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Abstract

Multilingual contextual embeddings, such as
multilingual BERT and XLM-RoBERTa, have
proved useful for many multi-lingual tasks.
Previous work probed the cross-linguality of
the representations indirectly using zero-shot
transfer learning on morphological and syntac-
tic tasks. We instead investigate the language-
neutrality of multilingual contextual embed-
dings directly and with respect to lexical se-
mantics. Our results show that contextual em-
beddings are more language-neutral and, in
general, more informative than aligned static
word-type embeddings, which are explicitly
trained for language neutrality. Contextual em-
beddings are still only moderately language-
neutral by default, so we propose two simple
methods for achieving stronger language neu-
trality: first, by unsupervised centering of the
representation for each language and second,
by fitting an explicit projection on small paral-
lel data. Besides, we show how to reach state-
of-the-art accuracy on language identification
and match the performance of statistical meth-
ods for word alignment of parallel sentences
without using parallel data.

1 Introduction

Multilingual BERT (mBERT; Devlin et al. 2019)
gained popularity as a contextual representation for
many multilingual tasks, e.g., dependency parsing
(Kondratyuk and Straka, 2019a; Wang et al., 2019),
cross-lingual natural language inference (XNLI) or
named-entity recognition (NER) (Pires et al., 2019;
Wu and Dredze, 2019; Kudugunta et al., 2019). Re-
cently, a new pre-trained model, XLM-RoBERTa
(XLM-R; Conneau et al. 2019), claimed to outper-
form mBERT both on XNLI and NER tasks. We
also study DistilBERT (Sanh et al., 2019) applied
to mBERT, which promises to deliver comparable
results to mBERT at a significantly lower computa-
tional cost.

Pires et al. (2019) present an exploratory paper
showing that mBERT can be used cross-lingually
for zero-shot transfer in morphological and syn-
tactic tasks, at least for typologically similar lan-
guages. They also study an interesting semantic
task, sentence-retrieval, with promising initial re-
sults. Their work leaves many open questions re-
garding how well the cross-lingual mBERT rep-
resentation captures lexical semantics, motivating
our work.

In this paper, we directly assess the cross-lingual
properties of multilingual representations on tasks
where lexical semantics plays an important role
and present one unsuccessful and two successful
methods for achieving better language neutrality.

Multilingual capabilities of representations are
often evaluated by zero-shot transfer from the train-
ing language to a test language (Hu et al., 2020;
Liang et al., 2020). However, in such a setup, we
can never be sure if the probing model did not over-
fit for the original language, as training is usually
stopped when accuracy decreases on a validation
set from the same language (otherwise, it would
not be zero-shot), even when it would have been
better to stop the training earlier. This overfitting
on the original language can pose a disadvantage
for information-richer representations.

To avoid such methodological issues, we select
tasks that only involve a direct comparison of the
representations with no training: cross-lingual sen-
tence retrieval, word alignment (WA), and machine
translation quality estimation (MT QE). Addition-
ally, we explore how the language is represented in
the embeddings by training language ID classifiers
and assessing how the representation similarity cor-
responds to phylogenetic language families.

We find that contextual representations are more
language-neutral than static word embeddings
which have been explicitly trained to represent
matching words similarly and can be used in a
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simple algorithm to reach state-of-the-art results on
word alignment. However, they also still strongly
carry information about the language identity, as
demonstrated by a simple classifier trained on
mean-pooled contextual representations reaching
state-of-the-art results on language identification.

We show that the representations can be mod-
ified to be more language-neutral with simple,
straightforward setups: centering the representa-
tion for each language or fitting explicit projections
on small parallel data.

We further show that XLM-RoBERTa (XLM-R;
Conneau et al. 2019) outperforms mBERT in sen-
tence retrieval and MT QE while offering a similar
performance for language ID and WA.

2 Related Work

Multilingual representations, mostly mBERT, were
already tested in a wide range of tasks. Often, the
success of zero-shot transfer is implicitly consid-
ered to be the primary measure of language neu-
trality of a representation. Despite many positive
results, some findings in the literature are some-
what mixed, indicating limited language neutrality.

