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Abstract

Incorporating commonsense knowledge can
alleviate the issue of generating generic re-
sponses in open-domain generative dialogue
systems. However, selecting knowledge facts
for the dialogue context is still a challenge.
The widely used approach Entity Name Match-
ing always retrieves irrelevant facts from the
view of local entity words. This paper pro-
poses a novel knowledge selection approach,
Prototype-KR, and a knowledge-aware gener-
ative model, Prototype-KRG. Given a query,
our approach first retrieves a set of prototype
dialogues that are relevant to the query. We
find knowledge facts used in prototype dia-
logues usually are highly relevant to the cur-
rent query; thus, Prototype-KR ranks such
knowledge facts based on the semantic similar-
ity and then selects the most appropriate facts.
Subsequently, Prototype-KRG can generate an
informative response using the selected knowl-
edge facts. Experiments demonstrate that
our approach has achieved notable improve-
ments on the most metrics, compared to gen-
erative baselines. Meanwhile, compared to
IR(Retrieval)-based baselines, responses gen-
erated by our approach are more relevant to the
context and have comparable informativeness.

1 Introduction

Unlike human beings, generative dialogue systems
tend to generate generic responses, such as ‘I don’t
know.’ (Li et al., 2016). One possible reason is
the gap in utilizing background knowledge. Hu-
man beings can naturally frame their dialogue un-
derstanding and responding with various learned
background knowledge during the conversation.
However, traditional dialogue systems can merely
access the surface knowledge in the given query
(Ghazvininejad et al., 2018). To tackle this is-
sue, a feasible scheme is incorporating external
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knowledge into the dialogue generation (Qin et al.,
2019; Wu et al., 2020b). This paper focuses on
introducing the structured open-domain common-
sense knowledge graph into the single-turn dia-
logue response generation. Commonsense knowl-
edge refers to the widely-used everyday knowledge,
for example, ‘lemon tastes sour’.

In general, a knowledge graph can be regarded
as a set of (ehead, r, etail) fact triplets. For the
knowledge-aware dialogue generation, the first step
is knowledge selection, aiming at selecting appro-
priate knowledge facts for the current dialogue
context. Traditional works (Zhou et al., 2018) al-
ways adopt the Entity Name Matching (ENM), i.e.,
knowledge facts are retrieved based on the entity
words that appear in the given query. For example,
the fact triplet (apple, IsATypeOf, fruit) can be se-
lected for the query ‘What’s your favourite fruit?’.
Although such a widely-used method works to
some extent, it has several flaws. First, only 1-
hop knowledge can be retrieved. Second, instead
of using the utterance-level (global) features, it uses
local words to retrieve; thus, irrelevant knowledge
facts may be selected. Third, vertex (entity) de-
grees in a graph are always unequal; hence, once
an entity in the query corresponds to a hot vertex,
the number of selected facts can be tremendous.
For the time efficiency, in the practical dialogue
generation, we always have an upper bound to re-
strict the number of involved facts. Consequently,
a fact may be randomly discarded, no matter it is
a highly relevant fact or an irrelevant fact; because
ENM can’t judge the relevance of a retrieved fact.

As shown in Table 1, to address such issues, this
paper proposes a novel knowledge selection ap-
proach, Prototype-KR, which retrieves high-quality
knowledge facts from prototype dialogues. Proto-
type dialogues are a set of diverse, informative, and
knowledgeable human-written dialogues, which
can be retrieved from a large-scale dialogue reposi-
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Query Oh, my phone is already broken.
Prototype’s

Query
Your old phone is broken?

Prototype’s
Response

Yes, so I bought a new iPhone.

Prototype’s
Knowledge

(Phone, related to, iPhone)

Generated
Response

It’s time to buy a new iPhone.

