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Abstract

Pretrained language models achieve state-of-
the-art results on many NLP tasks, but there
are still many open questions about how and
why they work so well. We investigate the con-
textualization of words in BERT. We quantify
the amount of contextualization, i.e., how well
words are interpreted in context, by studying
the extent to which semantic classes of a word
can be inferred from its contextualized em-
bedding. Quantifying contextualization helps
in understanding and utilizing pretrained lan-
guage models. We show that the top layer rep-
resentations support highly accurate inference
of semantic classes; that the strongest contex-
tualization effects occur in the lower layers;
that local context is mostly sufficient for con-
textualizing words; and that top layer repre-
sentations are more task-specific after finetun-
ing while lower layer representations are more
transferable. Finetuning uncovers task-related
features, but pretrained knowledge about con-
textualization is still well preserved.

1 Introduction

Pretrained language models like ELMo (Peters
et al., 2018a), BERT (Devlin et al., 2019), and XL-
Net (Yang et al., 2019) are top performers in NLP
because they learn contextualized representations,
i.e., representations that reflect the interpretation of
a word in context as opposed to its general mean-
ing, which is less helpful in solving NLP tasks. As
stated, pretrained language models contextualize
words, is clear qualitatively; there has been lit-
tle work on investigating contextualization, i.e., to
which extent a word can be interpreted in context,
quantitatively.

We use BERT (Devlin et al., 2019) as our pre-
trained language model and quantify contextual-
ization by investigating how well BERT infers se-
mantic classes (s-classes) of a word in context,
e.g., the s-class organization for “Apple" in “Apple

stock rises" vs. the s-class food in “Apple juice is
healthy". We use s-class inference as a proxy for
contextualization since accurate s-class inference
reflects a successful contextualization of a word:
an effective interpretation of the word in context.

We adopt the methodology of probing (Adi
et al., 2016; Shi et al., 2016; Belinkov et al.,
2017; Liu et al., 2019; Tenney et al., 2019b; Be-
linkov and Glass, 2019; Hewitt and Liang, 2019;
Yaghoobzadeh et al., 2019): diagnostic classifiers
are applied to pretrained language model embed-
dings to determine whether they encode desired
syntactic or semantic features.

By probing for s-classes we quantify directly
where and how contextualization happens in BERT.
E.g., we find that the strongest contextual inter-
pretation effects occur in the lower layers and that
the top two layers contribute little to contextual-
ization. We also investigate how the amount of
context available affects contextualization.

In addition, since pretrained language models
in practice need to be finetuned on downstream
tasks (Devlin et al., 2019; Peters et al., 2019), we
further investigate the interactions between fine-
tuning and contextualization. We show that the
pretrained knowledge about contextualization is
well preserved in finetuned models.

We make the following contributions: (i) We
investigate how accurately BERT interprets words
in context. We find that BERT’s performance is
high (almost 85% F), but that there is still room
for improvement. (ii) We quantify how much each
additional layer in BERT contributes to contextual-
ization. We find that the strongest contextual inter-
pretation effects occur in the lower layers. The top
two layers seem to be optimized only for the pre-
training objective of predicting masked words (De-
vlin et al., 2019) and only add small increments to
contextualization. (iii) We investigate the amount
of context BERT needs to exploit for interpreting a
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GloVe BERT
suits suits
lawsuit suited
filed lawsuit
lawsuits #i#suit
sued lawsuits
complaint slacks
jacket 47th

Table 1: Nearest neighbors of “suit” in GloVe and in
BERT (BERT-base-uncased) wordpiece embeddings

word and find that BERT effectively integrates local
context up to five words to the left and to the right
(a 10-word context window). (iv) We investigate
the dynamics of BERT’s representations in fine-
tuning. We find that finetuning has little effect on
lower layers, suggesting that they are more easily
transferable across tasks. Higher layers are strongly
changed for word-level tasks like part-of-speech
tagging, but less noticeably for sentence-level tasks
like paraphrase classification. Finetuning uncovers
task-related features, but the knowledge captured
in pretraining is well preserved. We quantify these
effects by s-class inference performance.

2 Motivation and Methodology

The key benefit of pretrained language models (Mc-
Cann et al., 2017; Peters et al., 2018a; Radford
et al., 2019; Devlin et al., 2019) is that they pro-
duce contextualized embeddings that are useful in
NLP. The top layer contextualized word representa-
tions from pretrained language models are widely
utilized; however, the fact that pretrained language
models implement a process of contextualization —
starting with a completely uncontextualized layer
of wordpieces at the bottom — is not well studied.
Table 1 gives an example: BERT’s wordpiece em-
bedding of “suit” is not contextualized: it contains
several meanings of the word, including “to suit”
(“be convenient”), lawsuit, and garment (“slacks”).
Thus, there is no difference in this respect between
BERT’s wordpiece embeddings and uncontextu-
alized word embeddings like GloVe (Pennington
et al., 2014). Pretrained language models start out
with an uncontextualized representation at the low-
est layer, then gradually contextualize it. This is
the process we analyze in this paper.

For investigating the contextualization process,
one possibility is to use word senses and to tap re-
sources like the WordNet (WN) (Fellbaum, 1998)
based word sense disambiguation benchmarks of
the Senseval series (Edmonds and Cotton, 2001;

‘ words comb’s contexts

train | 35,399 62,184 2,178,895
dev 8,850 15,437 542,938
test | 44,250 77,706 2,722,893

Table 2: Number of words, word-s-class combinations,
and contexts per split in our probing dataset. Appendix
§A.6 shows the 34 s-classes and statistics per class.