Zero-shot learning abilities were examined by
Pires et al. (2019) on NER and part-of-speech
(POS) tagging, showing that the success strongly
depends on how typologically similar the languages
are. Similarly, Wu and Dredze (2019) trained good
multilingual models but struggled to achieve good
results in the zero-shot setup for POS tagging, NER,
and XLNI. Rönnqvist et al. (2019) draw similar
conclusions for language-generation tasks.

Wang et al. (2019) succeeded in zero-shot depen-
dency parsing but required supervised projection
trained on word-aligned parallel data. The results
of Chi et al. (2020) on dependency parsing sug-
gest that methods like structural probing (Hewitt
and Manning, 2019) might be more suitable for
zero-shot transfer.

Pires et al. (2019) also assessed mBERT on
cross-lingual sentence retrieval between three lan-
guage pairs. They observed that if they subtract the
average difference between the embeddings from
the target language representation, the retrieval ac-
curacy significantly increases. We systematically
study this idea in the later sections.

XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020), two recently introduced benchmarks
for multilingual representation evaluation, assess
representations on a broader range of zero-shot

transfer tasks that include natural language infer-
ence (Conneau et al., 2018) and question answering
(Artetxe et al., 2019; Lewis et al., 2019). Their re-
sults show a clearly superior performance of XLM-
R compared to mBERT.

Many works clearly show that downstream task
models can extract relevant features from the mul-
tilingual representations (Wu and Dredze, 2019;
Kudugunta et al., 2019; Kondratyuk and Straka,
2019a). However, they do not directly show
language-neutrality, i.e., to what extent similar phe-
nomena are represented similarly across languages.
Thus, it is impossible to say whether the represen-
tations are language-agnostic or contain some im-
plicit language identification. Our choice of evalua-
tion tasks eliminates this risk by directly comparing
the representations.

3 Centering Representations

One way to achieve stronger language neutrality
is by suppressing the language identity, only keep-
ing what encodes the sentence meaning. It can be
achieved, for instance, using an explicit projection.
However, training such a projection requires paral-
lel data. Instead, we explore a simple unsupervised
method: representation centering.

Following Pires et al. (2019), we hypothesize
that a sentence representation in mBERT is addi-
tively composed of a language-specific component,
which identifies the language of the sentence, and
a language-neutral component, which captures the
meaning of the sentence in a language-independent
way. We assume that the language-specific compo-
nent is similar across all sentences in the language.

We estimate the language centroid as the mean
of the representations for a set of sentences in that
language and subtract the language centroid from
the contextual embeddings. By doing this, we are
trying to remove the language-specific information
from the representations by centering the sentence
representations in each language so that their aver-
age lies at the origin of the vector space.

The intuition behind this is that within one lan-
guage, certain phenomena (e.g., function words)
would be very frequent, thus being quite prominent
in the mean of the representations for that language
(but not for a different language), while the phe-
nomena that vary among sentences of the language
(and thus presumably carry most of the meaning)
would get averaged out in the centroid. We thus
hypothesize that by subtracting the centroid, we re-



1665

move the language-specific features (without much
loss of the meaning content), making the meaning-
bearing features more prominent.

We analyze the semantic properties of the origi-
nal and the centered representations on a range of
probing tasks. For all tasks, we test all layers of
the model. We test both the [cls] token vector
and mean-pooled states for tasks utilizing a single-
vector sentence representation.

4 Probing Tasks

We employ five probing tasks to evaluate the lan-
guage neutrality of the representations.

The first two tasks analyze the contextual em-
beddings. The other three tasks are cross-lingual
NLP problems, all of which can be treated as a
general task of a cross-lingual estimation of word
or sentence similarities. Supposing we have suffi-
ciently language-neutral representations, we can es-
timate these similarities using the cosine distance of
the representations; the performance in these tasks
can thus be viewed as a measure of the language-
neutrality of the representations.

