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Abstract

Existing approaches to metaphor processing
typically rely on local features, such as imme-
diate lexico-syntactic contexts or information
within a given sentence. However, a large body
of corpus-linguistic research suggests that sit-
uational information and broader discourse
properties influence metaphor production and
comprehension. In this paper, we present the
first neural metaphor processing architecture
that models a broader discourse through the
use of attention mechanisms. Our models ad-
vance the state of the art on the all POS track
of the 2018 VU Amsterdam metaphor identi-
fication task. The inclusion of discourse-level
information yields further significant improve-
ments.

1 Introduction

Metaphor widely manifests itself in natural lan-
guage. It is used to make an implicit compari-
son between two distinct domains that have certain
common aspects (Lakoff and Johnson, 1980). For
instance, in the sentence “The price of the commod-
ity is rising”, the target domain of quantity (price)
can be understood through the source domain of
directionality (rising).

The majority of computational approaches to
metaphor focus on the task of its identification in
text. Early approaches utilised hand-crafted fea-
tures based on word classes (Beigman Klebanov
et al., 2016), concreteness and imageability ratings
(Turney et al., 2011; Broadwell et al., 2013) or
selectional preferences (Wilks et al., 2013). Suc-
ceeding research has moved on to corpus-based
techniques, such as the use of distributional and
vector space models (Shutova, 2011; Gutierrez
et al., 2016; Bulat et al., 2017), and more re-
cently, deep learning methods (Rei et al., 2017).
Current metaphor identification approaches cast
the problem in the sequence labelling paradigm

and apply convolutional (Wu et al., 2018), recur-
rent (Gao et al., 2018; Mao et al., 2019; Dankers
et al., 2019) and transformer-based neural models
(Dankers et al., 2019).

However, these approaches model only local lin-
guistic context, i.e. information about the sentence
in which the metaphor resides. Yet, a large body of
corpus-linguistic research suggests that metaphor
production and comprehension is influenced by
situational information and wider discourse prop-
erties (Musolff, 2000; Semino, 2008; Jang et al.,
2015b). Previously presented computational mod-
els of metaphor incorporating discourse use hand-
crafted features (Jang et al., 2015a) or neural sen-
tence embeddings (Mu et al., 2019) within a sim-
ple classification paradigm. Since these methods
employ shallow classification models, their task
performance is subpar compared to deep neural ar-
chitectures. Nonetheless, these studies established
that discourse-level information is beneficial for
metaphor detection.

Improving upon prior methods, we present a
novel neural metaphor identification architecture
that incorporates broader discourse. To model dis-
course, we investigate two types of attention mech-
anisms: a shallow general attention mechanism and
a hierarchical one (Yang et al., 2016). The former
builds a sentence representation by applying word-
level attention. The latter combines attention at
both word and sentence level. We apply our models
to the 2018 VU Amsterdam (VUA) metaphor iden-
tification shared task (Leong et al., 2018), specif-
ically to the all POS subtask. This task involves
metaphor detection for all open-class words – i.e.
verbs, adjectives, nouns and adverbs. Our results
confirm that modelling discourse is beneficial for
metaphor detection and our models improve upon
the previous state-of-the-art task performance (Wu
et al., 2018) by 5.2 and 6.4 F1-points, for our best-
performing baseline and discourse models, respec-
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tively. To the best of our knowledge, this is the first
end-to-end neural approach investigating the effect
of broader discourse on metaphor identification.

2 Related Work

2.1 Deep Learning for Metaphor
Identification

The approach of Wu et al. (2018) obtained the high-
est performance in the 2018 VUA metaphor iden-
tification task. Their model combined a convolu-
tional neural network and a bidirectional LSTM
(Bi-LSTM), thus utilising local and long-range
contextual information in the immediate sentence.
F1-scores of 65.1% and 67.2% were obtained in
the task’s all POS and verbs-only subtasks, respec-
tively. See Leong et al. (2018) for an overview of
other systems submitted to the task.