Table 1: An example of our approach. For a query,
Prototype-KR retrieves relevant prototype dialogues
from the repository using an IR system, then ranks and
selects the used knowledge facts from prototype dia-
logues. Subsequently, Prototype-KRG generates a new
response based on the selected knowledge facts.

tory. Previous studies (Wu et al., 2019; Cai et al.,
2019) have shown that prototype dialogues always
are highly relevant to the current dialogue context;
thus, Prototype-KR assumes knowledge facts that
are used in the prototype dialogues would be simi-
larly relevant to the current dialogue context. The
methodology can be summarized as 1) Prototype-
KR first retrieves prototype dialogues that are se-
mantically relevant to the given query using an IR
(Information Retrieval) system; 2) Prototype-KR
extracts all used facts from prototype dialogues; 3)
Prototype-KR selects the most appropriate knowl-
edge facts by ranking; 4) Finally, Prototype-KRG
generates a response using the knowledge facts re-
trieved from both the Entity Name Matching and
the Prototype-KR.

Our experiments are conducted on a large-scale
Chinese conversation dataset (Li and Yan, 2018)
and a widely used commonsense knowledge graph
ConceptNet. The experimental results demonstrate
our approach outperforms both generative base-
lines and IR-based baselines. We also conduct
a series of extensive experiments to analyze the
Prototype-KR. We find our Prototype-KR can re-
trieve higher-quality knowledge facts compared to
the traditional Entity Name Matching.

Our contributions can be summarized as 1)We
propose a new knowledge selection approach,
Prototype-KR, which uses prototype dialogues to
effectively alleviate the flaws of the traditional ap-
proach Entity Name Matching; 2)We propose a
knowledge-aware dialogue model, Prototype-KRG,
for improving the knowledge-aware dialogue gener-
ation; 3) Extensive experiments empirically verify
the effectiveness of our approaches.

2 Related Work

Dialogue Systems: Roughly, dialogue systems
can be classified as either retrieval-based systems
or generative systems (Chen et al., 2017). For gen-
erative systems, dialogue generation is always mod-
eled as a Seq2Seq problem (Sutskever et al., 2014;
Vinyals and Le, 2015). Generally, an Encoder sum-
marizes the given query into intermediate repre-
sentations, and a Decoder uses them to generate a
response. Traditional methods suffer from gener-
ating generic responses, decreasing the interest of
end-users. To make the dialogue more diverse and
informative, previous studies have tried a lot from
multiple aspects. For example, using new training
objective (Li et al., 2016), using latent variables
(Zhao et al., 2018; Gao et al., 2019), introducing
content words (Yao et al., 2017; Xu et al., 2019).

Knowledge-Aware Methods: One crucial factor
that causes generating boring responses is the in-
sufficiency of background knowledge. Traditional
models can merely access the surface knowledge
from the plain text of the query (Ghazvininejad
et al., 2018). Researchers have shown the gener-
ated dialogue responses can be more diverse and in-
formative, by introducing the external knowledge,
such as the unstructured background documents
(Meng et al., 2019), structured knowledge graphs
(Zhou et al., 2018; Wu et al., 2020a) and knowl-
edge tables (Qin et al., 2019), or the hybrid of them
(Liu et al., 2019).

Knowledge Selection: For the knowledge-aware
dialogue generation, selecting appropriate knowl-
edge facts from the knowledge graph for a specific
dialogue context is still a challenge. As mentioned,
the traditional Entity Name Matching has many
flaws, and thus many efforts have been devoted to
enhancing this knowledge selection process. (Liu
et al., 2019) adopts a neural knowledge reason-
ing network to select an appreciate fact. (Wang
et al., 2019) transfers question representation and
knowledge matching abilities from KBQA systems.
Although such works have achieved promising re-
sults, they always are not wise choices in the prac-
tical scenario. First, such approaches adopt compli-
cated external networks to select knowledge, which
would significantly increase parameters and make
the training/inference more time-consuming. Next,
the external networks require a large amount of
additional labeled data, which may not be an easy
thing in practice. Our work differs from them in
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that: 1) Our approach does not require any addi-
tional data. Prototype dialogues can be retrieved
from the training corpus. 2) Our IR-based knowl-
edge selection is fast and requires no pre-training.

Prototypes: Recently, the research of prototype
dialogues has received much attention in the con-
text of dialogue generation owing to its high-
quality. (Weston et al., 2018) encodes a retrieved
prototype dialogue into vectors, and then regards
them as additional features to help the dialogue
generation. (Wu et al., 2019) generates a response
by editing a prototype response. (Cai et al., 2019)
proposes a two-step skeleton-based dialogue gen-
eration. A notable shortage of such methods is
they often use only one prototype dialogue (Tian
et al., 2019); thus, if the given prototype dialogue
is irrelevant to the context, the generation qual-
ity will sharply decrease. Besides, such methods
sometimes may degenerate to directly copy the
prototype response, rather than selectively extract
useful information. In contrast to these works: 1)
Prototype-KR can utilize multiple prototypes at the
same time; 2) Prototype-KRG is a fully generative
approach, the dialogue generation process does not
rely on copying or editing prototype dialogues.

