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Abstract

Verb prediction is important for understand-
ing human processing of verb-final languages,
with practical applications to real-time simul-
taneous interpretation from verb-final to verb-
medial languages. While previous approaches
use classical statistical models, we introduce
an attention-based neural model to incremen-
tally predict final verbs on incomplete sen-
tences in Japanese and German SOV sentences.
To offer flexibility to the model, we further in-
corporate synonym awareness. Our approach
both better predicts the final verbs in Japanese
and German and provides more interpretable
explanations of why those verbs are selected.

1 Introduction

Final verb prediction is fundamental to human
language processing in languages with subject-
object-verb (SOV) word order, such as German1

and Japanese, (Kamide et al., 2003; Momma et al.,
2014; Chow et al., 2018) particularly for simultane-
ous interpretation, where an interpreter generates
a translation in real time. Instead of waiting until
the entire sentence is completed, simultaneous in-
terpretation requires translation of the source text
units while the interlocutor is speaking.

When human simultaneous interpreters trans-
late from an SOV language to an SVO one
incrementally—without waiting for the final verb
at the end of a sentence—they must use strategies
to reduce the lag, or delay, between the time they
hear the source words and the time they translate
them (Wilss, 1978; He et al., 2016). One strategy
is final verb prediction: since the verb comes late
in the source sentence but early in the target trans-
lation, if the verb is predicted in advance, it can be
translated before it is heard, allowing for a more

1German is rich in both SOV and SVO sentences. It has
been argued that its underlying structure is SOV (Bach, 1962;
Koster, 1975), but this is not immediately relevant to our task.

German Cazeneuve dankte dort den Män-
nern und sagte, ohne deren kühlen Kopf hätte es
vielleicht ein “furchtbares Drama” gegeben.
English Cazeneuve thanked the men there
and said that without their cool heads there
might have been a “terrible drama”.
Japanese また大和国奈良県の葛城山に
篭り密教の宿曜秘法を習得したとも言言言わわわ.
English It also said that he was acquainted
with a secret lodging accommodation in Kat-
suragiyama in Nara Prefecture of Yamato.

Figure 1: An example of the verb position difference
between SOV and SVO languages, where the final verb
in German and Japanese is expected much earlier in
their English translation.

“simultaneous” (or monotonic) translation (Jörg,
1997; Bevilacqua, 2009; He et al., 2015). Further-
more, Chernov et al. (2004) argue that simultane-
ous interpreters’ probabilty estimates and predic-
tions of the verbal and semantic structure of pre-
ceeding messages facilitates simultaneity in human
simultaneous interpretation.

Like for human translation, simultaneous ma-
chine translation (SMT), becomes more monotonic
for SOV–SVO with better verb prediction (Grissom
II et al., 2014; Gu et al., 2017; Alinejad et al., 2018).
Earlier work used pattern-matching rules (Matsub-
ara et al., 2000), n-gram language models (Gris-
som II et al., 2014), or a logistic regression with
linguistic features (Grissom II et al., 2016). Recent
neural simultaneous translation systems have inte-
grated prediction into the encoder-decoder model
or argued that these predictions, including verb pre-
dictions, are made implicitly by such models (Gu
et al., 2017; Alinejad et al., 2018), but they have
not systmatically studied the late-occurring verb
predictions themselves.
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German Auch die deutschen Skispringer
können sich Hoffnungen auf ihre erste Medaille
bei den Winterspielen in Vancouver [machen,
schaffen, tun].
English The German ski jumpers can also
hope for their first medal at the Winter Games
in Vancouver.

Figure 2: An example of alternatives of final verbs
(“machen”, “schaffen”, “tun”) that preserve same gen-
eral meaning in German and do not influence its trans-
lation in English.

While neural models can identify complex pat-
terns from feature-rich datasets (Goldberg, 2017),
less research has gone into problem of long-
distance prediction, particularly for sentence-final
verbs, where predictions must be made with incom-
plete information. We introduce a neural model,
Attentive Neural Verb Inference for Incremental
Language (ANVIIL) for verb prediction, which pre-
dicts verbs earlier and with higher accuracy. More-
over, we make ANVIIL’s predictions more flexible
by introducing synonym awareness. Self-attention
also allows visualizes why a certain verb is selected
and how it relates to specific tokens in the observed
subsentence.