Snyder and Palmer, 2004; Raganato et al., 2017).
However, the abstraction level in WN sense in-
ventories has been criticized as too fine-grained
(Izquierdo et al., 2009), providing limited infor-
mation to applications requiring higher level ab-
straction. Various levels of granularity of abstrac-
tion have been explored such as WN domains
(Magnini and Cavaglia, 2000), supersenses (Cia-
ramita and Johnson, 2003; Levine et al., 2019) and
basic level concepts (Bevid et al., 2007). In this pa-
per, we use semantic classes (s-classes) (Yarowsky,
1992; Resnik, 1993; Kohomban and Lee, 2005;
Yaghoobzadeh et al., 2019) as the proxy for the
meaning contents of words to study the contextual-
ization capability of BERT. Specifically, we use the
Wikipedia-based resource for Probing Semantics
in Word Embeddings (Wiki-PSE) (Yaghoobzadeh
et al., 2019) which is detailed in §3.1.

3 Probing Dataset and Task
3.1 Probing dataset

For s-class probing, we use the s-class labeled cor-
pus Wiki-PSE (Yaghoobzadeh et al., 2019). It
consists of a set of 34 s-classes, an inventory of
word—s-class mappings and an English Wikipedia
text corpus in which words in context are labeled
with the 34 s-classes. For example, contexts of
“Apple” that refer to the company are labeled with
“organization”. We refer to a word labeled with
an s-class as a word-s-class combination, e.g.,
“@apple @-organization”.!

The Wiki-PSE text corpus contains >550 mil-
lion tokens, >17 million of which are annotated
with an s-class. Working on the entire Wiki-PSE
with BERT is not feasible, e.g., the word-s-class
combination “@france @-location” has 98,582 con-
texts. Processing all these contexts by BERT con-
sumes significant amounts of energy (Strubell et al.,
2019; Schwartz et al., 2019) and time. Hence for
each word-s-class combination, we sample a maxi-
mum of 100 contexts to speed up our experiments.

"In Wiki-PSE, s-class-labeled occurrences are enclosed
with “@”, e.g., “@apple@”".
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Algorithm 1 Train a classifier with type-level embeddings

1: procedure TYPESCLSTRAINER(Dict: word2vec, Dict:
word2sclass, sclass: S, List: TrainWords):

2: PosVecs, NegVecs =[], []

3: for word € TrainWords do

4: vector = word2vec.get(word)
5: sclasses = word2sclass.get(word)
6: if S € sclasses then

7: PosVecs.append(vector)
8: else

9: NegVecs.append(vector)
10: classifier = Classifier()
11: classifier.train(Pos Vecs, NegVecs)
12: return classifier

Figure 1: Training a diagnostic classifier with uncon-
textualized word representations for an s-class S.

Wiki-PSE provides a balanced train/test split; we
use 20% of the training set as our development set.
Table 2 gives statistics of our dataset.

3.2 Probing for semantic classes

For each of the 34 s-classes in Wiki-PSE, we train a
binary classifier to diagnose if an input embedding
encodes information for inferring the s-class.

3.2.1 Probing uncontextualized embeddings

We make a distinction in this paper between two
different factors that contribute to BERT’s perfor-
mance: (i) a powerful learning architecture that
gives rise to high-quality representations and (ii)
contextualization in applications, i.e., words are
represented as contextualized embeddings for solv-
ing NLP tasks. Here, we adopt Schuster et al.
(2019)’s method of computing uncontextualized
BERT embeddings (AVG-BERT-/, see §4.2.1) and
show that (i) alone already has a strong positive
effect on performance when compared to other un-
contextualized embeddings. So BERT’s representa-
tion learning yields high performance, even when
used in a completely uncontextualized setting.

We adopt the setup in Yaghoobzadeh et al. (2019)
to probe uncontextualized embeddings — for each
of the 34 s-classes, we train a binary classifier as
shown in Figure 1. Table 2, column words shows
the sizes of train/dev/test. The evaluation measure
is micro F; over all decisions of the 34 binary
classifiers.

3.2.2 Probing contextualized embeddings

We probe BERT with the same setup: a binary
classifier is trained for each of the 34 s-classes;
each BERT layer is probed individually.

For uncontextualized embeddings, a word has

Probing Uncontextualized Embeddings prediction gold label
O] MPog —1 1 1
|
Ol My —1 |
€unc. (“aitheads”) =| - » '
MLPeyent — 0 1 0
one vector per word O i
Probing Contextualized Embeddings prediction gold label
O MLPfoog —> 4 i 1
O 1
MLP,, —»0 0
€cont. (“she eats airheads.”) = | » !
MLPgew —0 | 0
|
one vector per context | O

Figure 2: Setups for probing uncontextualized and con-
textualized embeddings. For BERT, we input a context
sentence to extract the contextualized embedding of a
word, e.g., “airheads”; “food” is the correct s-class la-
bel for this context.

a single vector, which is either a positive or neg-
ative example for an s-class. For contextualized
embeddings, the contexts of a word will typically
be mixed; for example, “food” contexts (a candy)
of “@airheads@” are positive but “art” contexts
(a film) of “@airheads@” are negative examples
for the classifier of “food”. Table 2, column con-
texts shows the sizes of train/dev/test when probing
BERT. Figure 2 compares our two probing setups.