3 Approach

3.1 Problem Formulation and Overview

Let D = {(Xi, Yi)}|D| be a dialogue corpus,
K = {fj}|K| be a knowledge graph, where X is a
query, Y is a response, and f = (ehead, r, etail) is
a knowledge fact triplet. The prototype dialogue
repository D′ can be either the D or a new corpus.
Prototype-KR retrieves a set of prototype dialogues
S ′ = {(X ′i , Y

′
i )} from D′ , and extracts all used

facts from S ′ (denoted as F p
raw). Next, Prototype-

KR ranks facts ∈ F p
raw, and selects top-k facts

(denoted as F p). Meanwhile, Entity Name Match-
ing is also used to retrieve a set of facts (denoted as
Fn) . Finally, Prototype-KRG uses F p, Fn, and X
to generate the target response: p(Y |X,F p, Fn).

3.2 Prototype-KR

Prototype-KR is a 3-stage method to retrieve top-k
relevant knowledge facts from prototype dialogues.

Prototype Retrieval: Prototype dialogues S ′ are
firstly retrieved from the repository D′ . We adopt
Lucene1 to construct an index and use its built-in

1https://lucenenet.apache.org

engine to retrieve 5k prototype dialogues. Follow-
ing (Wu et al., 2019), we have different strategies
in the training and inference. In the training, we
retrieve prototype dialogues based on the response
similarity; in the test, we retrieve prototype dia-
logues based the query similarity. For each pro-
totype dialogue pair (X

′
i , Y

′
i) ∈ S

′
, i ∈ [1 : 5k],

we extract all its knowledge facts to the subset
F
′
i . Afterwards, all subsets are merged together:
F
′
ALL = F

′
1 ∪ · · · ∪ F

′
5k

Coarse-Grained Ranking: For each knowledge
fact fj ∈ F

′
ALL, the corresponding coarse-grained

ranking score scj is computed as:

scj =
∑

i=1:5k

Ii,j × J(PX/Y , PX
′
i/Y

′
i
)× IDF (fj)

(1)
where PX/Y /P

X
′
i/Y

′
i

refers to X/X
′
i in the test,

and refers to Y /Y
′
i in the training, the indicator

Ii,j is 1 if fj ∈ F
′
i else 0, J(A,B) = |A∩B|

|A∪B|
measures the Jaccard similarity between A and
B from a bag-of-word view, and the inverse doc-
ument frequency IDF (·) is used to penalize the
high-frequency generic knowledge facts. We keep
top-2k ranked knowledge facts (denoted as F

′
CGR).

It is worth noting that, for each unique target entity
etail, we only keep one fact with the highest score.

Fine-Grained Ranking: For each fj ∈ F
′
CGR,

we use embedding-based metric to measure the
semantic relevance to the current query/response
PX/Y (denoted as P in the below), and then we
remain top-k ranked facts (i.e., F p). The corre-
sponding fine-grained score sfj is computed as:

scj×θ(Ex(P ),Ew(ehead))×θ(Ex(P ),Ew(etail))
(2)

where θ is the cosine similarity, Ex is the sentence-
level extrema embedding. For each dimension of
the word embedding vectors, take the most extreme
value among all vectors in the sentence (Liu et al.,
2016). Ew(ehead/tail) is the pre-trained word em-
bedding of the head/tail tail entity of fj .

