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Abstract

Biomedical event extraction is critical in
understanding biomolecular interactions de-
scribed in scientific corpus. One of the
main challenges is to identify nested structured
events that are associated with non-indicative
trigger words. We propose to incorporate do-
main knowledge from Unified Medical Lan-
guage System (UMLS) to a pre-trained lan-
guage model via a hierarchical graph repre-
sentation encoded by a proposed Graph Edge-
conditioned Attention Networks (GEANet).
To better recognize the trigger words, each
sentence is first grounded to a sentence graph
based on a jointly modeled hierarchical knowl-
edge graph from UMLS. The grounded graphs
are then propagated by GEANet, a novel graph
neural networks for enhanced capabilities in
inferring complex events. On BioNLP 2011
GENIA Event Extraction task, our approach
achieved 1.41% F1 and 3.19% F1 improve-
ments on all events and complex events, re-
spectively. Ablation studies confirm the impor-
tance of GEANet and hierarchical KG.

1 Introduction

Biomedical event extraction is a task that identifies
a set of actions among proteins or genes that are as-
sociated with biological processes from natural lan-
guage texts (Kim et al., 2009, 2011). Development
of biomedical event extraction tools enables many
downstream applications, such as domain-specific
text mining (Ananiadou et al., 2015; Spangher
et al., 2020), semantic search engines (Miyao et al.,
2006) and automatic population and enrichment of
database (Hirschman et al., 2012).

A typical event extraction system 1) finds trig-
gers that most clearly demonstrate the presence of
events, 2) recognizes the protein participants (ar-
guments), and 3) associates the arguments with
the corresponding event triggers. For instance, the
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Figure 1: An example of a UMLS-based hierarchi-
cal KG assisting event extraction. Circles represent
concept nodes and triangles represent semantic nodes.
Nodes associated with the tokens in the example sen-
tence are boldfaced. Bidirectional edges imply hier-
archical relation between concept and semantic nodes.
The word “induces” is a trigger of a Positive regulation
event, whose trigger role and corresponding argument
role cannot be easily determined with only textual in-
put. The KG provides clues for identifying this trigger
and its corresponding arguments given the red and blue
double line reasoning paths connecting nodes BMP-6,
Induce, Phosphorylation, and Positive regulation of
biological process. We can infer that: 1) “induces” is
an action of biological function, 2) a biological func-
tion can be quantified by positive regulation, and 3)
positive regulation can result in phosphorylation.

sentence “Protein A inhibits the expression of Pro-
tein B” will be annotated with two nested events:
Gene expression(Trigger: expression, Arg-Theme:
Protein B) and Negative Regulation(Trigger: in-
hibits, Arg-Theme: Gene expression(Protein B),
Arg-Cause: Protein A).

Early attempts on biomedical event extraction
adopted hand-crafted features (Björne et al., 2009;
Björne and Salakoski, 2011; Riedel and McCallum,
2011; Venugopal et al., 2014a). Recent advances
have shown improvements using deep neural net-
works via distributional word representations in the
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biomedical domain (Moen and Ananiadou, 2013;
Rao et al., 2017a; Björne and Salakoski, 2018;
ShafieiBavani et al., 2019). Li et al. (2019) fur-
ther extends the word representations with embed-
dings of descriptive annotations from a knowledge
base and demonstrates the importance of domain
knowledge in biomedical event extraction.

However, encoding knowledge with distribu-
tional embeddings does not provide adequate
clues for identifying challenging events with non-
indicative trigger words and nested structures.
These embeddings do not contain structural or re-
lational information about the biomedical entities.
To overcome this challenge, we present a frame-
work that incorporates knowledge from hierarchi-
cal knowledge graphs with graph neural networks
(GNN) on top of a pre-trained language model.

Our first contribution is a novel representation
of knowledge as hierarchical knowledge graphs
containing both conceptual and semantic reasoning
paths that enable better trigger and word identifi-
cation based on Unified Medical Language Sys-
tem (UMLS), a biomedical knowledge base. Fig.
1 shows an example where the Positive Regula-
tion event can be better identified with knowledge
graphs and factual relational reasoning. Our sec-
ond contribution is a new GNN, Graph Edge-
conditioned Attention Networks (GEANet), that
encodes complex domain knowledge. By integrat-
ing edge information into the attention mechanism,
GEANet has greater capabilities in reasoning the
plausibility of different event structure through fac-
tual relational paths in knowledge graphs (KGs).

