
Proceedings of the Third Workshop on Fact Extraction and VERification (FEVER), pages 36–41
July 9, 2020. c©2020 Association for Computational Linguistics

36

Language Models as Fact Checkers?

Nayeon Lee1∗ Belinda Z. Li2 Sinong Wang2

Wen-Tau Yih2 Hao Ma2 Madian Khabsa2

1Hong Kong University of Science and Technology 2Facebook AI
nayeon.lee@connect.ust.hk

{belindali,sinongwang,scottyih,haom,mkhabsa}@fb.com

Abstract

Recent work has suggested that language mod-
els (LMs) store both common-sense and fac-
tual knowledge learned from pre-training data.
In this paper, we leverage this implicit knowl-
edge to create an effective end-to-end fact
checker using a solely a language model, with-
out any external knowledge or explicit re-
trieval components. While previous work on
extracting knowledge from LMs have focused
on the task of open-domain question answer-
ing, to the best of our knowledge, this is the
first work to examine the use of language mod-
els as fact checkers. In a closed-book set-
ting, we show that our zero-shot LM approach
outperforms a random baseline on the stan-
dard FEVER task, and that our finetuned LM
compares favorably with standard baselines.
Though we do not ultimately outperform meth-
ods which use explicit knowledge bases, we
believe our exploration shows that this method
is viable and has much room for exploration.

1 Introduction

Pre-trained language models have recently lead to
significant advancements in wide variety of NLP
tasks, including question-answering, commonsense
reasoning, and semantic relatedness (Devlin et al.,
2018; Radford et al., 2019; Peters et al., 2018;
Radford et al., 2018). These models are typi-
cally trained on documents mined from Wikipedia
(among other websites). Recently, a number of
works have found that LMs store a surprising
amount of world knowledge, focusing particularly
on the task of open-domain question answering
(Petroni et al., 2019; Roberts et al., 2020). In this
paper, we explore whether we can leverage the
knowledge in LMs for fact checking.

We propose an approach (Fig. 1b) that replaces
the document retriever and evidence selector mod-
els in traditional fact-checking (Fig. 1a) with a

∗Work done while at Facebook AI.

(a) Traditional fact-checking
pipeline.

(b) Our new fact-
checking pipeline.

Figure 1: Traditional fact-checking pipeline (left) vs.
Our LM-based pipeline (right)

single language model that generates masked to-
kens. This offers a number of advantages over the
traditional approach: first, the procedure is over-
all simpler, requiring fewer resources and compu-
tation – we do not need to maintain an explicit
knowledge base external to our LM, and we do
not need an explicit retrieval step. The latter in
particular can lead to a huge speedup in the sys-
tem, since we can skip the time-consuming step
of searching over a potentially massive space of
documents. Second, LMs are widely-available and
are currently attracting significant research effort.
Thus, research in language-modeling, particularly
in improving LMs ability to memorizing knowl-
edge, may also improve the overall effectiveness
of our fact-checking pipeline. Lastly, our system
further shifts the paradigm towards “one model for
all” — LMs have been used for a wide variety of
tasks, and now also for fact checking.

In order to determine the feasibility of our
approach, we start with a human review study
where participants are given a claim from FEVER
(Thorne et al., 2018a), and are asked to validate
the claim using only a BERT language model. We
found that users had reasonable success in deter-
mining claim validity. Empowered by the results,



37

we design an end-to-end neural approach for utiliz-
ing BERT as a fact checker (see Figure 1b). At a
high level, we first generate an evidence sentence
by masking the claim and using BERT to “fill in”
the mask. We then feed the generated sentence,
alongside the original claim, to a verification clas-
sifier model that classifies whether the claim is sup-
ported, refuted, or the information is insufficient to
make a call.

The rest of the paper is organized as such: Sec-
tion 2 gives an overview of the problem space.
Section 3 describes our preliminary experiments.
Sections 4 and 5 highlights our main methods (i.e.
end-to-end model, experimental setup), and 6 re-
ports our main results. Sections 7 and 8 conclude
our paper with a discussion and future works.

2 Background

Task The main goal of fact-checking is to vali-
date the truthfulness of a given claim. Each claim
is assigned one of three labels: support, refute, or
not enough information (NEI) to verify.

Dataset We use FEVER (Thorne et al., 2018a), a
large-scale fact-checking dataset with around 5.4M
Wikipedia documents. Claims were generated by
extracting sentences from Wikipedia (with possible
mutations), and were annotated by humans with
their verification label and/or evidence sentences
from Wikipedia.