In evaluation, we weight frequent word-s-class
combinations (those having 100 contexts in our
dataset) and the much larger number of less fre-
quent word-s-class combinations equally. To this
end, we aggregate the decisions for the contexts
of a word-s-class combination. We stipulate that
at least half of the contexts must be correctly clas-
sified. For example, “@airheads@-art” occurs 47
times, so we evaluate the “art” classifier as accu-
rate for “@airheads@-art” if it classifies at least 24
contexts correctly. The final evaluation measure is
micro F} over all 15,437 (for dev) and 77,706 (for
test) decisions (see Table 2) of the 34 classifiers for
the word-s-class combinations.

4 Experiments and Results

4.1 Data preprocessing

BERT uses wordpieces (Wu et al., 2016) to rep-
resent text and infrequent words are tokenized to
several wordpieces. For example, “infrequent” is
tokenized to “in”, “##fr”, “##e”, and “##quent”.
Following He and Choi (2020), we average word-
piece embeddings to get a single vector representa-
tion of a word.”

’Some “words” in Wiki-PSE are in reality multiword
phrases. Again, we average in these cases to get a single
vector representation.
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We limit the maximum sequence length of the
context sentence input to BERT to 128. Consistent
with the probing literature, we use a simple probing
classifier: a 1-layer multilayer perceptron (MLP)
with 1024 hidden dimensions and ReL.U.

4.2 Quantifying contextualization
4.2.1 Representation learners

Six uncontextualized embedding spaces are eval-
uvated: (i) PSE. A 300-dimensional embedding
space computed by running skipgram with neg-
ative sampling (Mikolov et al., 2013) on the Wiki-
PSE text corpus. Yaghoobzadeh et al. (2019) show
that PSE outperforms other embedding spaces. (ii)
Rand. An embedding space with the same vocabu-
lary and dimension size as PSE. Vectors are drawn
from N(0,I300). Rand is used to confirm that
word representations indeed encode valid mean-
ing contents that can be identified by diagnos-
tic MLPs rather than random weights. (iii) The
300-dimensional fastText (Bojanowski et al., 2017)
embeddings. (iv) GloVe. The 300-dimensional
space trained on 6 billion tokens (Pennington et al.,
2014). Out-of-vocabulary (OOV) words are as-
sociated with vectors drawn from N (0, I300). (V)
BERTw. The 768-dimensional wordpiece embed-
dings in BERT. We tokenize a word with the BERT
tokenizer then average its wordpiece embeddings.
(vi) AVG-BERT-/.? For an annotated word in Wiki-
PSE, we average all of its contextualized embed-
dings from BERT layer ¢ in the Wiki-PSE text cor-
pus. Comparing AVG-BERT-¢ with others brings
a new insight: to which extent does this “uncon-
textualized” variant of BERT outperform others in
encoding different s-classes of a word?

Four contextualized embedding models are
considered: (i) BERT. We use the PyTorch (Paszke
et al., 2019; Wolf et al., 2019) implementation of
the 12-layer BERT-base-uncased model (Wiki-PSE
is uncased). (ii) P-BERT. A bag-of-word model
that “contextualizes” the wordpiece embedding of
an annotated word by averaging the embeddings of
wordpieces of the sentence it occurs in. Comparing
BERT with P-BERT reveals to which extent the
self attention mechanism outperforms an average
pooling practice when contextualizing words. (iii)
P-fastText. Similar to P-BERT, but we use fast-
Text word embeddings. Comparing BERT with

’BERTw and AVG-BERT-/ have more dimensions. But
Yaghoobzadeh et al. (2019) showed that different dimension-
alities have a negligible impact on relative performance when
probing for s-classes using MLPs as diagnostic classifiers.

Rand
BERTwW
fastText
—— GloVe
— PSE
AVG-BERT-/

Probing Results (F;)

0 1 2 3 4 5 6 7
BERT Layer Index

8 9 10 11

Figure 3: S-class probing results for uncontextualized
embeddings. Results are micro F; on Wiki-PSE test
set. Numerical values are in Table 5 in Appendix.

P-fastText indicates to which extent BERT outper-
forms uncontextualized embedding spaces when
they also have access to contextual information.
(iv) P-Rand. Similar to P-BERT, but we draw word
embeddings from N(0,I300). Wieting and Kiela
(2019) show that a random baseline has good per-
formance in tasks like sentence classification.

4.2.2 S-class inference results

Figure 3 shows uncontextualized embedding
probing results. Comparing with random weights,
all embedding spaces encode informative features
helping s-class inference. BERTw delivers results
similar to GloVe and fastText, demonstrating our
earlier point (cf. the qualitative example in Table 1)
that the lowest embedding layer of BERT is un-
contextualized; several meanings of a word are
conflated into a single vector.

PSE performs strongly, consistent with observa-
tions in Yaghoobzadeh et al. (2019). AVG-BERT-
10 performs best among all spaces. Thus for a
given word, averaging its contextualized embed-
dings from BERT yields a high quality type-level
embedding vector, similar to “anchor words” in
cross-lingual alignment (Schuster et al., 2019).

As expected, the top AVG-BERT layers outper-
form lower layers, given the deep architecture of
BERT. Additionally, AVG-BERT-0 significantly
outperforms BERTw, evidencing the importance of
position embeddings and the self attention mech-
anism (Vaswani et al., 2017) when composing the
wordpieces of a word.