Moreover, in addition to such an unsupervised
approach, we can also utilize actual training data
for the tasks to further improve the performance of
the probes; this does not tell us much more about
the representations themselves but leads to a nice
by-product of reaching state-of-the-art accuracies
for two of the tasks.

Language Identification. With a representation
that captures all phenomena in a language-neutral
way, it should be difficult to determine what lan-
guage the sentence is written in. Unlike our other
tasks, language ID requires fitting a classifier. We
train a linear classifier on top of a sentence repre-
sentation.

Language Similarity. Previous work (Pires
et al., 2019; Wang et al., 2019) shows that mod-
els can be transferred better between more similar
languages, suggesting that similar languages tend
to get similar representations. We quantify this
observation by V-measure between language fam-
ilies and hierarchical clustering of the language
centroids (Rosenberg and Hirschberg, 2007). We
cluster the language centroids by their cosine dis-
tance using the Nearest Point Algorithm and stop
the clustering with a number of clusters equal to
the number of language families in the data.

Parallel Sentence Retrieval. For each sentence
in a multi-parallel corpus, we compute the cosine
distance of its representation with representations
of all sentences on the parallel side of the corpus
and select the sentence with the smallest distance.

Besides the plain and centered representations,
we evaluate explicit projection of the representa-
tions into the “English space.” We fit the projec-
tion by minimizing the element-wise mean squared
error between the representation of an English sen-
tence and a linear projection of the representation
of its translation.

Word Alignment. WA is the task of matching
words which are translations of each other in paral-
lel sentences. WA is a key component of statistical
machine translation systems (Koehn, 2009). While
sentence retrieval could be done with keyword spot-
ting, computing bilingual WA requires resolving
detailed correspondence on the word level. Un-
supervised statistical methods trained on parallel
corpora (Och and Ney, 2003; Dyer et al., 2013) still
pose a strong baseline for the task. In a work paral-
lel to ours, Sabet et al. (2020) present a more com-
plex alternative way of leveraging contextual repre-
sentations for word alignment that outperforms the
statistical methods.

For a pair of parallel sentences, we find the WA
as a minimum weighted edge cover of a bipartite
graph. We create an edge for each potential align-
ment link, weight it by the cosine distance of the
token representations, and find the WA as a mini-
mum weighted edge cover of the resulting bipartite
graph. Unlike statistical methods, this does not
require parallel data for training.

To make the algorithm prefer monotonic align-
ment, we add a distortion penalty of 1/d to each
edge where d is the difference in the absolute po-
sitions of the respective tokens in the sentence.
We add the penalty with a weight that is a hyper-
parameter of the method estimated on a develop-
ment set.

We keep the tokenization as provided in the word
alignment dataset. In the matching phase, we repre-
sent the tokens that get split into multiple subwords
as the average of the embeddings of the subwords.

Note that this algorithm is invariant to repre-
sentation centering. Centering the representation
would shift all vectors by a constant. Therefore,
all weights would change by the same offset, not
influencing the edge cover. We evaluate WA using
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F1 over sure and possible alignments in manually
aligned data.

MT Quality Estimation. MT QE assesses the
quality of an MT system output without having ac-
cess to a reference translation. Semantic adequacy
that we can estimate by comparing representations
of the source sentence and translation hypothesis
can be a strong indicator of the MT quality. The
standard evaluation metric is the Pearson correla-
tion with the Translation Error Rate (TER)—the
number of edit operations a human translator would
need to do to correct the system output. QE is a
more challenging task than the previous ones be-
cause it requires capturing more subtle differences
in meaning.

We evaluate how cosine distance of the repre-
sentation of the source sentence and of the MT
output reflects the translation quality. In addition
to plain and centered representations, we also test
trained bilingual projection and a fully supervised
regression trained on the shared task training data.

We use the same bilingual projection into En-
glish space fitted by linear regression on the small
parallel data used for sentence retrieval.

For the supervised regression, we use a multi-
layer perceptron directly predicting the value of the
translation error rate provided in the training data.

