
Langsmith: An Interactive Academic Text Revision System

Takumi Ito∗,1,2 , Tatsuki Kuribayashi∗,1,2, Masatoshi Hidaka∗,3,
Jun Suzuki1,4, and Kentaro Inui1,4

1Tohoku University 2Langsmith Inc. 3Edge Intelligence Systems Inc. 4RIKEN
{t-ito, kuribayashi, jun.suzuki, inui}@ecei.tohoku.ac.jp

hidaka@edgeintelligence.jp

Abstract

Despite the current diversity and inclusion
initiatives in the academic community, re-
searchers with a non-native command of En-
glish still face significant obstacles when writ-
ing papers in English. This paper presents
the Langsmith editor, which assists inexpe-
rienced, non-native researchers to write En-
glish papers, especially in the natural lan-
guage processing (NLP) field. Our system
can suggest fluent, academic-style sentences
to writers based on their rough, incomplete
phrases or sentences. The system also en-
courages interaction between human writers
and the computerized revision system. The
experimental results demonstrated that Lang-
smith helps non-native English-speaker stu-
dents write papers in English. The system is
available at https://emnlp-demo.editor.
langsmith.co.jp/.

1 Introduction

Currently, diversity and inclusion in the natural
language processing (NLP) community are encour-
aged. In fact, at the latest NLP conference at the
time of writing1, papers were submitted from more
than 50 countries. However, one obstacle can limit
this diversity: The papers must be written in En-
glish. Writing papers in English can be a daunt-
ing task, especially for inexperienced, non-native
speakers. These writers often struggle to put their
ideas into words.

To address this problem, we built the Langsmith
editor, an assistance system for writing NLP papers
in English.2 The main feature in Langsmith is a
revision function, which suggests fluent, academic-

∗ The authors contributed equally
1The 58th Annual Meeting of the Association for Compu-

tational Linguistics
2See https://www.youtube.com/channel/

UCjHeZPe0tT6bWxVVvum1bFQ for the screencast.

We observed significant differences
in the results between A and B.

We saw difference in the results
between A and B.

• We observed significant differences
in the results between A and B.

• We noticed a slight difference in the
results between A and B.

• We also saw a difference in the
results between A and B

Please rephrase the words around saw.

The first one is exactly what I was trying to say!

Okay. Is there anything you’d like to write?

request

select

suggest
diverse

candidates

human revision
system

Langsmith

Figure 1: An overview of interactively writing texts
with a revision system.

style sentences based on writers’ rough, incom-
plete drafts.

The drafts might be so rough that it becomes
challenging to understand the user’s intended mean-
ing to use as inputs. In addition, several potentially
plausible revisions can exist for the drafts, espe-
cially when the input draft is incomplete.

Based on such difficulties, our system provides
two ways for users to customize the revision: the
users can (i) request specific revisions, and (ii) se-
lect a suitable revision from diverse candidates (Fig-
ure 1). In particular, the request stage allows users
to specify the parts that require intensive revision.

Our experiments demonstrate the effectiveness
of our system. Specifically, students whose first
language is Japanese, which differs greatly from
English, managed to write better drafts when work-
ing with Langsmith.

Langsmith has other assistance features as well,
such as text completion with a neural language

https://emnlp-demo.editor.langsmith.co.jp/
https://emnlp-demo.editor.langsmith.co.jp/
https://www.youtube.com/channel/UCjHeZPe0tT6bWxVVvum1bFQ
https://www.youtube.com/channel/UCjHeZPe0tT6bWxVVvum1bFQ

Figure 2: Screenshot of Langsmith. The revision feature suggests various revisions for the input “Grammar
error correction (GEC) () of automatically correcting errors made by a human writer in text.” The characters
highlighted in green are added to the original sentence, and the red points indicate tracked deletions.

model. Furthermore, the communication between
the server and the web frontend is achieved via a
protocol specialized in writing software called the
Text Editing Assistance Smartness Protocol for Nat-
ural Language (TEASPN) (Hagiwara et al., 2019).
We hope that our system will help the NLP com-
munity and researchers, especially those lacking a
native command of English.3

2 Related work

2.1 Natural language processing for
academic writing

Academic writing assistance has gained consider-
able attention in NLP (Wu et al., 2010; Yimam
et al., 2020; Lee and Webster, 2012), and several
shared tasks have been organized (Dale and Kil-
garriff, 2011; Daudaravičius, 2015). These tasks
focus on polishing texts in already published ar-
ticles or documents near completion. In contrast,
this study focuses on revising texts in the earlier
stages of writing (e.g., first drafts), where inexpe-
rienced, non-native authors might even struggle to
convey their ideas accurately.