Figure 4 shows contextualized embedding
probing results. Comparing BERT layers, a clear
trend can be identified: s-class inference perfor-
mance increases monotonically with higher lay-
ers. This increase levels off in the top layers.
Thus, the features from deeper layers improve word

1222



0.825 P-Rand —

0800 P-fastText yd
- P-BERT P
Y 07754 —— BERT =
2
S 0.750 ,
3 /S
o 0.725 /
2 A
£
S
&

0.700 /

0 1 2 3 4 5 6 7 8 9 10 11
BERT Layer Index

Figure 4: S-class probing results for contextualized
embedding models. Results are micro F; on Wiki-PSE
test set. Numerical values are in Table 6 in Appendix.

contextualization, advancing s-class inference. It
also verifies previous findings: semantic tasks are
mainly solved at higher layers (Liu et al., 2019;
Tenney et al., 2019a). We can also observe that the
strongest contextualization occurs early at lower
layers — going up to layer 1 from layer O brings a
4% (absolute) improvement.

The very limited contextualization improvement
brought by the top two layers may explain why
representations from the top layers of BERT can
deliver suboptimal performance on NLP tasks (Liu
et al., 2019): the top layers are optimized for the
pretraining objective, i.e., predicting masked words
(Voita et al., 2019), not for the contextualization of
words that is helpful for NLP tasks.

BERT layer O performs slightly worse than P-
BERT, which may be due to the fact that some
attention heads in lower layers of BERT attend
broadly in the sentence, producing “bag-of-vector-
like” representations (Clark et al., 2019), which
is in fact close to the setup of P-BERT. However,
starting from layer 1, BERT gradually improves
and surpasses P-BERT, achieving a maximum gain
of 0.16 in Fj in layer 11. Thus, BERT knows
how to better interpret the word in context, i.e.,
contextualize the word, when progressively going
to deeper (higher) layers.

P-Rand performs strongly, but is noticeably
worse than P-fastText and P-BERT. P-fastText out-
performs P-BERT and BERT layers O and 1. We
hypothesize that this may be due to the fact that
fastText learns embeddings directly for words; P-
BERT and BERT have to compose subwords to
understand the meaning of a word, which is more
challenging. Starting from layer 2, BERT outper-
forms P-fastText and P-BERT, illustrating the ef-
fectiveness of self attention in better integrating the
information from the context into contextualized

word embeddings than the average pooling practice
in bag-of-word models.

Figure 3 and Figure 4 jointly illustrate the high
quality of word representations computed by BERT.
The BERT-derived uncontextualized AVG-BERT-
¢ representations — modeled as Schuster et al.
(2019)’s anchor words — show superior capabil-
ity in inferring s-classes of a word, performing best
among all uncontextualized embeddings. This sug-
gests that BERT’s powerful learning architecture
may be the main reason for BERT’s high perfor-
mance, not contextualization proper, i.e., the repre-
sentation of words as contextualized embeddings
on the highest layer when BERT is applied to NLP
tasks. This offers intriguing possibility for creating
(or distilling) strongly performing uncontextualized
BERT-derived models that are more compact and
more efficiently deployable.

4.2.3 Qualitative analysis

§4.2.2 quantitatively shows that BERT performs
strongly in contextualizing words, thanks to its
deep integration of information from the entire in-
put sentence in each contextualized embedding.
But there are scenarios where BERT fails. We
identify two such cases in which the contextual
information does not help s-class inference.

(i) Tokenization. In some domains, the anno-
tated word and/or its context words are tokenized
into several wordpieces due to their low frequency
in the pretraining corpora. As a result, BERT may
not be able to derive the correct composed meaning.
Then the MLPs cannot identify the correct s-class
from the noisy input. Consider the tokenized re-
sults of “@glutamate @-biology” and one of its
contexts:

“three ne ##uro ##tra ##ns ##mit ##ters that
play important roles in adolescent brain develop-
ment are g ##lu ##tama ##te . ..”

Though “brain development” hints at a context
related to “biology”, this signal could be swamped
by the noise in embeddings of other — especially
short — wordpieces. Schick and Schiitze (2020)
propose a mimicking approach (Pinter et al., 2017)
to help BERT understand rare words.

(i) Uninformative contexts. Some contexts do
not provide sufficient information related to the s-
class. For example, according to probing results on
BERTw, the wordpiece embedding of “goodfellas”
does not encode the meaning of s-class “art” (i.e.,
movies); the context “Chase also said he wanted
Imperioli because he had been in Goodfellas” of
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Figure 5: Probing results on the dev set with different
context sizes. For BERT, performance increases with
context size. Large context sizes like 16 and 32 slightly
hurt performance of P-BERT.

word-s-class combination “@ goodfellas@-art” is
not informative enough for inferring an “art” con-
text, yielding incorrect predictions in higher layers.

4.3 Context size

We now quantify the amount of context required
by BERT for properly contextualizing words to
produce accurate s-class inference results.

When probing for the s-class of word w, we de-
fine context size as the number of words surround-
ing w (left and right) in a sentence before word-
piece tokenization. For example, a context size
of 5 means 5 words left, 5 words right. The con-
text size seems to be picked heuristically in other
work. Yarowsky (1992) and Gale et al. (1992) use
50 while Black (1988) uses 3—6. We experiment
with a range of context sizes then compare s-class
inference results. We also enclose P-BERT for
comparison. Note that this experiment is different
from edge probing (Tenney et al., 2019b), which
takes the full sentence as input. We only make in-
put words within the context window available to
BERT and P-BERT.