Traditional pipeline Traditional fact-checking
systems (Fig. 1a) access knowledge within an ex-
ternal knowledge base (i.e. Wikipedia) to validate
a claim. They use a multi-step, pipelined approach,
which involve IR-modules, such as document re-
trievers and evidence selectors, for retrieving the
appropriate evidence, and verification modules that
take in {claim, [evidences]} pairs and pre-
dict a final verification label

Our pipeline As shown in Fig.1b, our proposed
pipeline replaces both the external knowledge base
as well as the IR modules with a pretrained lan-
guage model. In the remainder of this paper, we
utilize BERT. Future work can explore other lan-
guage models.

Querying the Language Model In Petroni et al.
(2019), language models were used as knowledge
base to answer open-domain questions. To do this,
the authors devised a probe known as “LAMA”,

which generates fill-in-the-blank cloze-style state-
ments from questions. For example, in order to
answer the question ‘Where is Microsoft’s head-
quarter?’, the question would be rewritten as as
‘Microsoft’s headquarter is in [MASK]’ and fed
into a language model for the answer.

Inspired by LAMA (Petroni et al., 2019), we also
generate evidences from language models through
fill-in-the-blank style tasks.

3 Exploratory Experiments

In order to determine the feasibility of our ap-
proach, we began by conducting a human review
study on 50 random-selected claims from FEVER
(Thorne et al., 2018a). Participants were asked to
validate each claim with only a language model, by
following these steps:

1. Mask a token from the claim, depending on
component of the claim we wish to verify:
Thomas Jefferson founded the University
of Virginia after retiring→ Thomas Jeffer-
son founded the University of [MASK] af-
ter retiring.
In this example, the user is verifying which
university was founded by Thomas Jefferson.
Note that the user could alternatively choose
to mask Thomas Jefferson in order to verify
the founder of University of Virginia.

2. Get the top-1 predicted token from the LM.
Top-1 predicted token = Virginia.

3. If predicted token matches the masked token,
the claim is supported, otherwise it is refuted.
Virginia ≡ Virginia→ SUPPORTS

In other words, we asked participants to serve as
the “masking” and “verification classifier” compo-
nents of our fact-checking pipeline in Fig. 1b.

Two participants examined the 50 claims, and
eventually achieved an average accuracy of 55%. 1

We also conducted this zero-shot study on a
larger scale and in a more systematic way, by taking
all claims in the full FEVER dataset, and always
masking the last token.2 Otherwise, we preserve
steps 2 and 3 from above. Even with this naı̈ve

1Both participants had NLP background, and both were
familiar with FEVER and the fact-checking task. We also as-
sumed both participants were capable of selecting the optimal
position to mask.

2We omit examples for which the masked token is not in
BERT’s vocab.



38

token-matching approach, we were able to obtain
precision 56% and F1 59% for the positive label
(SUPPORT).

Our preliminary experiments’ results illustrate
that, with a good masking mechanism and verifica-
tion model, language models can indeed feasibly
be used for fact-checking.

4 End-to-End Fact-Checking Model

Enlightened by results from our preliminary exper-
iments, we devise an end-to-end model that auto-
mates and improve upon the masking and verifica-
tion steps that were conducted by humans. Specifi-
cally, we resolve two limitations: 1. manual mask-
ing of claims, and 2. naı̈ve validation of the pre-
dicted token that fails to deal with synonyms and
other semantic variants of the answer.

Automatic Masking We mask the last named
entity in the claim, which we identify using an off-
the-shelf Named-Entity-Recognition (NER) model
from spaCy Honnibal and Montani (2017). In par-
ticular, we choose to mask named entities in order
to better ensure that the token we mask actually
makes use of the knowledge encoded in language
models. (Otherwise, we may mask tokens that only
make use of the LM’s ability to recover linguis-
tic structures and syntax – for instance, masking
stopwords). This hinges on the observation that,
for most claims, its factuality hinges upon the cor-
rectness of its entities (and the possible relations
between them), and not on how specifically the
claim is phrased.

Verification using Entailment To move beyond
naı̈vely matching predicted and gold tokens, we
leverage a textual entailment model from Al-
lenNLP (Gardner et al., 2018) to validate our LM
predictions. Note that textual entailment models
predict the directional truth relation between a text
pair (i.e. “sentence t entails h” if, typically, a hu-
man reading t would infer that h is most likely
true).