Note that this task differs from reference-free
MT evaluation Fonseca et al. (2019, Task 3), which
is evaluated by computing the correlation of the
estimated value with human assessment of transla-
tion quality based on reference sentences (available
only to the annotators and not to the evaluation met-
ric). This task was also recently used for assessing
the quality of multilingual contextual representa-
tions (Zhao et al., 2020b,a).

5 Probed Models

Aligned static word embeddings. As a baseline
in all our experiments, we use aligned static word
embeddings (Joulin et al., 2018). Unlike hidden
states of pre-trained Transformers, they do not cap-
ture sentence context. However, they were explic-
itly trained to be language-neutral with respect to
lexical semantics. We represent sentences as an
average of the embeddings of the words.

Multilingual BERT (Devlin et al., 2019) is a deep
Transformer (Vaswani et al., 2017) encoder that is
trained in a multi-task learning setup, first, to be
able to guess what words were masked-out in the

input and, second, to decide whether two sentences
follow each other in a coherent text.

We use a pre-trained mBERT model that was
made public with the BERT release.1 The model
dimension is 768, the hidden layer dimension 3072,
self-attention uses 12 heads, the model has 12 lay-
ers. It uses a vocabulary of 120k wordpieces shared
for all languages.

It is trained using a combination of a masked
language model (MLM) objective and sentence-
adjacency objective. For the MLM objective,
15% of input subwords are masked out, and the
model predicts the masked subwords. For the
sentence-adjacency objective, a special [cls] to-
ken is prepended to the input. The embedding
corresponding to this token is used as an input to
a classifier predicting if the input sentences are
adjacent.

Therefore, for models based on mBERT, we ex-
periment both with [cls] vector and the mean-
pooled vector, i.e., average embeddings for the rest
of the tokens.

UDify. The UDify model (Kondratyuk and
Straka, 2019a) uses mBERT to train a single model
for dependency parsing and morphological analy-
sis of 75 languages. During training, mBERT is
finetuned, which improves accuracy. Results on
zero-shot parsing suggest that the finetuning leads
to better language neutrality with respect to mor-
phology and syntax.

lng-free. In this experiment, we try to make the
representations more language-neutral by remov-
ing the language identity from the model using
an adversarial approach. We continue training
mBERT in a multi-task learning setup with the
MLM objective (Devlin et al., 2019) without the
sentence adjacency objective, i.e., the same way as
XLM-R. It is trained jointly with adversarial lan-
guage ID classifiers (Elazar and Goldberg, 2018)
using the same dataset as for the language ID tasks.
The classifier is separated from the rest of the
model by a gradient-reversal layer (Ganin and Lem-
pitsky, 2015), which negates the gradients flow-
ing from the classifier into the model. Intuitively,
we can say that the rest of the model is trying to
fool the classifier, whereas the classifier tries to
improve.

DistillmBERT. This model was inferred from
mBERT by knowledge distillation (Sanh et al.,

1https://github.com/google-research/bert
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mBERT UDify lng-free Distil XLM-R

[cls] .935 .938 .796 .953 —
[cls], cent. .867 .851 .337 .826 N/A

mean-pool .960 .959 .951 .953 .950
mean-pool, cent. .853 .854 .855 .826 .846

Table 1: Accuracy of language identification, values from the best-scoring layers.
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Figure 1: Language ID accuracy for different layers of mBERT.

2019). The model only has 6 layers instead of 12.
The rest of the hyperparameters remain the same. It
was initialized with a subset of the original mBERT
parameters and trained on similar training data and
optimized towards cross-entropy of its output dis-
tribution with respect to the output of the teacher
mBERT model while keeping the MLM objective
in the multi-task learning setup. As the model is
forced to use smaller space to obtain the represen-
tation, it might leverage the similarities between
languages and reach better language neutrality.

XLM-RoBERTa. Conneau et al. (2019) claim
that the original mBERT is under-trained and train
a similar model on a larger dataset that consists
of two terabytes of plain text extracted from Com-
monCrawl (Wenzek et al., 2019). Unlike mBERT,
XLM-R uses a SentencePiece-based vocabulary
(Kudo and Richardson, 2018) of 250k tokens. The
rest of the architecture remains the same as in the
case of mBERT. We train the model using the
MLM objective only, without the sentence adja-
cency prediction.