4.3.1 Probing results

We report micro F; on Wiki-PSE dev, with context
size € {0,2,4,8,16,32}. Context size 0 means
that the input consists only of the wordpiece em-
beddings of the input word. Figure 5 shows results.

Comparing context sizes. Larger context sizes
have higher performance for all BERT layers. Im-
provements are most prominent for small context
sizes, e.g., 2 and 4, meaning that often local fea-
tures are sufficient to contextualize words and infer
s-classes, supporting Black (1988)’s design choice
of 3-6. Further increasing the context size im-

proves contextualization only marginally.

A qualitative example showing informative lo-
cal features is “The Azande speak Zande, which
they call Pa-Zande.” In this context, the gold s-
class of “Zande” is “language” (instead of “people-
ethnicity”, i.e., the Zande people). The MLPs for
BERTw and for context size 0 for BERT fail to
identify s-class “language”. But the BERT MLP for
context size 2 predicts “language” correctly since
it includes the strong signal “speak”. This context
is a case of selectional restrictions (Resnik, 1993;
Jurafsky and Martin, 2009), in this case possible
objects of “speak”.

As small context sizes already contain noticeable
information contextualizing the words, we hypoth-
esize that it may not be necessary to exploit the full
context in cases where the quadratic complexity of
full-sentence self attention is problematic, e.g., on
edge devices. Initial results on part-of-speech tag-
ging with the Penn Treebank (Marcus et al., 1993)
in Appendix §C confirm our hypothesis. We leave
more experiments to future work.

P-BERT shows a similar pattern when varying
the context sizes. However, large context sizes such
as 16 and 32 hurt contextualization, meaning that
averaging too many embeddings results in a bag of
words not specific to a particular token.

Comparing BERT layers. Higher layers of
BERT yield better contextualized word embed-
dings. This phenomenon is more noticeable for
large context sizes such as 8, 16 and 32. However
for small context sizes, e.g., 0, embeddings from
all layers perform similarly and badly. This means
that without context information, simply passing
the wordpiece embedding of a word through BERT
layers does not help, suggesting that contextualiza-
tion is the key ability of BERT yielding impressive
performance across NLP tasks.

Again, P-BERT only outperforms layer O of
BERT with most context sizes, suggesting that
BERT layers, especially the top layers, contextual-
ize words with abstract and informative representa-
tions, instead of naively aggregating all information
within the context sentence.

4.4 Probing finetuned embeddings

We have done “classical” probing: extracting fea-
tures from pretrained BERT and feeding them to
diagnostic classifiers. However, pretrained BERT
needs to be adapted, i.e., finetuned, for good per-
formance on tasks (Devlin et al., 2019; Peters et al.,
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| POS  SST2 MRPC NER
Ours | .977 928 853 946
Devlin et al. (2019) n/a 927 867  .964

Table 3: Dev set performance of finetuning BERT (bert-
base-uncased). For NER, we report micro F. For other
tasks, we report accuracy.

2019). Thus, it is necessary to investigate how
finetuning BERT affects the contextualization of
words and analyze how the pretrained knowledge
and probed features change.

4.4.1 Finetuning tasks

We finetune BERT on four tasks: part-of-speech
(POS) tagging on the Penn Treebank (Marcus
et al., 1993), named-entity recognition (NER) on
the CoNLL-2003 Shared Task (Tjong Kim Sang
and De Meulder, 2003), binary sentiment clas-
sification on the Stanford Sentiment Treebank
(SST2) (Socher et al., 2013) and paraphrase detec-
tion on the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan and Brockett, 2005). For SST2
and MRPC, we use the GLUE train and dev sets
(Wang et al., 2018). For POS, sections 0-18 of WSJ
are train and sections 19-21 are dev (Collins, 2002).
For NER, we use the official data splits.

Following Devlin et al. (2019), we put a linear
layer on top of the pretrained BERT, then finetune
all parameters. We use Adam (Kingma and Ba,
2014) with learning rate 5e-5 for 5 epochs. We
save the model from the step that performs best on
dev (of MRPC/SST2/POS/NER), extract represen-
tations from Wiki-PSE using this model and then
report results on Wiki-PSE dev.

Table 3 reports the finetuning results. Our fine-
tuned models perform comparably to Devlin et al.
(2019) on SST2 and MRPC. Our NER result is
slightly worse, this may due to the fact that De-
vlin et al. (2019) use “maximal document context”
while we use sentence-level context of 128 max
sequence length. More finetuning details are avail-
able in Appendix §B.

4.4.2 Probing results

We now quantify the contextualization of word rep-
resentations from finetuned BERT models. Two
setups are considered: (a) directly apply the MLPs
in §4.2 (trained with pretrained embeddings) to
finetuned BERT embeddings; (b) train and eval-
uate a new set of MLPs on the finetuned BERT
embeddings.

Comparing (a) with probing results on pretrained
BERT (§4.2) gives us an intuition about how many
changes occurred to the knowledge captured dur-
ing pretraining. Comparing (b) with §4.2 reveals
whether or not the pretrained knowledge about con-
textualization is still preserved in finetuned models.