3.3 Prototype-KRG
3.3.1 Context Encoder
Context Encoder is a bi-directional GRU network
(Cho et al., 2014), aiming at encoding the query
X into intermediate representations. The forward
GRU reads X from the beginning to the end; the
backward GRU reads X from the end to the begin-
ning. At the time step t, two outputs are given by:
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Figure 1: The architecture of our approach. K denotes a knowledge graph, D′
is a dialogue repository used to

retrieve prototype dialogues, X is a query, and Y
′

is a generated response.

hf
t = GRU(Ev(xt),Ek(xt),h

f
t−1);

hb
t = GRU(Ev(xn−t+1),Ek(xn−t+1),h

b
t−1)

(3)
where Ev(x) is a learn-able word embedding of
x, and the corresponding fixed entity embedding
Ek(x) is employed to augment the semantic under-
standing if x is an entity word. The concatenation
ht = [hf

t;h
b
t ] is regarded as the output at the time

step t. Consequently, the encoded intermediate
representation of X is H = (h1,h2, ...,hn).

3.3.2 Knowledge Bridge Fusion
Context Encoder only summarizes the surface text
of X . For accessing the knowledge before the gen-
eration, we propose the Knowledge Bridge Fusion,
which uses both the intermediate representation H
and the knowledge facts to initialize the Decoder.
Given the last context state hn, We first obtain the
attention ap of Fp, and the attention an of Fn:

ap = KA(Fp,hn) an = KA(Fn,hn)

KA(F,hn) =
∑

i=1:|F | e
KA
i Wvfi

eKA
i =

exp(Wkfi·Wqhn)
exp(

∑
j=1:|F |Wkfj·Wqhn)

(4)

where Fp/n is the corresponding embedding of
F p/n, andKA is an Attention function. Learn-able
parameters Wk,Wq,Wo are not shared between
KA(Fp,hn) and KA(Fn,hn).

Subsequently, ap, an and hn are fused by a MLP,
and the result is regarded as the initial state of the
Decoder:

z0 = γchn + γpa
p + γna

n

γc,n,p = softmax(Wbridge[a
n;ap;hn; ita])

(5)

where [·; ·] is the concatenation operation; the vec-
tor ita is the concatenation of interactions between
the ap/n and hn , which includes hn+ap/n,hn−
ap/n, abs(hn − ap/n).

3.3.3 Response Generation
Decoder is another GRU network, at each decoding
time step t, the hidden state zt is updated as:

zt = GRU(zt−1, ct, c
p
t , c

n
t ,Ek(yt−1);Ev(yt−1))

(6)
where yt−1 is the last predicted token, ct is the
attention of H (see (Luong et al., 2015) for the de-
tail)), and c

p/n
t is the attention of Fp/n (see (Bah-

danau et al., 2014) for the detail).
The tokens to be generated can be one of the fol-

lowing four types: words from the fixed vocabulary
V , words copied from X , entity words from F p,
and entity words from Fn.

Vocabulary Words: The probability distribution
pv,t over the fixed vocabulary V is given by:

pv,t = softmax(Wvocab[zt;ut])

ut = [ct; c
n
t ; c

p
t ;Ev(yt−1);Ek(yt−1)]

(7)

Copied Words: Decoder can copy a word from
X , the corresponding probability distribution over
the query message X is given by:

pc,t = softmax(HWcpzt) (8)

Entity Words: Decoder can select the best-
matched knowledge fact from F p and Fn, and then
copy the corresponding entity word. For F p and
Fn, we apply the same method but with different
parameters to compute the probability distribution:

pp/n,t = softmax(S (Fp/n, zt))

S(fj=1:|F |, zt) = v>f tanh (Wezt +Uefj)

(9)
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Mode Fusion: Following (Wu et al., 2020a),
such four distributions are fused using multiple
mode gates:

pt = πv,tpv,t + πc,tpc,t + πp,tpp,t + πn,tpn,t

(πv,t, πc,t, πp,t, πn,t) = softmax(Wmode[zt;ut])
(10)

3.4 Training

Finally, the training objective is given by:

L = LGen + LBOW + LMode (11)

where LGen = −
∑

t log pt(yt|yt−1:1, X, F p, Fn)
is the negative log-likelihood. LBOW is the bag-of-
words loss to ensure the fluency (Zhao et al., 2017),
our BOW prediction takes z0 as the input. LMode

is the teach-force loss, i.e., the Cross-Entropy be-
tween the πv/c/p/n and the ground-truth 0-1 mode
indicator, to help Prototype-KRG more accurate
when selecting a target word from four types of
words (Zhou et al., 2018) .