Afterwards, Gao et al. (2018) proposed a se-
quence labelling model for metaphor identification
that employed GloVe (Pennington et al., 2014) and
ELMo (Peters et al., 2018) embeddings as input to
a Bi-LSTM followed by a classification layer. The
main difference compared to previously presented
neural models was the inclusion of contextualised
word embeddings, which significantly improved
metaphor detection. Gao et al. (2018) reported
results on the full sequence labelling task using
the VUA metaphor corpus. However, their perfor-
mance is not comparable to the all POS subtask
of the 2018 shared task. The evaluation of Gao
et al. (2018) included both closed- and open-class
words and their models were trained on a differ-
ent subset of the VUA metaphor corpus, causing
incomparable main task performance measures.1

Mao et al. (2019) and Dankers et al. (2019) re-
cently presented improved approaches to modelling
metaphors by relying on (psycho)linguistically mo-
tivated theories of human metaphor processing.
Mao et al. (2019) proposed two adaptations of the
model of Gao et al. (2018): Firstly, concatenat-
ing the hidden states of the Bi-LSTM to a con-
text representation capturing surrounding words
within the current sentence, to model selectional
preferences. Secondly, including word embeddings
both at the input and classification layer, to explic-
itly model the discrepancy between a word’s lit-
eral and its contextualised meaning. Dankers et al.

1Closed-class function words such as prepositions are con-
siderably easier to classify than open-class words. The systems
evaluated in the 2018 shared task setup essentially addressed a
more challenging task, which would make a task performance
comparison unfair.

(2019) improved metaphor identification through
joint learning with emotion prediction, motivated
by the finding that metaphorical phrases tend to be
more emotionally evocative than their literal coun-
terparts. Joint learning was applied to the model
of Gao et al. (2018) as well as to BERT (Devlin
et al., 2019). The latter setup is the current state-of-
the-art approach in metaphor identification. Mao
et al. (2019) and Dankers et al. (2019) used the data
subset and evaluation setup of Gao et al. (2018),
which complicates direct performance comparisons
to the 2018 shared task. We only compare to these
studies in our performance breakdown per POS tag,
for the four open-class POS categories.

2.2 Metaphor Identification and Discourse

The work of Jang et al. (2015a) was the first to in-
vestigate the effects of broader discourse in a com-
putational model of metaphor. Their approach used
hand-crafted features and coarse-grained lexical in-
formation extracted from a broader discourse such
as topical information, lexical chains and unigram
features. However, they did not directly model
the effect of including neighbouring sentences in
metaphor identification.

Mu et al. (2019) considered metaphor identifica-
tion for the verbs-only subtask of the 2018 shared
task. They obtained the broader context of verbs
by embedding the surrounding paragraph with a
range of methods: GloVe, ELMo, skip-thought
(Kiros et al., 2015) and doc2vec (Le and Mikolov,
2014). The context embedding, along with the verb
lemma and syntactic arguments, was used to train
a gradient boosting decision tree classifier. The
authors have shown that metaphor identification is
positively influenced by including paragraph-level
context. Their best-performing model achieved
an F1-score of 66.8% falling just shy of the 2018
verbs-only subtask’s highest performance of Wu
et al. (2018).

3 Data

The task revolves around performing binary classi-
fication – identifying whether a word is metaphori-
cal or literal – on the all POS subtask of the 2018
VUA metaphor identification shared task. This task
uses a dataset consisting of 117 text excerpts from
the British National Corpus (Clear, 1993), labelled
in the VUA metaphor corpus (Steen et al., 2010).
Each excerpt has been retrieved from one of the
following four genres: academic, news, conver-



229

Label

Attention

Classification

Encoder

Embedding

L

⊕

Preceding Sentence Focus Sentence Succeeding Sentence

. . .. . . . . . . . .. . . . . . . . .. . . . . .

⊕

L M

(a) General Attention

Preceding Sentence Focus Sentence Succeeding Sentence

. . .. . . . . .

⊕

. . .. . . . . .

⊕

. . .. . . . . .

⊕

⊕

L M

(b) Hierarchical Attention

Figure 1: Visualisation of the sequence labelling architecture, for the two discourse computation mechanisms with
context window size k = 1. To avoid visual clutter, only the classification of the first word in the focus sentence is
shown.

sation, and fiction. Metaphorical expressions are
annotated at word level. Following the shared task
setup, we evaluate our models on open-class words
only – i.e. verbs, adjectives, nouns and adverbs.
The dataset contains 72,611 and 22,196 labelled
words in the training and test set, respectively. 15%
and 18% of these words are metaphorical for the
two sets, respectively. We randomly sample 10%
of the training data texts for validation purposes.