Ito et al. (2019) introduced a dataset and models
for revising early-stage drafts, and the 1-to-N na-
ture of the revisions was pointed out. We tackled
this difficulty by designing an overall demonstra-
tion system, including a user interface.

2.2 Writing assistance tools

Error checkers. Grammar/spelling checkers are
typical writing assistance tools. Some highlight er-
rors (e.g., Write&Improve4), while others suggest

3This paper was also written using Langsmith.
4writeandimprove.com

corrections (e.g., Grammarly5, LanguageTool6,
Ginger7, and LinggleWrite; see Tsai et al. (2020))
for writers.

Langsmith has a revision feature (Ito et al.,
2019), as well as a grammar/spelling checker. The
revision feature suggests better versions of poor
written phrases or sentences in terms of fluency
and style, whereas error checkers are typically de-
signed to correct apparent errors only. In addition,
Langsmith is specialized for the NLP domain and
enables domain-specific revisions, such as correct-
ing technical terms.

Text completion. Completing a text is another
typical feature in writing assistance applications
(WriteAhead8, Write With Transformer9, and Smart
Compose; see Chen et al. (2019)). Our system also
has a completion feature, which is specialized in
academic writing (e.g., completing a text based on
a section name).

3 The Langsmith editor

3.1 Overview

This section presents Langsmith, a web-based text
editor for academic writing assistance (Figure 2).
The system has the following three features: (i)
text revision, (ii) text completion, and (iii) a gram-
matical/spelling error checker. These features are
activated when users select a text span, type a word,
or push a special key.

5https://www.grammarly.com
6https://languagetool.org
7https://www.gingersoftware.com
8writeahead.nlpweb.org
9https://transformer.huggingface.co

writeandimprove.com
https://www.grammarly.com
https://languagetool.org
https://www.gingersoftware.com
writeahead.nlpweb.org
https://transformer.huggingface.co

(a) Revisions focusing on This formulation · · · and output.

(b) Revisions focusing on promote.

(c) Revisions focusing on human–computer interaction.

Figure 3: The focus of the revision depends on the parts
selected by users.

As a case study, this work focuses on paper writ-
ing in the NLP domain. Thus, each assistance
feature is specialized in the NLP domain. The fol-
lowing sections explain the details of each feature.

3.2 Revision feature

The revision feature, the main feature of Langsmith,
suggests better sentences in terms of fluency and
style for a given draft sentence (Figure 2). This
feature is activated when the user selects a sentence
or smaller unit.

Writers sometimes struggle to put their ideas
into words. Thus, the input draft for the revision
systems can be incomplete, or less informative.
Based on such a challenging situation, we examine
the REQUEST and SELECT framework to help users
discover sentences that better match what the user
wanted to write.

REQUEST stage. Langsmith provides two ways
for users to request a specific revision, which can
prevent unnecessary revisions being provided to
the user.

First, users can specify where the system should
intensively revise a text.10 That is, when a part
of a sentence is selected, the system intensively
rephrases the words around the selected part.11 Fig-
ure 3 demonstrates the change of the revision fo-
cus, depending on the selected text span. Note that
controlling the revision focus was not explored in
the original sentence-level revision task (Ito et al.,
2019). This feature is also inspired by Grangier
and Auli (2018).

Second, users can insert placeholder symbols,
“()”, at specific points in a sentence. The sys-
tem revises the sentence by replacing the symbol
with an appropriate expression regarding its con-
text. The input for the revision in Figure 2 also
has the placeholder symbol. Here, for example,
the symbol is replaced with “the task.” This fea-
ture is inspired by Zhu et al. (2019); Donahue et al.
(2020); Ito et al. (2019).

SELECT stage. The system provides several re-
visions (Figure 2). Note that there is typically more
than one plausible revision in terms of fluency
and style, in contrast to correcting surface-level
errors (Napoles et al., 2017).

The diversity of the output revisions is encour-
aged using diverse beam search (Vijayakumar et al.,
2018). In addition, these revisions are ordered by a
language model that is fine-tuned for NLP papers.
That is, revisions with lower perplexity are listed
in the upper part of the suggestion box. Further-
more, the revisions are highlighted in colors, which
makes it easier to distinguish the characteristics of
each revision.