Figure 6 shows s-class probing results of fine-
tuned BERT with setup (a) and (b). For example in
(i1), layer 11 s-class inference performance of the
POS-finetuned BERT decreases by 0.763 (0.835
— 0.072, from “Pretrained” to “POS-(a)”’) when
using the MLPs from §4.2.

Comparing setup (a) and “Pretrained”, we
see that finetuning brings significant changes to the
word representations. Finetuning on POS and NER
introduces more obvious probing accuracy drops
than finetuning on SST2 and MRPC. This may be
due to the fact that the training objective of SST2
and MRPC takes as input only the [CLS] token
while all words in a sentence are involved in the
training objective of POS and NER.

Comparing setup (b) and ‘‘Pretrained”. Fine-
tuning BERT on MRPC introduces small but con-
sistent improvements on s-class inference. For
SST2 and NER, very small s-class inference ac-
curacy drops are observed. Finetuning on POS
brings more noticeable changes. Solving POS re-
quires more syntactic information than the other
tasks, inducing BERT to “propagate” the syntac-
tic information that is represented in lower layers
to the upper layers; due to their limited capacity,
the fixed-size vectors from the upper layers may
lose some semantic information, yielding a more
noticeable performance drop on s-class inference.

Comparing (a) and (b), we see that the knowl-
edge about contextualizing words captured during
pretraining is still well preserved after finetuning.
For example, the MLPs trained with layer 11 em-
beddings computed by the POS-finetuned BERT
still achieve a reasonably good score of 0.735 (a
0.100 drop compared with “Pretrained” — compare
black and green dotted lines in Figure 6 (ii)). Thus,
the semantic information needed for inferring s-
classes is still present to a large extent.

Finetuning may introduce large changes (setup
(a)) to the representations — similar to the projec-
tion utilized to uncover divergent information in
uncontextualized word embeddings (Artetxe et al.,
2018) — but relatively little information about con-
textualization is lost as the good performance of the
newly trained MLPs shows (setup (b)). Similarly,
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Figure 6: Comparing s-class inference results of pretrained BERT and BERT finetuned on MRPC, SST2, POS,
and NER. “Pretrained”: probing results on weight-frozen pretrained BERT in §4.2. For (a), we directly apply the
MLPs in §4.2 (trained with pretrained embeddings) to finetuned BERT embeddings; for (b), we train and evaluate
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Figure 7: Cosine similarity of flattened self attention
weights. X-axis: index of the 12 self attention heads;
y-axis: layer index. Darker colors: smaller similarities,
i.e., larger changes brought by finetuning.

Merchant et al. (2020) show that finetuned BERT
still well preserves the probed “linguistic features”
in pretrained BERT.

Comparing BERT layers. Contextualized em-
beddings from BERT’s top layers are strongly af-
fected by finetuning, especially for setup (a). In
contrast, lower layers are more invariant and show
s-class inference results similar to the pretrained
model. Hao et al. (2019), Lee et al. (2019), Koval-
eva et al. (2019) make similar observations: lower
layer representations are more transferable across
different tasks and top layer representations are
more task-specific after finetuning.

Figure 7 shows the cosine similarity of the
flattened self attention weights computed by pre-
trained, POS-, and MRPC-finetuned BERT using
the dev set examples. We see that top layers are
more sensitive to finetuning (darker color) while
lower layers are barely changed (lighter color). Top
layers have more changes for POS than for MRPC,
in line with probing results in Figure 6.

5 Related Work

Interpreting deep networks. Pretrained language
models (McCann et al., 2017; Peters et al., 2018a;
Radford et al., 2019; Devlin et al., 2019) advance
NLP by contextualized representations of words.
A key goal of current research is to understand
how these models work and what they represent on
different layers.

Probing is a recent strand of work that inves-
tigates — via diagnostic classifiers — desired syn-
tactic and semantic features encoded in pretrained
language model representations. Shi et al. (2016)
show that string-based RNNs encode syntactic
information. Belinkov et al. (2017) investigate
word representations at different layers in NMT.
Linzen et al. (2016) assess the syntactic ability of
LSTM (Hochreiter and Schmidhuber, 1997) en-
coders and Goldberg (2019) of BERT. Tenney et al.
(2019a) find that information on POS tagging, pars-
ing, NER, semantic roles, and coreference is rep-
resented on increasingly higher layers of BERT.
Yaghoobzadeh et al. (2019) assess the disambigua-
tion properties of type-level word representations.
Liu et al. (2019) and Lin et al. (2019) investigate
the linguistic knowledge encoded in BERT. Adi
et al. (2016), Conneau et al. (2018), and Wieting
and Kiela (2019) study sentence embedding prop-
erties via probing. Peters et al. (2018b) probe how
the network architecture affects the learned vectors.

In all of these studies, probing serves to analyze
representations and reveal their properties. We em-
ploy probing to investigate the contextualization of
words in pretrained language models quantitatively.
In addition, we exploit how finetuning affects word
contextualization.
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Ethayarajh (2019) quantitatively investigates
contextualized embeddings, using unsupervised
cosine-similarity-based evaluation. Inferring s-
classes, we address a complementary set of ques-
tions because we can quantify contextualization
with a uniform set of semantic classes. Brunner
et al. (2020) employ token identifiability to com-
pute the deviation of a contextualized embedding
from the uncontextualized embedding. Voita et al.
(2019) address this from the mutual information
perspective, e.g., low mutual information between
an uncontextualized embedding and its contextu-
alized embedding can be viewed as a reflection
of more contextualization. Similar observations
are made: higher layer embeddings are more con-
textualized while lower layer embeddings are less
contextualized. In contrast, we draw the obser-
vations from the perspective of s-class inference.
The higher layer embeddings perform better when
evaluating the semantic classes — they are better
contextualized and have higher fitness to the con-
text than the lower layer embeddings.