4 Experiments

4.1 Settings

Dataset: We adopt a large-scale Chinese con-
versational dataset (Li and Yan, 2018), which
collected conversations from the largest Chinese
SNS (weibo.com). Commonsense knowledge fact
triples are collected from the ConceptNet (con-
ceptnet.io) (Speer et al., 2017), which includes
27K entities, 26 relations, and 661K triples. Utter-
ances that are too long (>30 words), too short (<4
words), or do not contain entity information are
discarded, the remaining dialogues are randomly
divided into three sets: training (847K), validation
(30K), and test (30K).

Models: We select generative baselines and IR-
based baselines. S2S: The RNN-based Seq2Seq
with Attention (Sutskever et al., 2014; Luong et al.,
2015); Copy: Copy mechanism additionally al-
lows Seq2Seq to copy a word from the query di-
rectly (See et al., 2017); Transformer : Rather
than RNNs, both the Encoder and the Decoder are
two 6-layer Transformers (Vaswani et al., 2017),
respectively; GenDS: A strong knowledge-aware
dialogue generation baseline (Zhu et al., 2017);
CCM: One SOTA commonsense knowledge-aware
dialogue generation model, which proposes a static
and a dynamic graph attention mechanism (Zhou

et al., 2018); ProtoEdit: One SOTA IR-augmented
dialogue generation model by editing the proto-
type response (Wu et al., 2019); IR: We use a pre-
defined index to retrieve a response from the dia-
logue repository; meanwhile, IR-Rerank further
adds a Jaccard-based rerank process. Especially,
our Prototype-KRG (denoted as Ours) and Pro-
toEdit have variants. As mentioned, in the training,
the original OursR and ProtoEditR retrieve pro-
totype dialogues based on the response similarity.
Differently, the variants OursQ and ProtoEditQ
retrieve prototype dialogues based on the query
similarity in the training.

Implementations: For S2S, Copy, Transformer,
and our approach, we implement them based on a
PyTorch Seq2Seq framework, OpenNMT (Klein
et al., 2017). For GenDS, we use a Tensorflow im-
plementation. For CCM and ProtoEdit, we use their
official codes. In experiments, the vocabulary is set
to 30,000, the word embedding dimension is 300,
the entity/relation embedding is initialized from
a 100-dimensional pre-trained embedding learned
by TransE (Bordes et al., 2013), RNNs are imple-
mented as 1024-dimensional GRUs, Adam is used
to optimizing the model with an initial learning
rate 0.0001 and the batch size 64; learning rate
will be halved if the perplexity on the validation
set starts to increase, the training will be stopped
if the perplexity on the validation set increases in
two successive epochs. In the inference, the beam
width is set to 10. For a fair comparison, such set-
tings are similarly applied to other implementations
as possible. Under such settings, our approach has
193M parameters (including embeddings), and the
training takes about 1.5 days on an Nvidia 2080Ti.

Metrics: We have multiple criteria. The first
metric EntN measures knowledge utilization, i.e.,
the number of generated knowledgeable entities
per generated response (Zhou et al., 2018). For
the relevance, we employ two embedding based
metrics, Embedding-Greedy (EmG), Embedding-
Extrema (EmX), and two word-overlap-based met-
rics, ROUGE, BLEU-4 (Liu et al., 2016). Next,
we measure the diversity by reporting the ratio of
distinct uni/bi-grams (DIST1/2) in all generated
words (Li et al., 2016). Lastly, Entropy is used
to measure the informativeness (Mou et al., 2016).
Meanwhile, to illustrate the overall performance,
we design two auxiliary metrics Overall+DI and
Overall. For a model, we take S2S as the stan-
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Type Method EntN EmG EmX ROUGE BLEU4 DIST1 DIST2 Entropy Overall+DI Overall
Gen S2S 0.92 0.590 0.633 9.16 0.36 0.90 4.29 7.47 1.00 1.00
Gen Copy 0.98 0.599 0.636 9.15 0.36 2.85 9.96 7.76 1.45 1.02
Gen Transformer 0.61 0.558 0.613 6.47 0.19 2.78 8.81 8.75 1.27 0.83
Gen GenDS 1.01 0.603 0.643 11.53 0.44 2.22 10.37 7.65 1.44 1.10
Gen CCM 1.13 0.612 0.644 12.67 0.78 1.11 5.33 6.60 1.27 1.28
Gen OursQ 1.20 0.629 0.655 12.96 0.90 2.67 13.56 8.05 1.81 1.39
Gen OursR 1.43 0.627 0.650 12.42 0.84 3.60 20.32 8.30 2.15 1.40
IR ProtoEditQ 0.64 0.612 0.638 9.98 0.54 0.44 2.77 7.12 0.93 1.04
IR ProtoEditR 0.68 0.587 0.623 7.42 0.27 2.00 23.52 8.17 1.63 0.89
IR IR 0.71 0.574 0.624 6.31 0.26 8.23 49.20 9.99 3.27 0.91
IR IR-Rerank 0.85 0.574 0.623 6.37 0.29 7.90 47.60 9.86 3.20 0.95