6 Experimental Setup

To train the language ID classifier, for each of 73
languages covered both by mBERT and XLM-R,
we randomly select 110k sentences of at least 20
characters from Wikipedia and keep 5k for vali-
dation and 5k for testing for each language. We
also use the training data to estimate the language

centroids and training the lng-free version of the
model.

For parallel sentence retrieval, we use a multi-
parallel corpus of test data from the WMT14 evalu-
ation campaign (Bojar et al., 2014) with 3,000 sen-
tences in Czech, English, French, German, Hindi,
and Russian. To compute the linear projection (for
the special linear projection experimental condi-
tion), we used the WMT14 development data (500–
3000 sentences per language pair).

We use manually annotated WA datasets to eval-
uate word alignment between English on one side
and Czech (2.5k sent.; Mareček, 2016)2, Swedish
(192 sent.; Holmqvist and Ahrenberg, 2011)3, Ger-
man (508 sent.)4, French (447 sent.; Och and Ney,
2000)5 and Romanian (248 sent.; Mihalcea and
Pedersen, 2003)6 on the other side. We compare
the results with FastAlign (Dyer et al., 2013) and
Efmaral (Östling and Tiedemann, 2016) models,
which were provided with 1M additional parallel
sentences from ParaCrawl (Esplà et al., 2019)7.

For MT QE, we use English-German training
and test data provided for the WMT19 QE Shared
Task (Fonseca et al., 2019, Task 1), consisting of

2http://hdl.handle.net/11234/1-1804
3http://hdl.handle.net/11372/LRT-1517
4https://www-i6.informatik.rwth-aachen.de/

goldAlignment
5http://web.eecs.umich.edu/∼mihalcea/wpt/data/

English-French.test.tar.gz
6http://web.eecs.umich.edu/∼mihalcea/wpt/data/

Romanian-English.test.tar.gz
7https://paracrawl.eu, Release 5

http://hdl.handle.net/11234/1-1804
http://hdl.handle.net/11372/LRT-1517
https://www-i6.informatik.rwth-aachen.de/goldAlignment
https://www-i6.informatik.rwth-aachen.de/goldAlignment
http://web.eecs.umich.edu/~mihalcea/wpt/data/English-French.test.tar.gz
http://web.eecs.umich.edu/~mihalcea/wpt/data/English-French.test.tar.gz
http://web.eecs.umich.edu/~mihalcea/wpt/data/Romanian-English.test.tar.gz
http://web.eecs.umich.edu/~mihalcea/wpt/data/Romanian-English.test.tar.gz
https://paracrawl.eu
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Figure 2: Language centroids of the mean-pooled representations from the 8th
layer of cased mBERT on a tSNE plot with highlighted language families.

H C V

mBERT 82.0 82.9 82.4
UDify 80.5 79.7 80.0
lng-free 77.1 80.4 80.6
XLM-R 69.7 69.1 69.3
Distil 81.6 81.1 81.3
random 60.2 64.3 62.1

Table 2: Clustering of language
centroids, evaluated with ho-
mogenity, completened and
V-Measure against genealogi-
cal language families with at
least three mBERT languages.
Averaged across layers.

source sentences, automatic translations, and manu-
ally corrected reference translations. For the super-
vised estimation, we use a multilayer perceptron
with a hidden layer of size 256, trained to estimate
the HTER value using the mean-squared-error loss.

We use pre-trained tables provided by Joulin
et al. (2018)8 for the static word embeddings. The
embeddings were trained on Wikipedia and aligned
with a projection trained on small bilingual dictio-
naries. The number of word types captured in the
embedding tables spans from 350k for Romanian
to 2.5M for English.

The experiments with contextualized embed-
dings are implemented using the Transformers
package (Wolf et al., 2019), which we also use
for obtaining the pre-trained models, except for
UDify, which was obtained from (Kondratyuk and
Straka, 2019b).9 The lng-free mBERT version was
finetuned using the same data that was used for
language identification.