2 The Problem of Verb Prediction

Given an SOV sentence, we want to predict the final
verb as soon as possible in an incremental setting.
For example, in Figure 1, the final verb, “gegeben”,
in German is expected to be translated together
with “hätte es” as “there would have been” in the
middle of the English translation.

Human interpreters will often predict a related
verb rather than the exact verb in a reference trans-
lation, while preserving the same general meaning,
since predicting the exact verb in a reference trans-
lation is difficult (Jörg, 1997). For instance, in
Figure 2, besides “machen”, verbs such as “schaf-
fen” and “tun” also offen pair with “Hoffnungen”
to express “hope for” in English. We therefore in-
clude two verb prediction tasks: first, we learn to
predict the exact verb; second, we learn to predict
verbs semantically similar to the exact reference
verb. We describe these two tasks below.

2.1 Exact Prediction

We follow Grissom II et al. (2016), who formulate
final verb prediction as sequential classification: a

sentence is revealed to the classifier incrementally,
and the classifier predicts the exact verb at each
time step. While Grissom II et al. (2016) use logis-
tic regression with engineered linguistic features,
we use a recurrent neural model with self-attention,
which learns embeddings2 and a context represen-
tation that captures relations between tokens, re-
gardless of the distance. Verbs are predicted by
classifying on the learned representation of incom-
plete sentences.

2.2 Synonym-aware Prediction

We also extend the idea in Section 2.1 to allow for
synonym-aware predictions: for example, the verb
synonym “give”, used in place of “provide”, pre-
serves the intended meaning in most circumstances
and can be considered a successful prediction. In-
stead of training the model to focus on one fixed
verb for each input, we encourage the model to be
confident about a set of verb candidates which are
generally correct in the context.

3 A Neural Model for Verb Prediction

This section describes ANVIIL’s structure. Gated
recurrent neural networks (RNNs), such as
LSTMs (Hochreiter and Schmidhuber, 1997) and
gated recurrent units (Cho et al., 2014, GRUs), can
capture long-range dependencies in text, which we
need for effective verb prediction.

We construct an RNN-based classifier with self-
attention (Lin et al., 2017) for predicting sentence-
final verbs (Figure 3). This is a natural encoding
of the problem, as it explicitly models how inter-
preters might receive information and update their
verb predictions. The hidden states of the sequence
model can be either at the word or character level.

3.1 BiGRU Sequence Encoder

Following Yang et al. (2016), we encode input se-
quences using the bidirectional GRU (BiGRU).3

Given an incomplete sentence prefix x =
(x1, x2, · · · , xl) of length l, BiGRU takes as input
the embeddings (w1,w2, · · · ,wl), where wi is
the d-dimensional embedding vector of xi. At time

2Character and word embeddings are learned from scratch,
as pretrained embeddings (Bojanowski et al., 2017) did not
improve prediction.

3While it may be initially counterintuitive to use a
BiGRU for an incremental task, since we make predictions
at each time step independently—i.e., without consulting prior
predictions—there is no need to restrict ourselves to a unidi-
rectional model.
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Figure 3: ANVIIL. Token sequences at the input layer
are mapped to embeddings, which go to the GRU. The
dot product of attention weights and hidden states pass
through a dense layer to predict the verb.

step t, the forward and backward hidden states are:

−→
ht =

−−→
GRU(wt,

−−→
ht−1)

←−
ht =

←−−
GRU(wt,

←−−
ht+1).

(1)

These are concatenated as ht = [
−→
ht;
←−
ht] and we

represent the input sequence as

H = (h1,h2, · · · ,hl). (2)

As we only use a prefix of the sentence as input
for prediction, we won’t be able to see backward
messages from unrevealed. However, once we see
those words, later words in the prefix do change
the internal representation of earlier words in H ,
creating a more powerful overall representation that
uses more of the available context.