Table 2: Automatic evaluation results. Considering the difference between IR-based and generative systems, we
compare different types of the model separately: scores in bold stand for the leadership among generative models;
scores with an underline stand for the leadership among our models and IR-based models.

dard; then, we calculate out the relative scores to
the S2S metric by metric, and the averaged relative
score is Overall+DI . IR-based methods can ac-
cess human-written dialogues, which brings them
additional advantages in diversity and informative-
ness. It would be better to exclude such metrics
into the overall score when comparing across gen-
erative methods and IR-based methods. Hence, the
calculation of Overall excludes such metrics.

4.2 Experimental Results
Experimental results have been reported in Table 2.

vs. Generative Baselines: Prototype-KRG out-
performs generative baselines in terms of most met-
rics and the overall scores. Prototype-KRG only
slightly loses the leadership in terms of Entropy
compared to the Transformer. The advantages of
the previous SOTA CCM and our Prototype-KRG
show that knowledge can indeed help the dialogue
generation. Compared with two knowledge-aware
baselines, GenDS and GenDS, Prototype-KRG is
notably better in terms of the knowledge utiliza-
tion, diversity, and the informativeness. It can be
attributed to 1) Prototype-KR can select higher-
quality knowledge facts; 2) the effectiveness of
Prototype-KRG.

vs. IR-based Baselines: Generative approaches
are not directly compared with IR-based ap-
proaches, because of their different characteristics.
The later type naturally has higher diversity and
informativeness, for they can directly access the
human-written dialogues. Thus, IR and IR-Rerank
significantly outperform other models in terms of
the DIST-1/2 and the Entropy. However, every coin
has two sides; they suffer from low relevance; they
are notably beaten by generative approaches in the
relevance metrics. This is because they mechan-

ically return existing unmodified dialogues even
when the retrieved responses are irrelevant to the
query. ProtoEdit tries to address this flaw by editing
the retrieved dialogue. It can be seen that diversity
and informativeness have significantly decreased,
but the improvement of the relevance and the over-
all performance (see Overall) is still limited. Com-
pared to ProtoEdit, Prototype-KRG has comparable
performance in terms of diversity, and notably bet-
ter performance in the remaining aspects and the
overall performance.

How to Select Prototypes: As mentioned, there
are two strategies to retrieve prototype dialogues
in training. We have noticed that the authors of
ProtoEdit said that ProtoEditQ always generates
non-sense responses (Wu et al., 2019). As reported
in Table 2 and our manually reviewing, compared
to ProtoEditR, responses generated by ProtoEditQ
are indeed boring and non-sense, while more rel-
evant to the query. Unlike ProtoEdit, although
OursR similarly outperforms OursQ in terms of
DIST1/2 and Entropy, such two implementations
are comparable in the aspect of the relevance (see
Overall). It means our approach is much more
robust to different prototype dialogues.