Experiments show that our proposed method
achieved state-of-the-art results on the BioNLP
2011 event extraction task (Kim et al., 2011).1

2 Background

UMLS Knowledge Base. Unified Medical Lan-
guage System (UMLS) is a knowledge base for
biomedical terminology and standards, which in-
cludes three knowledge sources: Metathesaurus,
Semantic Network, and Specialist Lexicon and Lex-
ical Tools (Bodenreider, 2004). We use the former
two sources to build hierarchical KGs. The concept
network from Metathesaurus contains the relation-
ship between each biomedical concept pairs, while
each concept contains one or more semantic types

1Our code for pre-proecessing, modeling, and evaluation
is available at https://github.com/PlusLabNLP/
GEANet-BioMed-Event-Extraction.
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Figure 2: Overview of knowledge incorporation. Con-
textualized embeddings for each token are generated
by SciBERT. GEANet updates node embeddings for
v1, v2, and v3 via corresponding sentence graph.

that can be found in the semantic network. The con-
cept network provides direct definition lookup of
the recognized biomedical terms, while the seman-
tic network supports with additional knowledge in
the semantic aspect. Example tuples can be found
in Figure 1.2 There are 3.35M concepts, 10 con-
cept relations, 182 semantic types, and 49 semantic
relations in total.

3 Proposed Approach

Our event extraction framework builds upon the
pre-trained language model, SciBERT (Beltagy
et al., 2019), and supplement it with a novel graph
neural network model, GEANet, that encodes do-
main knowledge from hierarchical KGs. We will
first illustrate each component and discuss how
training and inference are done.

3.1 Hierarchical Knowledge Graph Modeling
The two knowledge sources discussed in Section
2 are jointly modeled as a hierarchical graph for
each sentence, which we refer to as a sentence
graph. Each sentence graph construction consists
of three steps: concept mapping, concept network
construction, and semantic type augmentation.

The first step is to map each sentence in the cor-
pus to UMLS biomedical concepts with MetaMap,
an entity mapping tool for UMLS concepts (Aron-
son, 2001). There are 7903 concepts (entities) be-
ing mapped from the corpus, denoted as K. The
next step is concept network construction, where
a minimum spanning tree (MST) that connects

2There are several bi-directional relations between some
concepts. We only show one direction for simplicity.

https://github.com/PlusLabNLP/GEANet-BioMed-Event-Extraction
https://github.com/PlusLabNLP/GEANet-BioMed-Event-Extraction
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mapped concepts in the previous step is identified,
forming concept reasoning paths. This step is NP-
complete.3 We adopt a 2-approximate solution that
constructs a global MST for the corpora GE’11 by
running breadth-first search, assuming all edges are
of unit distance. To prune out less relevant nodes
and to improve computation efficiency, concept
nodes that are not in K with less than T neighbors
in K are removed.4 The spanning tree for each sen-
tence is then obtained by depth-first search on the
global MST. Each matched token in the corpus is
also included as a token node in the sentence graph,
connecting with corresponding concept node. Fi-
nally, the semantic types for each concept node are
modeled as nodes that are linked with associated
concept nodes in the sentence graph. Two semantic
type nodes will also be linked if they have known
relationships in the semantic network.

3.2 GEANet
The majority of existing graph neural networks
(GNN) consider only hidden states of nodes and
adjacency matrix without modeling edge informa-
tion. To properly model the hierarchy of the graph,
it is essential for the message passing function of a
GNN to consider edge features. We propose Graph
Edge Conditioned Attention Networks (GEANet)
to integrate edge features into the attention mech-
anism for message propagation. The node embed-
dings update of GEANet at the l-th layer can be
expressed as follows:

x
(l)
i = MLPθx

(l−1)
i +

∑
j∈N (i)

ai,j · x(l−1)
j (1)

ai,j =
exp (MLPψ(ei,j))∑

k∈N (i) exp (MLPψ(ei,k))
(2)

where x(l)
i denotes the node embeddings at layer

l, ei,j denotes the embedding for edge (i, j), and
MLPψ and MLPθ are two multi-layer perceptrons.