Our source code is available at https://github.
com/jlibovicky/assess-multilingual-bert.

7 Results

Language Identification. Table 1 and Figure 1
shows that for mBERT, centering the sentence rep-
resentations decreases the accuracy of language ID
considerably, especially in the case of mean-pooled
embeddings. This result indicates that the centering
procedure indeed removes the language-specific in-
formation to a great extent.

8https://fasttext.cc/docs/en/aligned-vectors.html
9http://hdl.handle.net/11234/1-3042

For comparison, the state-of-the-art language
ID model from FastText (Grave et al., 2018)
reaches 91.4% accuracy with a pre-trained model,
and 91.8% when retrained on our training data,
i.e., slightly worse than our best model based
on mBERT. Langid.py (Lui and Baldwin, 2012)
reaches 90.1% when trained on the same dataset.

Adversarial finetuning prevented the language
identification only from the [cls] vector and only
marginally for mean-pooling. This supports the
hypothesis that language identity is derived from
the presence of function words and structures and
representation centering suppresses these frequent
phenomena.

Centering the representations within languages
requires knowing the language in advance. It is
therefore an oracle experiment. In a sense, center-
ing adds language-specific information to the repre-
sentation which the classifier might take advantage
of. However, because the centering decreases the
accuracy, we can interpret this as removing infor-
mation about the language identity.

For further comparison, we conduct the same
experiment with aligned word embeddings for 44
languages (Joulin et al., 2018). The language ID
accuracy is 99.5% but drops to 2.3% after centering
(the same as assigning language by chance), which
supports our intuition about centering functioning
as removal of frequent patterns. Note, however,
that even the experiment without centering is an or-
acle experiment cannot be considered as language
identification because we need to know the lan-
guage identity in advance to use the matching em-
beddings table, so the accuracy is not comparable
with other experiments.

https://github.com/jlibovicky/assess-multilingual-bert
https://github.com/jlibovicky/assess-multilingual-bert
https://fasttext.cc/docs/en/aligned-vectors.html
http://hdl.handle.net/11234/1-3042
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SWE mBERT UDify lng-free Distil XLM-R

[cls] — .639 .462 .549 .420 —
[cls], cent. — .684 .660 .686 .505 —
[cls], proj. — .915 .933 .697 .830 —

mean-pool .113 .776 .314 .755 .600 .883
mean-pool, cent. .496 .838 .564 .828 .770 .923
mean-pool, proj. .650 .983 .906 .983 .980 .996

Table 3: Average accuracy for sentence retrieval over all 30 language pairs compared to static bilingual word
embeddings (SWE).
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Figure 3: Accuracy of sentence retrieval for mean-pooled contextual embeddings from BERT layers.

Language Similarity. Figure 2 is a tSNE plot
(Maaten and Hinton, 2008) of the language cen-
troids, showing that the centroids’ similarity tends
to correspond to the similarity of the languages.
Table 2 confirms that the hierarchical clustering of
the language centroids mostly corresponds to the
language families.

XLM-R not only preforms slightly worse in lan-
guage ID, it also has worse performance in captur-
ing language similarity. We hypothesize that this is
because of the different approaches used in training
the models. In particular, the next-sentence predic-
tion used to train mBERT may lead to stronger
language-specific information because this sort of
information helps determine if two sentences are
adjacent.

Parallel Sentence Retrieval. Results for mean-
pooled representations in Table 3 reveal that the
representation centering improves the retrieval ac-
curacy dramatically, showing that it makes the rep-
resentations more language-neutral. An additional
50% error reduction is achievable via learning a
projection on relatively small parallel data, leading
to close-to-perfect accuracy.

Similar trends hold for all models. XLM-R
significantly outperforms all models. The UDify
model that was finetuned for syntax seems to lose
semantic abilities significantly. Adversarial finetun-
ing did not improve the performance. The accuracy

is usually higher for mean-pooled states than for the
[cls] embedding and varies among the languages
too (see Table 4).