Human Annotation: We employed three anno-
tators and sampled 200 queries from the test. Six
baselines (1200 pairs) are involved in our pair-
wise comparisons. There are two criteria: (1) Ap-
propriateness (i.e., fluency and relevance); (2) In-
formativeness (how much relevant knowledge is
provided). The agreement among annotators are:
for the appropriateness, 2/3 agreement is 97.3%,
3/3 agreement is 54.7%; for the informativeness,
2/3 agreement is 97.6%, 3/3 agreement is 55.0%.
As shown in Table 3, our approach outperforms
all baselines, indicating the advantage of our ap-
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proaches. In terms of appropriateness, S2S and
Copy are the two best baselines because they al-
ways generate generic responses, which are fluent
and sometimes are easy to be accepted by humans.
CCM performs poorly because it sometimes gener-
ates long but not fluent responses. Two IR-based
methods are unsatisfactory. Responses given by
ProtoEdit and IR-Rank are fluent, but sometimes
irrelevant to the query. Moving to the informative-
ness, CCM is the best generative baseline, which
indicates the importance of using knowledge. Ben-
efit from accessing the human-written dialogues,
IR-based ProtoEdit and IR-Rank outperform gen-
erative baselines. If we ignore the dialogue context
and only check the informativeness of responses,
IR-Rerank can outperform ProtoEdit and ProtoEdit
has comparable performance with our approach.
However, the context should be considered, and
thus we penalized the irrelevant information; as
a result, ProtoEdit is comparable with IR-Rerank,
and our approach is better than ProtoEdit.

vs. A+ A0 A− I+ I0 I−
S2S .515 .178 .307 .630 .140 .230
Copy .527 .155 .318 .650 .112 .238
GenDS .580 .152 .268 .645 .117 .238
CCM .667 .088 .245 .580 .072 .348
ProtoEditR .595 .098 .307 .512 .080 .408
IR-Rerank .622 .167 .211 .500 .142 .358

Table 3: Human annotation results. A/I is Appro-
priateness/Informativeness. +/0/− means OursR
wins/ties/loses the comparison. Our approach is better
than baselines (sign test, p-value < 0.005).

4.3 Analysis of Prototype-KR

Ablation Study: Following (Zhou et al., 2018;
Wang et al., 2019) and many other works, in the
above experiments, at least one golden fact used
by the reference response2 is given in the test set.
To clearly illustrate the difference among variants,
we construct a new test set in line with the prac-
tice. Instead of manually assuring such a golden
knowledge fact is existing, we do not add any addi-
tional fact. As shown in Table 4, compared to the
‘Full’, although the variant ‘-Dual’ similarly uses
the knowledge facts retrieved by PKR and ENM,
and it has similar performance in the aspect of the
relevance, we find the metric EntN and DIST2 have
significantly decreased, indicating the necessity to
distinguish them in a model. Next, we turn to com-

2Reference responses are used to evaluate generated re-
sponses.

Config EntN EmG BLEU4 DIST2 Overall
Full 1.42 0.62 0.72 20.35 1.31
-Dual 1.30 0.62 0.74 14.64 1.29
-PKR 1.00 0.61 0.74 15.34 1.23
-ENM 1.49 0.61 0.65 21.63 1.28
-PKR-ENM 0.98 0.60 0.36 9.96 1.02

Table 4: Ablation tests. ‘Full’ is OursR, ‘-PKR/-
ENM’ excludes knowledge retrieved by the Prototype-
KR/Entity Name Matching, ‘-Dual’ does not distin-
guish facts from PKR/NEM, facts are mixed together.

Figure 2: For the top-k retrieved knowledge facts, we
calculate the recall |EY ∩EF |

|EY | and precision |EY ∩EF |
|EF | ,

where EY are entities that are used in the reference
response, and EF are entities in the retrieved facts;
kavg = 19.5/48.2 masks the average length of EF .

pare PKR and ENM; we find ‘-PKR’ impacts the
performance more than ‘-ENM’, which illustrates
the knowledge quality of PKR is better than ENM’s.
‘-PKR-ENM’ removes the use of knowledge, and
then, most metrics drop dramatically, which indi-
cates the importance of introducing knowledge. In
summary 1) Knowledge is indispensable in the dia-
logue generation; 2) Our Prototype-KR can select
more appropriate knowledge facts than the tradi-
tional Entity Name Matching.

Knowledge Selection: Figure 2 reports the sta-
tistical evaluations for the knowledge facts re-
trieved by PKR and NEM. We have several ob-
servations: 1) Both two metrics indicate that PKR
notably outperforms NEM in knowledge selection;
2) PKR has more notably advantages when k is
small, which means the ranking of PKR is accurate,
highly relevant facts always have prior ranks.