Embedding vectors for the input can be word
embeddings or character embeddings, yielding a
word-based or a character-based model; we try both
in Section 4.

3.2 Structured Self-attention
Following Lin et al. (2017), we apply self-attention
with multiple views of the input sequence to ob-
tain a weighted context vector v. By viewing the
sequence multiple times, it allows different atten-
tions to be assigned at each time. Using a two
layer multilayer perceptron (MLP) without bias and
a softmax function over the sequence length, we
have an r-by-l attention matrix A, which includes
r attention vectors extracted from r views of x:

A = softmax(Ws2 tanh(Ws1H
T )) (3)

We sum over all r attention vectors and normalize,
yielding a single attention vector a with normalized

weights (Figure 3). By assigning each hidden state
its attention at, we acquire an overall representation
of the sequence:

v =

l∑
t=1

atht. (4)

3.3 Verb Predictor

For an incomplete input prefix x, the target verb is
y ∈ Y = {1, 2, . . . ,K}. Based on the high-level
representation v of the input sequence, we compute
the probability of each verb k and select the one
with the highest probability as the predicted verb:

p(y |v) = efy(v)∑K
k=1 e

fk(v)
(5)

where fk(v) is the logit from the dense layer.

3.3.1 Exact Verb Prediction
As there is only one ground-truth verb y for the in-
put, we maximize the log-likelihood of the correct
verb with cross-entropy loss:

L = −
K∑
k=1

q(k |v) log p(k |v) (6)

where q(k |v) is the ground-truth distribution over
the verbs, which equals 1 if k = y, or 0 otherwise.

3.3.2 Synonym-aware Verb Prediction
In addition to the exact verb y, we add verbs
that are of similar meaning to y in to a synonym
set Y ′ ⊂ Y , creating a verb candidate pool for
each input sample. Instead of maximizing the log-
likelihood of the fixed verb y, we maximize the
log-likelihood of the most probable verb candidate
y′ ∈ Y ′ dynamically through training:

L = −
K∑
k=1

q′(k |v) log p(k |v) (7)

where

q′(k |v) =

⎧⎨⎩1, if k = argmax
k∈Y ′

p(k |v)

0, otherwise.
(8)

As the candidate can be different in each step,
overall the likelihood of any verb candidate in the
synonym set is maximized in the training process.
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Most Frequent
Verbs

Thousand
of Verbs

Coverage
(%)

DE
(Inflected)

100 1286.7 16.0
200 2243.7 28.0
300 2577.3 32.2

JA
(Normalized)

100 70.2 56.8
200 85.2 68.9
300 93.2 75.4

Table 1: Dataset for final-verb prediction. We extract
sentences with the most frequent 100–300 verbs in Ger-
man and Japanese verb final sentences. Using normal-
ized Japanese verbs reduces the sparsity of the verbs
and improves coverage of sentences.

4 Exact Prediction Experiments

We first test exact prediction on both Japanese and
German verb-final sentences with both word-based
and character-based models.

4.1 Datasets

We use German and Japanese verb-final sentences
between ten and fifty tokens (Table 1) that end in
the 100 to 300 most common verbs (Wolfel et al.,
2008). For each sentence, the extracted final verb
becomes the label; the token sequence preceding it
(the preverb) is the input. We split sentences into
train (64%), evaluation (16%) and test (20%) sets.

For Japanese, we use the Kyoto Free Transla-
tion Task (KFT) corpus of Wikipedia articles. Since
Japanese is unsegmented, we use the morpholog-
ical analyzer MeCab (Kudo, 2005) for tokeniza-
tion. Like Grissom II et al. (2016), we strip out
post-verbal copulas and normalize verb forms to
the dictionary ru (non-past tense) form. We also
consider suru light verb constructions a single unit.

For German, we use the Wortschatz Leipzig
news corpus from 1995 to 2015 (Goldhahn et al.,
2012). German sentences ending with a verb (we
throw out verb medial sentences) are tokenized
and POS-tagged with TreeTagger (Schmid, 1995).
Since German sentences may end with two verbs—
for example, a verb followed by ist, we only predict
the content verb, i.e., the first verb in the two-verb
sequence. Unlike Japanese, we leave German verbs
inflected, as there is less variation (usually past par-
ticiple or infinitive form).