GEANet is inspired by Edge Conditioned Convo-
lution (ECC), where convolution operation depends
on edge type (Simonovsky and Komodakis, 2017),

x
(l)
i = MLPθx

(l−1)
i +

∑
j∈N (i)

x
(l−1)
j ·MLPψ(ei,j) (3)

Compared to ECC, GEANet is able to determine
the relative importance of neighboring nodes with
attention mechanism.

3Finding a MST on a subset of nodes (K) is known as a
Steiner tree problem.

4T is empirically set to be 35.

Knowledge Incorporation. We build GEANet
on top of SciBERT (Peters et al., 2019) to incor-
porate domain knowledge into rich contextualized
representations. Specifically, we take the contex-
tual embeddings {h1, ...,hn} produced by SciB-
ERT as inputs and produces knowledge-aware em-
beddings {ĥ1, ..., ĥn} as outputs. To initialize the
embeddings for a sentence graph, for a mapped
token, we project its SciBERT contextual embed-
ding to initialize its corresponding node embedding
hi,KG = hiWKG + bKG. Other nodes and edges
are initialized by pretrained KG embeddings (de-
tails in Section 4.1). To accommodate multiple
relations between two entities in UMLS, edge em-
beddings ei,j are initialized by summing the em-
beddings of each relation between the nodes i and
j. Then we apply layers of GEANet to encode the
graph hli,KG = GEANet(hi,KG). The knowledge-
aware representation is obtained by aggregating
SciBERT representations and KG representations,
ĥi = hli,KGWLM + bLM + hi.5 The process is il-
lustrated in Figure 2 GEANet layer.

3.3 Event Extraction

The entire framework is trained with a multitask
learning pipeline consisting of trigger classifica-
tion and argument classification, following (Han
et al., 2019a,b). Trigger classification predicts the
trigger type for each token. The predicted score
of each token is computed as ŷtrii = MLPtri(ĥi).
In the argument classification stage, each possible
pair of gold trigger and gold entity is gathered and
labeled with corresponding argument role.6 The
argument scores between the i-th token and j-th
token are computed as ŷargi,j = MLParg(ĥi; ĥj),
where (; ) denotes concatenation. Cross Entropy
loss Lt = − 1

Nt

∑Nt

i=1 y
t
i · log ŷti , is used for both

tasks, where t denotes task, N t denotes the num-
ber of training instances of task t, yti denotes the
ground truth label, and ŷti denotes the predicted
label. The multitask learning minimizes the sum
of the two losses L = Ltri + Larg in the training
stage. During inference, unmerging is conducted
to combine identified triggers and arguments for
multiple arguments events (Björne and Salakoski,
2011). We adopted similar unmerging heuristics.
For Regulation events, we use the same heuristics
as Björne et al. (2009). For Binding events, we sub-
sume all Theme arguments associated with a trigger

5ĥi = hi for each token i without mapped concept.
6During inference, predicted triggers are used instead.
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Model Recall Prec. F1

Prior

TEES 49.56 57.65 53.30
Stacked Gen. 48.96 66.46 56.38
TEES CNN 49.94 69.45 58.10
KB-driven T-LSTM 52.14 67.01 58.65

Ours SciBERT-FT 53.89 63.97 58.50
GEANet-SciBERT 56.11 64.61 60.06

Table 1: Model comparison on GE’11 test set.

Model Recall Prec. F1
KB-driven T-LSTM 41.73 55.73 47.72
SciBERT-FT 45.39 54.48 49.52
GEANet- SciBERT 47.23 55.21 50.91

Table 2: Performance comparison on the Regulation
events of the test set (including Regulation, Positive
Regulation, and Negative Regulation sub-events).

into one event such that every trigger corresponds
to only one single Binding event.

4 Experiments

4.1 Experimental Setup
Our models are evaluated on BioNLP 11 GENIA
event extraction task (GE’11 ). All models were
trained on the training set, validated on the dev set,
and tested on the test set. A separate evaluation
on Regulation events is conducted to validate the
effectiveness of our framework on nested events
with non-indicative trigger word. Reported results
are obtained from the official evaluator under ap-
proximate span and recursive criteria.

In the preprocessing step, the GE’11 corpora
were parsed with TEES preprocessing pipeline
(Björne and Salakoski, 2018). Tokenization is done
by the SciBERT tokenizer. Biomedical concepts in
each sentence are then recognized with MetaMap
and aligned with their corresponding tokens. The
best performing model was found by grid search
conducted on the dev set. The edge and node rep-
resentation in KGs were intialized with 300 dimen-
sional pre-trained embeddings using TransE (Wang
et al., 2014). The entire framework is optimized
with BERTAdam optimizer for a maximum of 100
epochs with batch size of 4. Training is stopped if
the dev set F1 does not improve for 5 consecutive
epochs (more details see Appendix).

