings of the 22Nd International Confer-
ence on Machine Learning, ICML ’05, pages 736–
743, New York, NY, USA. ACM.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017.
Deep Active Learning for Named Entity Recogni-
tion. In Proceedings of the 2nd Workshop on Rep-
resentation Learning for NLP, pages 252–256, Van-
couver, Canada. Association for Computational Lin-
guistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine Learn-
ing Research, 15(56):1929–1958.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-Informed Self-Attention for Seman-
tic Role Labeling. In Proceedings of the 2018
Conference on Empirical Methods in Natural

Language Processing, pages 5027–5038, Brus-
sels, Belgium. Association for Computational
Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-independent Named Entity Recog-
nition. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003 -
Volume 4, CONLL ’03, pages 142–147, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,
Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, CJ Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors.
2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

A Reproducibility

A.1 Hyperparameters
Mead/Baseline is a configuration file driven model
training framework. All hyperparameters are fully
specified in the configuration files included with
the source code for our experiments.

A.2 Statistical Significance
For all claims of statistical significance we use a
t-test as implemented in scipy (Virtanen et al.,
2020) and using an alpha value of 0.05.

A.3 Computational Resources
All models were trained on a single NVIDIA
1080Ti. While multiple GPUs were used for train-
ing many models in parallel to facilitate testing
many datasets and to estimate the variability of the
method, the actual model can easily be trained on
a single GPU.

A.4 Evaluation
To calculate metrics, entity-level F1 is used for
NER and slot-filling. In entity-level F1, entities are
created from the token-level labels and compared
to the gold entities. Entities that match on both
type and boundaries are considered correct while a
mismatch in either causes an error. The F1 score
is then calculated using these entities. We use the

http://www.aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://dl.acm.org/citation.cfm?id=1642293.1642473
http://dl.acm.org/citation.cfm?id=1642293.1642473
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.1145/1102351.1102444
https://doi.org/10.1145/1102351.1102444
https://doi.org/10.18653/v1/W17-2630
https://doi.org/10.18653/v1/W17-2630
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2


1847

Dataset Model Parameters
CoNLL CRF 4,658,190

Constrain 4,657,790
Unconstrained CRF 4,658,190

WNUT-17 CRF 12,090,032
Constrain 12,089,248

Snips CRF 5,940,866
Constrain 5,924,737

OntoNotes CRF 12,090,032
Constrain 12,089,248

Table 7: The number of parameters for different mod-
els.

evaluation code that ships with the framework we
use, MEAD/Baseline, which we have bundled with
the source code for our experiments.

A.5 Model Size

The number of parameters in different models can
be found in Table 7.

A.6 Dataset Information

Relevant information about datasets can be found in
Table 8. The majority of data is used as distributed,
except we convert NER and slot-filling datasets to
the IOBES format. All public datasets are included
in the supplementary material. A quick overview
of each dataset follows:

CoNLL: A NER dataset based on news text. We
converted the IOB labels into the IOBES format.
There are 4 entity types, MISC, LOC, PER, and
LOC.

WNUT-17: A NER dataset of new and emerging
entities based on noisy user text. We converted the
BIO labels into the IOBES format. There are 6
entity types, corporation, creative-work,
group, location, person, and product.

OntoNotes: A much larger NER dataset.
We converted the labels into the IOBES for-
mat. There are 18 entity types, CARDINAL,
DATE, EVENT, FAC, GPE, LANGUAGE, LAW,
LOC, MONEY, NORP, ORDINAL, ORG, PERCENT,
PERSON, PRODUCT, QUANTITY, TIME, and
WORK OF ART.

Snips: A slot-filling dataset focusing on
commands one would give a virtual assistant.
We converted the dataset from its normal format
of two associated files, one containing surface
terms and one containing labels in the more
standard CoNLL file format and converted the

labels into the IOBES format. There are 39 entity
types, album, artist, best rating,
city, condition description,
condition temperature, country,
cuisine, current location,
entity name, facility, genre,
geographic poi, location name,
movie name, movie type, music item,
object location type, object name,
object part of series type,
object select, object type,
party size description,
party size number, playlist,
playlist owner, poi, rating unit,
rating value, restaurant name,
restaurant type, served dish,
service, sort, spatial relation,
state, timeRange, track, and year.

A.7 Hyper Parameters
Table 9 details the various hyper-parameters used
to train models for each dataset. For all datasets the
only difference between the baseline CRF model
and the model using constrained decoding is that
the CRF has learnable transition parameters in the
final layer while the constrained decoding model
sets these transitions parameters manually based
on the rules of the span encoding scheme. The
framework we use, Mead-Baseline, is configuration
file driven and we have included the configuration
files used on our experiments in the supplementary
material.



1848

Dataset Train Dev Test Total
CoNLL Examples 14,987 3,466 3674 22137

Tokens 204,567 51,578 46,666 302,811
WNUT-17 Examples 3,394 1,009 1,287 5,690

Tokens 62,730 15,733 23,394 101,857
OntoNotes Examples 59,924 8,528 8,262 76,714

Tokens 1,088,503 147,724 152,728 1,388,955
Snips Examples 13,084 700 700 14,484

Tokens 117,700 6,384 6,354 130,438

Table 8: Example and token count statistics for public datasets used.

HyperParameter CoNLL Ontonotes Snips WNUT-17
Embedding 6B + Senna 6B + Senna 6B + GN 27B + w2v-30M + 840B
Character Filter Size 3 3 3 3
Character Feature Size 30 30 30 30
Character Embed Size 30 20 30 30
RNN Type biLSTM biLSTM biLSTM biLSTM
RNN Size 400 400 400 200
RNN Layers 1 2 1 1
Drop In 0.1 0.1 0.1 0.0
Drop Out 0.5 0.63 0.5 0.5
Batch Size 10 9 10 20
Epochs 100 100 100 60
Learning Rate 0.015 0.008 0.015 0.008
Momentum 0.9 0.9 0.9 0.9
Gradient Clipping 5.0 5.0 5.0 5.0
Optimizer SGD SGD SGD SGD
Patience 40 40 40 20
Early Stopping Metric f1 f1 f1 f1
Span Type IOBES IOBES IOBES IOBES

Table 9: Hyper-parameters used for each dataset. “Embedding” is the type of pre-trained word embeddings used.
6B, 27B, and 840B are GloVe embeddings (Pennington et al., 2014) with 27B having been trained on Twitter,
Senna is embeddings from Collobert et al. (2011), GN is vectors trained on Google News with word2vec from
Mikolov et al. (2013) and w2v-30M are word2vec vectors trained on Twitter from Pressel et al. (2018). “Character
Filter Size” is the number of token the character compositional convolutional neural network cover is a single
window, “Character Feature Size” is the number of convolutional features maps used, and “Character Embed Size”
is the dimensionality of the vectors each character is mapped to before it is the input to the convolutional network.
The “RNN Size” is the size of the output after the RNN which means that bidirectional RNNs are composed to
two RNNs, one in each direction, where both are half the “RNN Size”. “Drop In” is the probability that an entire
token will be drop out from the input, while “Drop Out” is the probability that individual neurons are dropped out
(Srivastava et al., 2014).