Two-stage NLP paradigm. Recent work (Dai
and Le, 2015; Howard and Ruder, 2018; Devlin
et al., 2019) introduces a “two-stage paradigm”
in NLP: pretrain a language encoder on a large
amount of unlabeled data via self-supervised learn-
ing, then finetune the encoder on task-specific
benchmarks like GLUE (Wang et al., 2018, 2019).
This transfer-learning pipeline yields good and
robust results compared to models trained from
scratch (Hao et al., 2019).

In this work, we shed light on how BERT’s pre-
trained knowledge about contextualization changes
during finetuning by comparing s-class inference
ability of pretrained and finetuned models. Mer-
chant et al. (2020) analyze BERT models finetuned
on different downstream tasks with the edge prob-
ing suite (Tenney et al., 2019b) and make similar
observations as us. They focus on “linguistic fea-
tures” while we focus on the contextualization of
words.

6 Conclusion

We presented a quantitative study of the contextual-
ization of words in BERT by investigating BERT’s
semantic class inference capabilities. We focused
on two key factors for successful contextualization
by BERT: layer index and context size. By compar-
ing pretrained and finetuned models, we showed
that word-level tasks like part-of-speech tagging

bring more noticeable changes than sentence-level
tasks like paraphrase classification; and top layers
of BERT are more sensitive to the finetuning objec-
tive than lower layers. We also found that BERT’s
pretrained knowledge about contextualizing words
is still well retained after finetuning.

We showed that exploiting the full context may
be unnecessary in applications where the quadratic
complexity of full-sentence attention is problem-
atic. Future work may evaluate this phenomenon
on more datasets and downstream tasks.
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A Reproducibility Checklist

A.1 Computing infrastructure

All experiments are conducted on GeForce GTX
1080 Ti and GeForce GTX 1080.

A.2 Number of parameters

We use a set of 34 binary MLPs to conduct our
probing task. Each MLP has input dimension
768, hidden dimension 1024 and output dimension
2. As aresult, the total number of parameters is
26,843,204. For finetuning, we use the BERT-base-
uncased model containing about 110 million param-
eters (https://github.com/google-research/
bert).

A.3 Validation performance

Following Table 5 and Table 6 report the valida-
tion performance of probing uncontextualized and
contextualized embeddings.

A.4 Evaluation metric

Our evaluation is the micro F} over all decisions
of the 34 probing classifiers. More details are avail-
able in §3.2 of the main paper.

A.5 Hyperparameter search

For probing tasks, we do not conduct hyperparam-
eter search since our goal is to analyze the con-
textualization. The probing classifiers are trained
with learning rate 1e-3 and 400 epochs. For fine-
tuning BERT, we do not search hyperparameters
but directly adopt the setup in Devlin et al. (2019)
as shown in Table 4.

A.6 Datasets

List of the 34 semantic classes (s-classes), num-
ber of word-s-class combinations and contexts per
s-class in the sampled Wiki-PSE (Yaghoobzadeh
et al., 2019) are listed in Table 8. Some annotated
contexts in Wiki-PSE are also displayed in Table 9.
The Wiki-PSE developed by Yaghoobzadeh et al.

(2019) is publicly available at https://github.

com/yyaghoobzadeh/WIKI-PSE.

When finetuning BERT, we use the GLUE
(Wang et al., 2018) splits of MRPC and SST2 from
nttps://gluebenchmark.com/. Our POS dataset
is from the linguistic data consortium (LDC). For
NER (Tjong Kim Sang and De Meulder, 2003),
we use the official shared task dataset: https:

//www.clips.uantwerpen.be/conll12003/ner/.

| POS SST2 MRPC NER

batch size 150 200 350 32
learning rate Se-5  5Se-5 5e-5 Se-5
max epoch 5 5 5 5

max sequence length | 128 128 128 128

Table 4: Hyperparameters for finetuning.

B Finetuning Details

Hyperparameters in Table 4 are used when we fine-
tune BERT on POS, NER, SST2, and MRPC. For
SST2 and MRPC, we use the embedding of [CLS]
as the representation of the sentence (pair). For
POS and NER, we use the embedding of the last
wordpiece of the word as Liu et al. (2019).

A plain Adam (Kingma and Ba, 2014) optimizer
is used and we did not use strategies like learning
rate warmup and layer-wise learning rate (Howard
and Ruder, 2018) during finetuning to avoid po-
tential side effects to ensure a clear comparison of
different BERT layers.

C Context Sizes in POS

We investigate how the findings from §4.3 in the
main paper transfer to downstream tasks. To this
end we perform standard finetuning of BERT for
different tasks, but we prune the attention matrix
to a context size of length k. That is we apply a
mask on the attention matrix such that each word
can only attend to k left and k right words. This
has great benefits as it reduces the memory and
computation requirements from O(n?) to O(nk)
where n is the sequence length. We only consider
part-of-speech tagging as for sentence pair classifi-
cation tasks such as SST2 and MRPC this is not a
sensible approach.