4.2 Training Data Representation

Because we predict from partial input, we train on
incrementally longer preverb subsequences. Each

subsequence is an independent input sample during
training, and each preverb is truncated into five pro-
gressively longer subsentences: 30%, 50%, 70%,
90%, and 100%.4

4.3 Training Details

We train both word- and character-based models
for German and Japanese verb prediction. We use
the dev sets to manually tune hyperparameters for
accuracy—word embedding size, hidden layer size,
dropout rates and learning rate.

Character-based Model For input character se-
quences, we learn 64-dimensional embeddings and
encode them with a two-layer BiGRU of 256 hid-
den units. The embeddings are randomly initialized
with PyTorch defaults and updated during training
jointly with other parameters. Mini-batch sizes are
256 for German but 128 for Japanese’s smaller cor-
pus. We use the evaluation set for tuning and set the
embedding dropout rate as 0.6 and the RNN dropout
rate as 0.2 while averaging from five views for at-
tention vectors. We optimize with Adam (Kingma
and Ba, 2015) with an initial learning rate of 10−4,
decaying by 0.1 when loss increases. Training
takes approximately two (Japanese) and four (Ger-
man) hours on one 6GB GTX1060 GPU.

Word-based Model We use a vocabulary of
50,000 for German and Japanese; we use the
<UNK> token for out-of-vocabulary tokens. The
embedding size is 300. We encode the input em-
beddings with a two-layer BiGRU with 512 hidden
units. Other hyperparameters are unchanged from
the character-based model.

4.4 Results

We compare ANVIIL to the logistic regression
model5 in Grissom II et al. (2016) on the 100
most frequent verbs in the corpus (Figure 4). For
both languages, ANVIIL has higher accuracy than
previous work (Figure 5), especially early in the
sentence. While word-based models work best
for German, character-based models work best for
Japanese, perhaps because it is agglutinative.

Figure 6 compares other encodings of preverbs
(at a character level) in Japanese. In general, AN-
VIIL has higher accuracy on verb prediction tasks.

4As input sequence lengths vary, we pad input samples
with zeros and train in minibatches a la neural MT (Doetsch
et al., 2017; Morishita et al., 2017).

5This model uses token unigrams and bigrams, case marker
bigrams, and the last observed case marker as features.
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Figure 4: Comparing word and character representations for German (inflected) and Japanese (normalized) verb
prediction. ANVIIL consistently has higher accuracy than LogReg from Grissom II et al. (2016), and word-based
prediction is slightly better for German but worse for Japanese.
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Figure 5: Accuracy when classifying among the most common 100, 200, and 300 verbs. ANVIIL consistently
outperforms the best-performing model described in Grissom II et al. (2016), especially early in the sentences.

5 Synonym-aware Prediction

We now describe synonym-aware verb prediction
(Section 4). We use 2,214,523 German sentences
ending with 100 most frequent lemmatized verbs.
For each sentence, we extract the preverb as in
Section 4.1, but in this case, the target is not just a

single verb. For each lemmatized verb, we extract
its synonyms among the 100 verbs using Germanet
synsets (Hamp and Feldweg, 1997; Henrich and
Hinrichs, 2010). If synonyms exist, we include
them all in a list as candidate target verbs for the
input as in Figure 2. Synonyms exist for 40.79%
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Figure 6: ANVIIL’s BiGRU with self-attention outper-
forms other most settings on predicting the 100 most
common verbs in Japanese.

of the sentences in the dataset.
Similarly, we train incrementally on subse-

quences of the preverb as in Section 4.3. We
learn high-level representations of the preverb us-
ing word-level embeddings and use the same train-
ing parameters as in Section 4.3

During training, instead of maximizing the ex-
act verb’s log-likelihood, we maximize the log-
likelihood of any verb in the synonym-set, encour-
aging the model to be confident about any verb that
fits in the context.