4 Methods

We construct a neural architecture that is opti-
mised to predict binary metaphoricity at word level,
by embedding the input words, applying encoder
layers followed by a classification layer and soft-
max activation to yield per-word predictions. We
present two variants of the model. The first method
is feature-based, similar to the model of Gao et al.
(2018). We embed input words through the con-
catenation of their non-contextualised (GloVe) and
contextualised (ELMo) embeddings. The concate-
nation of GloVe and ELMo feeds into a one-layer
Bi-LSTM encoder. During optimisation, we learn
the parameters of the Bi-LSTM and classification
layer.

As our second method, we use a fine-tuning
architecture, similar to Dankers et al. (2019), in
which the embeddings and recurrent encoder are re-
placed with the pretrained BERTbase model (Devlin
et al., 2019). BERT uses embeddings for subword
units that are encoded with twelve transformer en-

coder layers. During optimisation we fine-tune
BERT and learn the parameters of the classification
layer. A word is considered metaphorical if any of
its subword units is labelled as metaphorical. This
choice is based on the assumption that it is more
likely that a common prefix or suffix is not con-
sidered metaphorical while a word’s main piece is
than the other way around.

To include discourse information in both archi-
tectures, the output of the last encoder layer is con-
catenated to a discourse representation and fed to
the classification layer, such that the classification
layer contains dedicated parameters for both the dis-
course and (sub)word representations. We further
detail the two mechanisms employed to compute
the discourse representations below.

4.1 Modelling Discourse

Discourse Definition To represent discourse, we
use a context window of size 2k + 1 sentences. It
comprises k preceding sentences, the immediate
sentential context of the word to be classified (the
focus sentence), and k succeeding sentences. How-
ever, based on the position of the focus sentence in
the corresponding text, the number of preceding or
succeeding sentences can be less than k. A value
of 0 for k implies a context window containing the
focus sentence only.

General Attention The first attention mecha-
nism constructs a discourse representation by ap-
plying general attention to all tokens within the
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Model k P R F1

Wu et al. (2018) - 60.8 70.0 65.1

ELMo-LSTM
- General Att. 0 66.3 64.8 65.5±.3

1 66.3 66.6 66.4±.4
2 66.8 67.8 67.3±.2
3 66.6 67.3 66.9±.4

- Hierarchical Att. 1 67.5 65.5 66.5±.4
2 67.6 66.1 66.8±.3
3 68.1 66.1 67.1±.6

BERT
- General Att. 0 73.5 67.4 70.3±.5

1 72.6 69.8 71.1±.6
2 73.7 68.9 71.1±.5
3 72.8 70.0 71.3±.5

- Hierarchical Att. 1 73.1 69.1 71.0±.4
2 73.5 69.6 71.5±.5
3 73.8 68.9 71.3±.5

Table 1: Main task performance for the all POS 2018
VUA metaphor identification task. The highest perfor-
mance per model type is shown in bold font.

context window. The encoder layers are applied to
each of the sentences within the context window
individually. The discourse representation is the
weighted combination of the outputs, where the
weights are computed by applying a linear layer
followed by the softmax function. The architecture
is shown in Figure 1a.

Hierarchical Attention Secondly, we replace
the general attention with hierarchical attention
inspired by the work of Yang et al. (2016) to com-
bine word- and sentence-level attention. The for-
mer type provides fine-grained information needed
for disambiguation and possibly co-reference reso-
lution, whereas the latter is more suited to capture
coarse-grained topical information. First, the indi-
vidual sentences from the context window are en-
coded, and general attention is applied per sentence,
yielding sentence representations. Second, the sen-
tence representations are fed to a sentence-level
encoder, and sentence-level attention is utilised to
produce a discourse representation. For the recur-
rent architecture, the encoder is a Bi-LSTM, and
for BERT, it is a transformer layer. The hierarchical
attention module is visualised in Figure 1b.