4.2 Results and Analysis
Comparison with existing methods We com-
pare our method with the following prior works:
TEES and Stacked Gen. use SVM-based mod-
els with token and sentence-level features (Björne
and Salakoski, 2011; Majumder et al., 2016);

Model Dev F1 Test F1
GEANet-SciBERT 60.38 60.06

- GEANet 59.33 58.50
- STY nodes 60.12 59.34
GEANet→ ECC 58.50 58.27
GEANet→ GAT 59.55 59.87

Table 3: Ablation study over different components.
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Figure 3: Performance comparison on the test set w.r.t.
different amount of training data.

TEES CNN leverages Convolutional Neural Net-
works and dependency parsing graph (Björne and
Salakoski, 2018); KB-driven T-LSTM adopts
an external knowledge base with type and sen-
tence embeddings, into a Tree-LSTM model (Li
et al., 2019). SciBERT-FT is a fine-tuned SciB-
ERT without external resources, the knowledge-
agnostic counterpart of GEANet-SciBERT. Ac-
cording to Table 1, SciBERT-FT achieves simi-
lar performance to KB-driven T-LSTM, implying
that SciBERT may have stored domain knowledge
implicitly during pre-training. Similar hypothesis
has also been studied in commonsense reasoning
(Wang et al., 2019). GEANet-SciBERT achieves
an absolute improvement of 1.41% in F1 on the
test data compared to the previous state-of-the-
art method. In terms of Regulation events, Table
2 shows that GEANet-SciBERT outperforms the
previous system and fine-tuned SciBERT by 3.19%
and 1.39% in F1.
Ablation study To better understand the impor-
tance of different model components, ablation
study is conducted and summarized in Table 3.
GEANet achieves the highest F1 when compared to
two other GNN variants, ECC and GAT (Veličković
et al., 2018), demonstrating its stronger knowledge
incorporation capacity. Hierarchical knowledge
graph representation is also shown to be critical.
Removing semantic type (STY) nodes from hierar-
chical KGs leads to performance drop.
Impact of amount of training data Model per-
formance on different amount of randomly sam-
pled training data is shown in Fig. 3. GEANet-
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SciBERT shows consistent improvement over fine-
tuned SciBERT across different fractions. The per-
formance gain is slightly larger with less training
data. This illustrates the robustness of GEANet
in integrating domain knowledge and its particular
advantage under low-resource setting.
Error Analysis By comparing the predictions
from GEANet-SciBERT and gold events in the
dev set, two major failed cases are identified:

• Adjective Trigger: Most events are associ-
ated with a verb or noun trigger. Adjective
triggers are scarce in the training set (∼7%),
which poses a challenge to identify this type of
trigger. Although knowledge-aware methods
should be able to resolve these errors theoreti-
cally, these adjective triggers often cannot be
linked with UMLS concepts. Without proper
grounding, it is hard for our model to recog-
nize these triggers.

• Misleading Trigger: Triggers providing
“clues” about incorrect events can be mislead-
ing. For instance,

Furthermore, expression of an ac-
tivated PKD1 mutant enhances
HPK1-mediated NFkappaB activa-
tion.

Our model predicts expression as a trigger of
type Gene expression, while the gold label is
Positive regulation. Despite that fact that our
model is capable of handling such scenarios
sometimes given grounded biomedical con-
cepts and factual reasoning paths, there is still
room for improvement.

5 Related Works

Event Extraction Most existing event extrac-
tion systems focus on extracting events in news.
Early attempts relied on hand-crafted features and
a pipeline architecture (Gupta and Ji, 2009; Li et al.,
2013). Later studies gained significant improve-
ment from neural architectures, such as convolu-
tional neural networks (Chen et al., 2015; Nguyen
and Grishman, 2015), and recurrent neural net-
works (Nguyen et al., 2016). More recent studies
leverages large pre-trained language models to ob-
tain richer contextual information (Wadden et al.,
2019; Lin et al., 2020). Another line of works
utilized GNN to enhance event extraction perfor-
mance. Liu et al. (2018) applied attention-based