5.1 Verb Prediction Results

We compare accuracy for predicting exact and
synonym-aware verbs with different objects in
training. In synonym-aware prediction, we con-
sider the prediction successful if it is one of the
candidate verbs. Compared to predicting the exact
verb, while being less focused on the fixed verb,
synonym-aware prediction further improves the
predication accuracy (Figure 7), but only slightly.
ANVIIL clearly outperforms the feature engineer-
ing linear models on Japanese across the entire
sentence, even when the number of verbs to choose
from is larger; and on German, ANVIIL outper-
forms previous models when the number of verbs
to choose from is the same (Figure 4). This is may
be due to the long-range dependencies which are
not captured in the logistic regression model.

0.2

0.4

0.6

Ac
cu

ra
cy

German

Exact Eval Training
exact
syn

40 60 80 100
Sentence Revealed (%)

0.2

0.4

0.6

Syn Eval

Figure 7: Accuracy across time on exact/synonym-
aware match with exact/synonym-aware training. Ac-
curacy increases slightly with the addition of the
synonym-aware matching.

6 Visualization and Analysis

We now analyze our model’s predictions. While
previous work (Grissom II et al., 2016) examines
the contribution of features by examining the model
itself, our approach does not rely on feature engi-
neering. To examine our model, we instead use
a heatmap to visualize the time course attention
values in sentences, allowing us to see on what the
model focuses when predicting.

6.1 Visualization of the Prediction Process
We visualize how our model makes its predictions
in Figure 8 and Figure 9. In both languages, the
model not only focuses on the most recent revealed
word, but also focuses attention to relevant long-
distance dependencies.

Predictions are, as expected, also more confident
and accurate when approaching the end of the pre-
verb. This is consistent with the verb prediction
process for human interpreters (Wilss, 1978) and
with previous work (Grissom II et al., 2016). With
increasing information, the number of possible al-
ternatives gradually declines. Figure 10 visualizes
how the model makes synonym-aware predictions.

6.2 Character-based versus Word-based
As described in Section 4.3, we implement both
character-based and word-based models for verb
prediction. For Japanese final-verb prediction, the
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1         2        3         4        5         6        7         8        9        10      11       12      13       14      15       16      17       18       

Figure 8: Attention during German verb prediction. The model usually attends to the most recent word, but
focuses on “es”, which can be used as the subject of an existential phrase (Joseph, 2000) in combination with the
verb “geben”. Thus, it focuses on an interpretation of “es” as the subject, consistently attends to “es” throughout
the sentence, and correctly predicts “geben” (for consistency with the Japanese examples, we show the model that
predicts the normalized—infinitive—form of the verb).

 1      2     3      4     5      6     7      8     9     10   11    12   13    14   15    16    17   18   19    20    21    22   23   24    25   26    27   28    29    30   

Figure 9: Attention during Japanese verb prediction. Attention and prediction transition through time on a Japanese
sentence. The genitive case marker no, in bright yellow, has a high attention weight, as do the characters making
in the noun before it. Case marker-adjacent nouns, including before the genitive no (twice) and the accusative wo
have slightly less. Toward the end of the sentence, attention shifts to the quotative particle to, which significantly
limits possible completions.

character-based model has higher prediction accu-
racy. Unlike the word-based model, it does not
require use of a morphological analyzer and has a
smaller vocabulary size. The word-based model,
however, works better for German verb prediction
and word-based heatmaps are more interpretable
than character-based ones for German. We show
word-based heatmaps for exact prediction in Fig-
ure 8 and Figure 11.

6.3 Synonym-aware versus Exact Prediction

We show an example of how synonym-aware pre-
diction can make the task easier in Figure 12. By
providing synonyms during training, the model
makes an alternative prediction “zeigen” (present,
show) for the original verb “einsetzen” (use).

6.4 Case Markers

Previous work suggests that case markers play a
key role in both human and machine verb predic-
tion for Japanese (Grissom II et al., 2016). Japanese

has explicit postposition case markers which mark
the roles of the words in a sentence. By examining
the accuracy of predictions when the most recent
token is a case marker, we can gain insight into
their contributions to the predictions.