5 Experiments and Results

5.1 Experimental Setup
The feature-based approach uses GloVe and ELMo
embeddings of dimensionalities 300 and 1,024, re-
spectively. The hidden state dimensionality of the

Model k VB ADJ NN ADV

Mu et al. (2019)† - 66.8 - - -
Wu et al. (2018) - 67.4 65.1 62.9 58.8
Gao et al. (2018)† - 69.9 58.3 60.4 -
Mao et al. (2019)† - 70.8 62.2 63.4 63.8

ELMo-LSTM
- General Att. 0 69.7 62.0 62.5 57.3

2 71.2 63.5 65.0 57.6
- Hierarchical Att. 3 71.5 63.2 64.2 57.1

BERT
- General Att. 0 74.6 65.9 67.5 64.3

3 75.6 66.4 68.9 64.0
- Hierarchical Att. 2 75.7 66.0 69.3 63.2

Table 2: Task performance (F1-score) breakdown
per POS category, for the baseline systems and best-
performing setup per model and attention module type.
†Due to differences in the data subset used and evalua-
tion setup these results are not directly comparable to
ours.

Bi-LSTM is 128. Training lasts for 10 epochs, with
a maximum learning rate of 0.005 and batches of
size 64.

The fine-tuning method includes the BERTbase
model that has 12 pretrained transformer layers
with a hidden dimensionality of 768. The BERT
model is fine-tuned for 4 epochs with a batch size
of 16, and a maximum learning rate of 5e−5.

Both model types are trained using the AdamW
optimiser with a cosine-based learning rate sched-
uler and a warm-up period of 10%. Tokens with
a POS tag other than the four open-class cate-
gories are included in the sentence, albeit that their
metaphoricity is not considered during optimisa-
tion. We use the negative log-likelihood loss along
with class weights to account for the class imbal-
ance. The weights are annealed during training
from 0.9 and 0.1 to 0.7 and 0.3 for the metaphor-
ical and literal classes, respectively. We report
the precision (P), recall (R), and F1-scores for the
metaphor class achieved by each model averaged
over ten randomly initialised runs.

5.2 Results

Table 1 presents our main task performance. We
compare our models to the previous highest per-
forming system designed by Wu et al. (2018). Our
baseline systems using k = 0 only incorporate the
sentential context of the focus sentence. The recur-
rent and BERT-based models with k = 0 already
outperform the approach of Wu et al. (2018) by the
margins of 0.4 and 5.2 F1-points, respectively.
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The inclusion of discourse representations fur-
ther improves the F1-scores over the baseline meth-
ods, for both model types and both attention mod-
ules. The performance differences are significant
as per a t-test (p < 5e−3) for all experimental se-
tups including wider discourse (k > 0). This find-
ing is in accordance with the findings of Mu et al.
(2019). Generally, the largest performance gain is
achieved by increasing k from 0 to 1. This indi-
cates that the immediate neighbouring sentences
are the most informative. This claim is supported
by Bizzoni and Ghanimifard (2018) who mention
that the metaphors in the VUA metaphor corpus
generally do not require long-distance information
for their resolution. The top-performing model
is the BERT setup with hierarchical attention and
k = 2 that achieves a state-of-the-art F1-score of
71.5%. Overall, we observe that using the hierarchi-
cal attention module is more effective at increasing
the precision, while the general attention module is
more likely to improve the recall.

Table 2 displays more fine-grained F1-scores per
POS category for the best-performing experimental
setups per model type and attention module. We
notice that the increase in performance is mainly
achieved by increments in the F1-scores for verbs
and nouns rather than adjectives and adverbs.
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Figure 2: Distribution of the attention weight per token
position, for (1) all test sentences and (2) the test sen-
tences whose metaphoricity labels were corrected by
including discourse information.

6 Analysis and Discussion

In order to investigate the types of information that
discourse provides, we have conducted a qualita-
tive analysis of the sentences where our discourse-
aware models improved the labelling of a word over
the discourse-agnostic baselines. We found that dis-
course helps primarily in two ways: (1) it provides
information about the topic of the text, which is
often needed for disambiguation, particularly for
shorter sentences; and (2) it allows the models to
implicitly perform co-reference resolution through
the use of word-level attention.

We observe that while the attention distributions
of the hierarchical mechanisms are rather diffused,
the general attention mechanism uses very sparse
weights. We hypothesise that the former type is
more suited for modelling coarse-grained topical
information. The latter is able to highlight spe-
cific words and phrases in neighbouring sentences
that may be needed for disambiguation and co-
reference resolution. The attention distributions
displayed in Table 3 are exemplary of distributions
in the hierarchical and general attention modules
with regard to sparseness. This observation holds
for both the recurrent and BERT-based models.