graph convolution networks on dependency parsing
trees. We instead propose a GNN, GEANet, for
integrating domain knowledge into contextualized
embeddings from pre-trained language models.
Biomedial Event Extraction Event extraction
for biomedicine is more challenging due to higher
demand for domain knowledge. BioNLP 11 GE-
NIA event extraction task (GE’11 ) is the major
benchmark for measuring the quality of biomedical
event extraction system (Kim et al., 2011). Similar
to event extraction in news domain, initial stud-
ies tackle biomedical event extraction with human-
engineered features and pipeline approaches (Miwa
et al., 2012; Björne and Salakoski, 2011). Great
portion of recent works observed significant gains
from neural models (Venugopal et al., 2014b; Rao
et al., 2017b; Jagannatha and Yu, 2016; Björne
and Salakoski, 2018). Li et al. (2019) incorporated
information from Gene Ontology, a biomedical
knowledge base, into tree-LSTM models with dis-
tributional representations. Instead, our strategy is
to model two knowledge graphs from UMLS hier-
archically with conceptual and semantic reasoning
paths, providing stronger clues for identifying chal-
lenging events in biomedical corpus.

6 Conclusion

We have proposed a framework to incorporate do-
main knowledge for biomedical event extraction.
Evaluation results on GE’11 demonstrated the ef-
ficacy of GEANet and hierarchical KG representa-
tion in improving extraction of non-indicative trig-
ger words associated nested events. We also show
that our method is robust when applied to different
amount of training data, while being advantageous
in low-resource scenarios. Future works include
grounding adjective triggers to knowledge bases,
better biomedical knowledge representation and
extracting biomedical events at document level.
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A Implementation Details

Our models are implemented in PyTorch (Paszke
et al., 2019). Hyper-parameters are found by grid
search within search range listed in Table 4. The
hyper-parameters of the best performing model are
summarized in 5. All experiments are conducted
on a 12-CPU machine running CentOS Linux 7
(Core) and NVIDIA RTX 2080 with CUDA 10.1.

To pre-train KGE, we leverage the TransE im-
plementation from OpenKE (Han et al., 2018). All
tuples associated with the selected nodes described
in Section 3.1 are used for pre-training with margin
loss and negative sampling,

L =
∑

(h,`,t)∈S

∑
(h′,`,t′)/∈S

max(0, d(h, `, t)− d(h′, `, t′)+ γ)

where γ denotes margin, and d(x, x′) denotes the
` − 1 distance between x and x′. h and t are em-
beddings of head and tail entities from the gold
training sets S with relation `. (h′, ` ,t′) denotes a
corrupted tuplet with either the head or tail entity
replaced by a random entity. TransE is optimized
using Adam (Kingma and Ba, 2015) with hyper-
parameters illustrated in Table 6. Every 50 epochs,
the model checkpoint is saved if the mean recipro-
cal rank on the development set improve from the
last checkpoint; otherwise, training will be stopped.

B Dataset

The statistics of GE’11 is shown in 7. The cor-
pus contains 14496 events with 37.2% containing
nested structure (Björne and Salakoski, 2011).7 We
use the official dataset split for all the results re-
ported.

Hyper-parameter Range
Relation MLP dim. {300, 500, 700, 1000}
Trigger MLP dim. {300, 500, 700, 1000}
Learning rate { 1× 10−5, 3× 10−5, 5× 10−5 }

Table 4: Hyper-paramter search range for fine-tuning
SciBERT.

7The dataset can be downloaded from http://bionlp-
st.dbcls.jp/GE/2011/downloads/.

Hyper-parameter Value
Relation MLP dim. 300
Trigger MLP dim. 300
Learning rate 3× 10−5

GEANet node dim. 300
GEANet edge dim. 300
GEANet layers 2
Dropout rate 0.2

Table 5: Hyper-paramters of the best performing
GEANet-SciBERT model.

Hyper-parameter Value
Learning rate 0.5
Margin 3
Batch size 128
# corrupted tuplets / # gold tuplets 25
# Epochs 500

Table 6: Hyper-paramters for pre-training KGE.

Metric Number
events 14496
sentences 11581
nested events 37.2%
intersentence events 6.0%

Table 7: GE’11 dataset statistics

http://bionlp-st.dbcls.jp/GE/2011/downloads/
http://bionlp-st.dbcls.jp/GE/2011/downloads/