The accuracy also varies according to the layer of
mBERT used (see Figure 3). The best-performing
is the 8th layer, both for mBERT and XLM-R.
These results are consistent both among models
and among tasks.

Word Alignment. Table 5 shows that WA based
on mBERT and XLM-R representations match the
state-of-the-art aligners trained on a large paral-
lel corpus. WA techniques based on multilingual
contextual representations can thus be used as a
replacement of state-of-the-art statistical methods
without the use of parallel data.

The results show that the contextual embeddings
well capture word-level semantics. Furthermore,
the distortion penalty does not seem to influence
the alignment quality when using the contextual
embeddings, whereas for the static word embed-
dings, it can make a difference of 3–6 F1 points.
This result shows that the contextual embeddings
encode information about the relative word posi-
tion in the sentence across languages. However,
their main advantage is still the context-awareness,
which allows accurate alignment of function words.

Similarly to sentence retrieval, we experimented
with explicit projection trained on parallel data.
We used an expectation-maximization approach
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cs de en es fr ru

cs — .812 .803 .821 .795 .836
de .806 — .845 .833 .818 .816
en .783 .834 — .863 .860 .809
es .805 .824 .863 — .869 .822
fr .784 .822 .861 .859 — .811
ru .828 .820 .810 .826 .817 —

cs de en es fr ru

en — .917 .935 .941 .926 .919
cs .925 — .907 .913 .896 .923
de .938 .913 — .921 .904 .912
es .936 .907 .916 — .934 .908
fr .928 .903 .917 .935 — .905
ru .920 .910 .918 .910 .903 —

Table 4: Sentence retrieval scores for the 8th layer of mBERT and XLM-R models.

en- FastAlign Efmaral SWE mBERT UDify lng-free Distil XLM-R

cs .692 .729 .501 – .540 .738 .708 .744 .660 .731
sv .438 .501 .272 – .331 .478 .459 .468 .454 .461
de .741 .759 .473 – .515 .767 .731 .768 .723 .762
fr .583 .589 .371 – .435 .612 .581 .607 .582 .591
ro .690 .742 .448 – .470 .703 .696 .704 .669 .732

Table 5: Maximum F1 score (usually the 8th layer) for WA across layers, including comparison to FastAlign and
Efmaral aligners. For static word embeddings (SWE), we report the difference from distortion penalty introduction.

that alternately aligned the words and learned a
linear projection between the representations. This
algorithm only brings a negligible improvement of
.005 F1 points.

MT Quality Estimation. Table 6 reveals that
measuring the distance of non-centered sentence
vectors does not correlate with MT quality at all;
centering or explicit projection only leads to a mild
correlation. Unlike sentence retrieval, QE is more
sensitive to subtle differences between sentences,
while the projection only seems to capture rough
semantic correspondence. Note also that the Pear-
son correlation used as an evaluation metric for
QE might not favor the cosine distance because
semantic similarity might not linearly correspond
to HTER.

However, supervised regression using either only
the source or only MT output shows a respectable
correlation. The source sentence embedding alone
can be used for a reasonable QE. This means that
the source sentence complexity is already a strong
indicator of the translation quality. Using the tar-
get sentence embedding alone leads to almost as
good results as using both the source and the hy-
pothesis, which suggests that the structure of the
translation hypothesis is what plays the important
role and lexical-semantic aspects captured by the
embeddings are not sufficient for the QE.

The experiments with QE show that all tested
contextual sentence representations carry informa-

tion about sentence difficulty for MT and structural
plausibility. However, unlike lexical-semantic fea-
tures, this information is not well accessible via
simple embedding comparison.

A parallel research Zhao et al. (2020b,a) presents
a relative success in using multilingual contextual
representations for reference-free MT evaluation.
A comparison with their results suggests that QE
is a more difficult task than the reference-free MT
evaluation.