Figure 13 considers the instances where the most
recent token observed is the given case marker; in
these situations, the accuracy of predicting one of
the 100 most frequent verbs is much higher than
in general. It is unsurprising that the quotative
particles have higher accuracy at the end of the
sentence, since the set of verbs that follow them is
highly constrained—e.g., say, think, announce, etc.
Quotative particles for the entire sentence occur
immediately before to final verb. More general
particles, such as ga (NOM) and wo (ACC) show a
smaller increase in accuracy.

7 Related Work

This section examines previous work on predic-
tion in humans, simultaneous interpretation, and
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Figure 10: Attention during German synonym-aware verb prediction. The model constantly focuses on
“skispringer” (ski jumpers), which is the subject of the verb and predicts “machen” and “schaffen” from three
of the verb candidates.

Figure 11: Progression of attention weights of a word-based model on a German sentence. The model successfully
captures the passive voice in the sentence where “wird erwartet” is often translated together as “is expected”. Full
translation of the example is: Chancellor Merkel is expected to speak in London next week.

simultaneous machine translation.

Psycholinguistics has examined argument struc-
ture using verb-final bǎ-construction sentences in
Chinese (Chow et al., 2015, 2018). Kamide et al.
(2003) find that case markers facilitate verb predic-
tions for humans, likely because they provide clues
about the semantic roles of the marked words in
sentences. In sentence production, Momma et al.
(2015) suggest that humans plan verbs after select-
ing a subject but before objects.

Empirical work on German verb prediction first
investigated German–English simultaneous inter-
preters in Jörg (1997): professional interpreters of-
ten predict verbs. Matsubara et al. (2000) introduce
early verb prediction into Japanese–English SMT

by predicting verbs in the target language. Grissom
II et al. (2014) and Gu et al. (2017) use verb predic-
tion in the source language and learn when to trust
the predictions with reinforcement learning, while
Oda et al. (2015) predict syntactic constituents and
do the same. Grissom II et al. (2016) predict verbs
with linear classifiers and compare the predictions
to human performance. We extend that approach
with a modern model that explains which cues the
model uses to predict verbs.

In interactive translation (Peris et al., 2017) and
simultaneous translation (Alinejad et al., 2018; Ma
et al., 2019) systems, neural methods for next word
prediction improve translation. BERT (Devlin et al.,
2019) uses masked deep bidirectional language
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Figure 12: Imperfect synonym-aware prediction process on a German sentence. The predicted synonym “zeigen”
(show/appear) in context is not a perfect replacement for the correct verb “einsetzen” (put in place), but it better
preserves the general meaning of the sentence: “This money had been made available to the country for the process
of EU membership and should now appear for refugee assistance.”
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 de (INS)
 ga (NOM)
 ni (DAT)
 to (QUOT)
 to shite (ESS)
 wo (ACC)

Figure 13: Case markers correlate with improved verb
prediction compared to overall verb prediction (Fig-
ure 4). Some case markers, such as to, have large
jumps in accuracy toward the end, while others, such
as wo do not. We examine nominative (NOM), instruc-
tive (INS), accusative (ACC), dative (DAT), quotative
(QUOT), and essive (ESS) markers.

models and contextualized representations (Peters
et al., 2018) for pretraining and gain improvements
in word prediction and classification. We incorpo-
rate bidirectional encoding to verb prediction.

Existing neural attention models for sequential
classification are commonly trained on complete
input (Yang et al., 2016; Shen and Lee, 2016; Bah-
danau et al., 2014). Classification on incomplete
sequences and long-distance sentence-final verb
prediction remains difficult and under-explored.

8 Conclusion

We present a synonym-aware neural model for in-
cremental verb prediction using BiGRU with self-
attention. It outperforms existing models in predict-
ing the most frequent sentence-final verbs in both
Japanese and German. As we predict the verbs
incrementally, our method can be directly applied
to solve real-time sequential classification or pre-
diction problems. SMT systems for SOV to SVO

simultaneous MT can also benefit from our work
to reduce translation latency. We show that larger
datasets always help with predicting the sentence-
final verbs, suggesting that larger corpora will fur-
ther improve results.
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