Full-pipeline steps Detailed steps for our end-to-
end model (Fig. 2) are as follows:

1. Masked the last named entity found by the
NER model.

2. Get the top-1 predicted token from the LM,
and fill in the [MASK] accordingly to create
the “evidence” sentence.

Figure 2: Detailed illustration of our pipeline

3. Using the claim and generated “evidence” sen-
tence, obtain entailment “features” using out-
puts from the last layer of the pretrained en-
tailment model (before the softmax).

4. Input the entailment features into a multi-layer
perceptron (MLP) for final fact-verification
prediction.

5 Experiments

5.1 Experiment setup

We conduct our experiments on the FEVER claim
verification dataset (Thorne et al., 2018a) using the
standard provided splits. We use the publicly avail-
able 24-layer BERT-Large as our language model,
which was pre-trained on Wikipedia in 2018.3

The MLP was optimized using Adam, and
trained with a mini-batch size of 32. The learn-
ing rate was set to 0.001 with max epoch size 200
and epoch patience of 30. The embedding size of
the entailment features (from the pre-trained entail-
ment model) was 400, and our MLP classifier had
hidden size of 100.

5.2 Evaluation Metric

The traditional pipeline was evaluated using
FEVER scoring, which is a stricter form of scoring
that treats predictions to be correct only when cor-
rect evidences were retrieved. Since our pipeline

3It’s possible the model was trained on a later Wikipedia
dump than what’s released as part of FEVER, but pre-training
BERT from scratch is beyond the scope of this paper.



39

Model Label prec recall f1 accuracy macro prec macro recall macro f1

BERTfreeze

REFUTES 0.36 0.69 0.47
0.38 0.39 0.38 0.33SUPPORTS 0.43 0.09 0.15

NEI 0.39 0.35 0.37

BERTfinetune

REFUTES 0.62 0.55 0.58
0.57 0.57 0.57 0.57SUPPORTS 0.54 0.67 0.59

NEI 0.57 0.49 0.53

BERTasKB
REFUTES 0.76 0.38 0.51

0.49 0.59 0.49 0.44SUPPORTS 0.41 0.92 0.57
NEI 0.58 0.15 0.24

SoTA (Thorne et al., 2018b) * - - - - 0.68 - - -

Table 1: Performance comparison between BERT-as-encoder models (BERTfreeze, BERTfinetune) and BERT-
as-LM model (BERTasKB) (*We report fact-checking label accuracy, not FEVER score - a stricter form of
scoring

does not utilize an external knowledge base, and
does not have an evidence retriever, we only ex-
amine the correctness of the final verification step
using precision, recall, F1 and accuracy. We leave
generating evidences with language models for fu-
ture work.

5.3 Baselines

We introduce two language model baselines for
comparison. The first baseline, BERTfreeze, uses
an MLP layer on top of a frozen BERT encoder to
make predictions (gradients backpropagate to the
MLP layer only). In this baseline, we aim to extract
the already stored knowledge within BERT model
as an embedding vector, and avoid finetuning the in-
ternal layers, in order to disentangle BERT’s knowl-
edge from it’s ability to serve as a high-capacity
classifier.

The second baseline, BERTfinetune, allows all
the model layers to be updated based on the fact-
verification loss from the MLP layer. This baseline
captures BERT’s ability as both a language model,
and a high-capacity text encoder.

Note that the dataset is evenly distributed among
the three classes, therefore a random baseline
would yield an accuracy of 33%. Also note that the
Fever-baseline model introduced by the task orga-
nizers achieves accuracy score of 48.8% (Thorne
et al., 2018b).

6 Results and Discussion

The results of the three models are reported in Ta-
ble 1. We observe that our proposed approach
(BERTasKB) outperforms BERTfreeze on all
metrics suggesting that querying language models
in QA style is a better approach for extracting their
encoded knowledge. Similarly, BERTasKB
model achieves an accuracy score of 49% which

is comparable to Fever-baseline at 48.8%, except
without the need for explicit document retrieval
and evidence selection. This suggests that lan-
guage models, used as sources of knowledge for
fact checking, are at least as effective as standard
baselines. However, there is still much room for
future research, as the state-of-the-art model on the
Fever shared task achieves an accuracy score of
68.21% (Thorne et al., 2018b).