8 Conclusions

Using a set of semantically oriented tasks, we
showed that unsupervised BERT-based multilin-
gual contextual embeddings capture similar seman-
tic phenomena quite similarly across different lan-
guages. Surprisingly, in cross-lingual semantic sim-
ilarity tasks, employing cosine similarity of the
contextual embeddings without any tuning or adap-
tation clearly and consistently outperforms cosine
similarity of static multilingually aligned word em-
beddings, even though these were explicitly trained
to be language-neutral using bilingual dictionaries.

Nevertheless, we found that vanilla contextual
embeddings contain a strong language identity sig-
nal, as demonstrated by their state-of-the-art per-
formance for the language identification task. We
hypothesize this is due to the sentence-adjacency
objective used during training because language
identity is a strong feature for adjacency.
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SWE mBERT UDify lng-free Distil XLM-R

centered .020 .005 .039 .026 .001 .001
projection .038 .163 .167 .136 .241 .190

regression: SRC only .349 .362 .368 .349 .342 .388
regression: TGT only .339 .352 .375 .343 .344 .408
regression full .332 .419 .413 .411 .389 .431

Table 6: Pearson correlation of estimated MT quality with HTER for WMT19 English-to-German translation.

We explored three ways of removing the lan-
guage ID from the representations in an attempt to
make them even more cross-lingual. While adver-
sarial finetuning of mBERT did not help, a simpler
unsupervised approach of language-specific cen-
tering of the representations managed to reach the
goal to some extent, leading to higher performance
of the centered representations in the probing tasks.
The adequacy of the approach is also confirmed
by a strong performance of the computed language
centroids in estimating language similarity. Still, an
even stronger language-neutrality of the representa-
tions can be achieved by fitting a supervised linear
projection on a small set of parallel sentences.

Although representation centering leads to satis-
factory language neutrality, it still requires know-
ing in advance what the language is. The future
work thus should focus on representations that are
more language-neutral by default, not requiring
subsequent language-dependent modifications. We
hope that this work helps to establish how future
language-neutral representation should be evalu-
ated.
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Miquel Esplà, Mikel Forcada, Gema Ramı́rez-Sánchez,
and Hieu Hoang. 2019. ParaCrawl: Web-scale paral-
lel corpora for the languages of the EU. In Proceed-
ings of Machine Translation Summit XVII Volume 2:
Translator, Project and User Tracks, pages 118–119,
Dublin, Ireland. European Association for Machine
Translation.

Erick Fonseca, Lisa Yankovskaya, André F. T. Martins,
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A Notes on Reproducibility
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1080 Ti with 11GB memory. The other experiments
were conducted CPUs with Intel Xeon CPU E5–
2630 v4 (2.20GHz). All experiments fitted into 32
GB RAM.

Models for language identification and adver-
sarial language ID removal are implemented in
PyTorch. The linear classifier for language ID has
56k parameters. For adversarial language ID re-
moval, it means there are two classifiers per layer,
i.e., in total 1.3M parameters. Each experiment
from Table 1 that includes 5 runs with different
random seeds took on average 1.38h. Results on
validation data are presented in Table 7.
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The linear projections for sentence retrieval were
estimated using Scikit Learn, which took on aver-
age 7 minutes for one model layer and one language
pair, including running the representation model in
PyTorch on CPU. The projection has 590k parame-
ters. One retrieval experiment took on average 25
minutes.

We implemented the minimum weighted edge
cover algorithm using the linear sum assignment
problem solver from SciPy. One experiment took
on average 10 minutes.

The MT QE experiments based on cosine sim-
ilarity took on average 2 minutes. The experi-
ments with supervised regression were trained us-
ing Scikit Learn. Each model has 197k parameters.
One experiment took on average 22 minutes.

mBERT UDify lng-free Distil XLM-R

[cls] .935 12 .936 8 .798 1 .952 6 —
[cls], cent. .908 10 .852 8 .341 5 .825 6 —

mean-pool .958 5 B .957 5 .956 3 .958 6 .949 1

mean-pool, cent. .851 1 .852 1 .853 1 .841 1 .849 8

Table 7: Validation accuracy of language identification
for the best and worse scoring.