To further investigate the internal functioning
of the attention modules and the influence of dis-
course, we use majority voting across the randomly
initialised runs to obtain samples that are consis-
tently improved by all discourse setups compared
to the baseline per model type. For the recur-
rent models, this subset contains 109 samples: 53
metaphorical tokens and 56 literal ones. For BERT,
these statistics are 57 and 19, respectively. To assert
that within these subsets, the surrounding sentences
affect the discourse representation, we visualise the
average weight per word position, as measured
from the middle of the focus sentence. Figure 2
demonstrates that for sentences in this subset, the
distribution is more diffused compared to all test
sentences. Thus, on average, the broader discourse
has a more substantial effect on the model’s clas-
sification for these samples. This finding supports
the hypothesis that the numerical performance gain
observed is caused by the inclusion of discourse
representations.

The examples listed in Table 3 are drawn from
the consistently improved subset for all recurrent
discourse setups. Specifically, the annotations of
the words mincemeat, spread and hurry were cor-
rected. In the first example, the context contains
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Hierarchical Attention General Attention
Sentence Word

.297 I ’ve got L some cooking L apples L out there Oh is n’t he , I could hit L him ! apples L

.419 Why does n’t he make L make L your own bloody M mincemeat L then ! bloody M, mincemeat L

.284 Yeah that ’s cos L I make L the the pastry L and you can -

.276 As you always L still L continue L to tell L them yes L you do . -

.321 If I want L it spread M around . spread M, around

.403 That gives M you your bit M of character M . gives M, bit M, character M

.344 The accelerator L is the one on the right L sir L ! -

.268 He is an old L gentleman L , dear L but er L he is n’t in a hurry L what so ever L . hurry L

.388 Look L he ’s slowing L down there ! Look L, slowing L, down

Table 3: Visualisation of the attention distributions for three example sentences in which the underlined token was
correctly labelled after including wider discourse information, for ELMo-LSTM with k = 1. The colour intensity
represents the word-level attention weights. For hierarchical attention, the sentence weights (first column) influence
the effect of the word-level weights (second column). Since the general attention distributions were rather sparse,
we only include the key words (column three).

food references (“cooking apples” and “make the
pastry”) and hence provides the required topical
information, emphasising that mincemeat is used
in a text about cooking. If “making mincemeat of
something” were used metaphorically, one would
expect neighbouring sentences to discuss defeats,
demolition or devastation. The second example
illustrates a case where the wider context is needed
for anaphora resolution: the meaning of it is un-
clear from the sentence itself, which hinders the
metaphoricity resolution of spread. While the con-
text does not specify the referent of it, it still incor-
porates clues through the phrases “continue to tell
them” and “gives you character” that indicate some-
thing is not spread physically but socially. When
looking into the even broader context (available to
models with k > 1), it appears to be gossip about
a wild night involving alcohol. This example indi-
cates that the directly neighbouring sentences are
not always sufficient for complete clarity – i.e. that
increasing k beyond 1 can occasionally be helpful.
In the final example, it becomes apparent from the
metaphor’s discourse context that “being in a hurry”
in fact concerns the actual speed of the accelerator,
as opposed to the metaphorical use of hurrying: the
obstacle that keeps us all from living life fully.

The results in Table 2 show that the use of
discourse information primarily improves perfor-
mance for verbs and nouns, and less so for adjec-
tives and adverbs. We hypothesise that much of this
improvement is due to pronominal co-reference res-
olution, which is most critical for verbs and nouns.
Pronouns replace nouns and noun phrases in sen-
tences and are themselves in direct grammatical

relations with the verbs (as their subject or object).
A verb may be used metaphorically or literally, but
without knowing the identity of its subject or ob-
ject, its metaphoricity may be difficult to determine.
For adverbs and adjectives that would not be the
case, as they never modify a pronoun.

7 Conclusion

In this work, we presented deep neural architec-
tures that make use of attention mechanisms to
investigate the impact of discourse in the task of
word-level metaphor detection. Our models estab-
lish new state-of-the-art results in the all POS track
of the 2018 VUA metaphor identification shared
task (Leong et al., 2018). Two attention mecha-
nisms were experimented with for modelling dis-
course, a general and hierarchical one. Both mod-
ules yield significant performance increases, but
our qualitative analysis indicates that they serve a
different purpose.

Considering the high variety in the corpus’s sen-
tence lengths, future work could include defining
the context window in terms of words instead of
sentences and the merging of techniques to reap
the benefits of both co-reference resolution and
capturing topical information.
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