Table 7 confirms that small context windows
are sufficient to achieve full performance for POS-
tagging. This indicates that the finding from the
main paper (i.e., local context is sufficient for
BERT to achieve a high degree of contextualiza-
tion) is to some degree applicable to a downstream
tasks, as well. Note that the median sentence length
in the Penn Treebank dataset is 25 words (the num-
ber of wordpieces even higher). Thus masking the
context to the next 4 or 8 words does indeed reduce
the available context words. In future work we plan
to investigate this effect not only during finetuning
but also during pretraining.
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Standard Embeddings ‘ AVG-BERT-/
Rand BERTw fastText GloVe PSE\ 0 1 2 3 4 5 6 7 8 9 10 11

dev .269 .653 625 681 .790|.746 .759 .764 775 .786 .791 .794 805 .811 .812 .813 .809
test .267 .652 626 .680 .787|.744 756 .762 773 .783 .788 .790 .802 .806 .809 .808 .806

Table 5: S-class probing results for uncontextualized embeddings. Numbers are micro F} on Wiki-PSE. Our
result (0.787 on PSE-test) is consistent with Yaghoobzadeh et al. (2019). Additionally, for the top 6 layers {6, 7,
8,9, 10, 11} of AVG-BERT, we repeat the experiments 5 times with random seed in {1, 2, 3, 4, 5}. Mean and
standard deviation on test per layer are: {.791+£.001, .801+£.001, .807+.001, .808=+-.001, .8084.001, .8054.001}.

Bag-of-word context ‘ BERT Layer
P-Rand P-fastText P-BERT | 0 1 2 3 4 5 6 7 8 9 10 11
dev .637 707 672 .649 692 711 739 771 782 795 813 826 .832 .836 .835
test .630 707 .670 | .645 .688 708 737 .766 .777 .790 810 .824 828 .830 .831

Table 6: S-class probing results for contextualized embedding models. Numbers are micro F; on Wiki-PSE.

Context size | POS
0 .886
2 973
4 975
8 976
16 977
32 977
All 977

Table 7: POS accuracy on dev for different context sizes.
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train dev test
semantic classes | comb’s contexts | comb’s contexts | comb’s contexts
location | 13,474 618,932 3,408 152,470 | 16,859 776,848
person | 15,423 617,270 3,744 151,005 | 19,212 765,655
organization 9,556 332,063 2,496 88,682 | 11,915 411,716
art 7,428 201,529 1,854 52,295 9,192 247,481
event 3,515 87,735 900 21,566 4,404 108,963
broadcast-program 2,287 67,261 530 15,062 2,828 84,343
title 1,429 43,041 311 9,646 1,792 56,333
product 3,121 49,076 766 13,438 3,808 61,585
living-thing 1,302 35,595 320 9,035 1,702 46,040
people-ethnicity 754 27,573 181 6,699 951 35,332
language 671 14,842 145 3,147 824 20,308
broadcast-network 325 12,392 80 3,036 362 13,006
time 157 7,765 39 1,997 192 9,984
religion-religion 192 6,461 45 1,760 265 9,719
award 251 7,589 61 1,776 301 8,877
internet-website 88 2,466 21 645 141 3,851
god 246 7,306 52 1,998 340 11,810
education-educational-degree 97 3,282 24 901 142 4,833
food 381 7,805 112 2,003 480 9,514
computer-programming-language 105 2,739 29 402 123 2,677
metropolitan-transit-transit-line 285 5,603 76 1,259 382 6,948
transit 135 3,781 26 628 186 4,305
finance-currency 127 3,107 30 548 166 3,388
disease 163 2,619 33 381 260 4,385
chemistry 170 3,350 43 1,254 195 3,858
body-part 135 1,901 31 415 156 2,591
finance-stock-exchange 27 617 3 5 51 795
law 23 474 6 54 27 535
medicine-medical-treatment 77 886 7 124 106 1,803
medicine-drug 50 1,023 7 54 72 1,157
broadcast-tv-channel 45 564 14 210 74 1,264
medicine-symptom 55 752 15 97 72 1,172
biology 49 485 15 118 63 911
visual-art-color 41 1,011 13 228 63 906
total | 62,184 2,178,895 | 15,437 542938 | 77,706 2,722,893

Table 8: Number of word-s-class combinations and contexts for each of the 34 semantic classes in Wiki-PSE.

word word-s-class combination contexts
@roberta@-art this recording is also available on cd paired with @roberta@-art .
... to star as huckleberry haines in the jerome kern / dorothy fields musical @roberta@-art .
roberta @roberta@-location there are also learning centers in eatonton , forsyth  gray jeffersonville , and @robt'?rta@-locatlon .
... the concurrency curves to a nearly due north routing and enters @roberta@-location .
@roberta@-person ken williams : along with wife @roberta@-person , founded on-line systems after working at ibm
P mystery house is an adventure game released in 7 by @roberta@-person and ken williams for the apple ii .
wing has been a leading member of the formal methods community , especially in the area of @larch@-comp-prog-lang .
@larch@-comp-prog-lang . o S . . . .
larch a major contribution was his involvement with the @larch@-comp-prog-lang approach to formal specification with ...

the more recent plantings include @larch@-living-thing and pine .
these consist mainly of oak , alder , @larch@-living-thing and corsican pine .

@larch@-living-thing

Table 9: Example contexts of the annotated word “roberta” and “larch”.
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