On the other hand, we find that BERTasKB
lags behind BERTfinetune, as expected, on most
metrics. We hypothesize this is due to the high
capacity of the model, in comparison, and to the
effectiveness of BERT models in text classifica-
tion. Upon examining the results of these two mod-
els closely, we find that BERTasKB struggles
mightily with the NEI category (F1 score of 0.24
vs 0.53) indicating that our current approach might
need specific modules to better tackle that cate-
gory. As both models seem to be equally adept in
identifying the support class (0.57 vs 0.59 F1),
indicating that BERTasKB is unable to distin-
guish between refute and NEI classes. Future
work can further investigate techniques to identify
these two categories.

Interestingly, the BERTfreeze achieves an accu-
racy score of 38% which is slightly better than a
random baseline which achieves 33%.

7 Analysis of Token Prediction Results

In this section, we provide some examples of to-
kens predicted from BERT to understand the per-
formance of “evidence generation”.

First two examples in Table 2 (a, b) are exam-
ples with correct fact-check labels from zeroshot
setting. When a claim has enough context, and con-
tains rather rare names such as “Sarawak”, BERT
manages to predict correct tokens.



40

ID Claim Masked Token Predicted Token Label
a Kuching is the capital of [MASK]. Sarawak Sarawak SUPPORTS
b The Beach’s director was Danny [MASK]. Boyle Boyle SUPPORTS
c Tim Roth was born in [MASK] 1961 London SUPPORTS
d Chile is a [MASK]. country democracy SUPPORTS
e Seohyun [MASK]. sings Park SUPPORTS

Table 2: Examples of token predictions from BERT in zeroshot setting. a, b are correctly fact-checked examples,
and c, d, f are wrongly fact-checked examples.

We also provide detailed analysis on the error
cases to facilitate future work in making further
improvements:

• One common form of errors is that, the en-
tity type of token prediction is biased towards
the way how the training data was written.
For example, sentence c from Table 2 illus-
trates a common claim structure in FEVER
dataset which talks about the birth-year of a
person (e.g., Tim Roth). However, 100% of
our test samples with such structure always
predict city/country (e.g., London). The rea-
son is, in Wikipedia, the birth-years are al-
ways written in the following structure “PER-
SON (born DATE)” (e.g., “Tim Roth (born 14
May 1961)”), and birth city/country written in
“PERSON was born in city/country” structure
(e.g., “Roth was born in Dulwich, London”).
Therefore, to obtain birth-year, the claim had
to be written as Tim Roth (born [MASK]) to
predict correctly.

• Sentence d is another example that the entity
type of token prediction is hard to control. “is
a...” is a very general prefix phrase, making
it hard for BERT model to correctly predict
correct entity type.

• There are lots of short claims in FEVER test
set (approx. 1100 samples) which has less
than 5 tokens (e.g. sentence e). Since there is
very little context, BERT struggles to predict
correctly.

One of the the main insight we get from these
analysis is that, the way the language model is
initially pre-trained, greatly determines the way it
should be “queried”.

8 Conclusions & Future Work

In this paper, we explored a new fact-checking
pipeline that use language models as knowledge

bases. Unlike previous pipelines that required dedi-
cated components for document retrieval and sen-
tence scoring, our approach simply translates a
given claim into a fill-in-the-blank type query and
relies on a BERT language model to generate the
“evidence”. Our experiment shows that this ap-
proach is comparable to the standard baselines on
the FEVER dataset, though not enough to beat the
state-of-the-art using the traditional pipeline. How-
ever, we believe our approach has strong potential
for improvement, and future work can explore us-
ing stronger models for generating evidences, or
improving the way how we mask claims.

In the future, we will investigate sequence-to-
sequence language models such as BART (Lewis
et al., 2019) or T5 (Raffel et al., 2019), that have re-
cently shown to be effective on generative question-
answering (Roberts et al., 2020). Similarly, our
proposed approach seem to struggle with correctly
identifying NEI cases, and we plan to investigate
adding specific modules to deal with NEI. Lastly,
we plan to explore new ways of pre-training lan-
guage models to better store and encode knowl-
edge.

Acknowledgements

We would like to thank Fabio Petroni for the helpful
discussion and inspiration.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint arXiv:1803.07640.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-



41

dings, convolutional neural networks and incremen-
tal parsing. To appear, 7(1).

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton
Bakhtin, Yuxiang Wu, Alexander H Miller, and Se-
bastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the pa-
rameters of a language model? arXiv preprint
arXiv:2002.08910.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018a.
Fever: a large-scale dataset for fact extraction and
verification. arXiv preprint arXiv:1803.05355.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018b. The fact extraction and verification (fever)
shared task. arXiv preprint arXiv:1811.10971.