Case Study: Table 5 reports three examples. In
the first example, although all approaches have
generated fluent responses, they are different in
both appropriateness and informativeness. S2S
and Copy generated generic responses. For the
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#1 Query: 哦哦，自恋无罪，世界很美。
Oh, narcissism is innocent, the world is beautiful.

S2S:我也喜欢。 I love it,too.
Copy: 我喜欢。 I love it.

GenDS:不不不,你是自信。No, no, no, you’re confident.
CCM:我是自信。 I am confident.

ProtoEdit: 喜欢就好。 I’m glad you love it.
IR:莉莉喜欢就好。 I’m glad Lily loves it.

Ours: 生命在于自信。 Life is about confidence.
#2 Query: 蓝色那个什么花?

What is that blue flower?
S2S:蓝色。 Blue.

Copy: 蓝色的。 Blue flowers.
GenDS:叶子。Leaves.

CCM: UNK的叶子。 The leaves of UNK.
ProtoEdit: 我是最喜欢的花。 I’m my favorite flower.

IR:哼那个蓝丑丑是我最喜欢的。
Hum, that blue clown is my favorite.

Ours: 路边的野花。Wild flowers on the road.
#3 Query: 好漂亮，这些都是什么品种的花？
How beautiful, what kind of flowers are these?

rank-1: (漂亮 Beautiful, Synonym,好看 Good-Looking)
rank-2: (郁金香 Tulip, IsA,花 Flower)

rank-3: (花 Flower, SymbolOf,漂亮 Beautiful)
Ours: 都是郁金香。There are tulips

Table 5: Case study.

knowledge-aware GenDS and CCM, they detected
a specific topic (self-confidence), but the gener-
ated responses are a little irrelevant to the query.
Similarly, ProtoEdit and IR answered two generic
responses. In the second example, S2S and Copy
repeated the words, GenDS and CCM used a wrong
knowledge (‘flower’ is not ‘leaf’). ProtoEdit and IR
gave two weird responses. The last example first
shows top-3 knowledge facts that were retrieved
and ranked by our Prototype-KR, and then shows
the response generated by Prototype-KRG. It can
be seen that such three facts are highly relevant
to the query, and the generated response uses the
second fact. In short, compared to the generative
approaches, our approach can generate more in-
formative and relevant responses; compared to the
IR-based approaches, our approach can generate
more relevant responses.

Error Analysis: We have further labeled the er-
ror type for 200 responses sampled in the above hu-
man annotation. For a response, it can be labeled as
a perfect (beyond the expectation), a good (accept-
able), or a bad response. For a bad case, we give
it one or more fine-grained error types. There are
five error types: being irrelevant to the dialogue
context, including illusory errors or grammar er-
rors, generating some repeated words, and non-
sense. About 64.5% generated responses are la-

Figure 3: The statistics of error type. Red bars are ex-
clusive labels; each response can only be labeled as one
type. Blue bars are fine-grained error type labels; each
bad case is given at least one label.

beled as perfect or good; the remaining 35.5% more
or less have some mistakes. The most notable er-
ror type is ‘non-sense’, which means the generated
response is meaningless while it is always fluent
and relevant to the context; for example, wrongly
rephrases the query. Responding with an irrele-
vant topic, making grammar errors, and repeating
words are three common error types among gener-
ative models, but their error rates in our approach
are well-controlled. Knowledge-aware models are
more potential to generate ‘illusory’ responses that
violate the commonsense knowledge, for example,
‘What disease do you drink?’. We are glad to find
this rarely happens in our approach.

5 Conclusion and Future Work

We propose a novel knowledge selection method,
Prototype-KR, and a knowledge-aware model,
Prototype-KRG, for the open-domain knowledge-
aware dialogue generation. Prototype-KR retrieves
knowledge facts from the human-written prototype
dialogues, which is fast, accurate and requires no
additional labeled data. Extensive experiments on a
large-scale Chinese dataset show that our approach
outperforms generative baselines on most metrics.
Compared to IR-based approaches, our approach
can generate responses with higher relevance and
comparable informativeness.

In the future, we will continue to strengthen the
use of prototype dialogues without making the dia-
logue generation process complicated. Meanwhile,
we are going to research the possibility to use dif-
ferent knowledge in a dialogue system.
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