Implementation. We trained a revision model
using LightConv (Wu et al., 2019) implemented in
Fairseq (Ott et al., 2019). The revision model gen-
erates a sentence based on a given input sentence.
The model was trained on a slightly modified ver-
sion of the synthetic training data used in Ito et al.
(2019). As an example of these modifications, syn-
thetic edit marks were added for a subset of the
training data. These marks were attached to a part

10The system performs sentence-level revisions. Hence the
users are instructed to select the non-sentence-crossing area.

11We allow the system to correct the parts outside the se-
lected span because sometimes the revision for a specific part
requires another adjustment for the other parts.

Figure 4: An example of the completion feature. These
suggestions are conditioned by the left context, section
name (Related work) and the paper title (Better Models
for Grammatical Error Correction.)

Figure 5: The interface of the error correction feature.
Errors are automatically highlighted with a red line.
The corrections are suggested when the user hovers
over the highlighted words.

of the input sentence that has many edits compared
to its reference.12 Thus, the marks can provide
a hint for the system to determine where to edit.
When using Langsmith, the marks are attached
to the span selected by the users. The system is
expected to intensively revise the wording in the
specified span. Details are in Appendix A.

3.3 Other features

Completion feature. When the user presses the
Tab key, the completion feature generates plausi-
ble preceding phrases from the cursor point (Fig-
ure 4). This feature can consider the paper title and
section name as well as the text to the left of the
cursor.

We used GPT-2 small (117M) (Radford et al.,
2019) fine-tuned on the papers collected from the
ACL Anthology13. Paper titles and section names
were concatenated at the beginning of the corre-
sponding paragraphs in the fine-tuning data. De-
tails are in Appendix B.

12Special symbols are attached at the beginning and the end
of the specific subsequence.

13https://www.aclweb.org/anthology

Error correction feature. We used Language-
Tool,14 an open-source grammatical/spelling error
correction tool. Each time the text changes, this
feature is called upon. The detected errors are
then automatically highlighted with red lines (Fig-
ure 5).The corrections are listed when the user hov-
ers over the highlighted words.

3.4 Protocol

Langsmith was developed based on the TEA-
SPN Software Development Kit (Hagiwara et al.,
2019).15 TEASPN defines a set of APIs for writing
software (e.g., text editors) to communicate with
servers that implement NLP technologies (e.g., re-
vision model). We extended the protocol to con-
vey title and section information in the completion
feature. Since Langsmith is a browser-based tool
and frequently communicates with a web server
running models, we used WebSocket to achieve
smooth communication.

4 Experiments and results

We demonstrate the effectiveness of human–
machine interactions in revising drafts imple-
mented in our system. We also check whether
the REQUEST stage in the revision feature works
adequately.

4.1 On the revised draft quality

Settings. We suppose a situation where a per-
son writes a draft in their native language (non-
English language), translates it to English, and
then revises it further to create an English-language
draft. In order to simulate this situation, we first
collected Japanese-language version of the abstract
sections from eight Japanese peer-reviewed jour-
nals.16 Then, the abstracts were translated into
English with an off-the-shelf translation system17.
We considered the translated abstracts as first drafts.
The task is to revise the first drafts. Expert transla-
tors created reference final drafts from the Japanese
versions of the drafts.18 We evaluated the quality
of the revised versions by comparing them with the
corresponding final drafts.

14https://github.com/languagetool-org/
languagetool/releases/tag/v3.2

15https://github.com/teaspn/teaspn-sdk
16We used the journals accepted at https://www.anlp.

jp/en/index.html.
17https://translate.google.co.jp
18We used https://www.ulatus.com/.

https://www.aclweb.org/anthology
https://github.com/languagetool-org/languagetool/releases/tag/v3.2
https://github.com/languagetool-org/languagetool/releases/tag/v3.2
https://github.com/teaspn/teaspn-sdk
https://www.anlp.jp/en/index.html
https://www.anlp.jp/en/index.html
https://translate.google.co.jp
https://www.ulatus.com/

Condition BLEURT

HUMAN&MACHINE -0.08
HUMAN-ONLY -0.14
MACHINE-ONLY -0.18

First drafts -0.36

Table 1: Comparison of the revision quality. The scores
are averaged over the corresponding revisions. Higher
scores indicate that the drafts are closer to the final
drafts.

We compared three versions of revised drafts to
evaluate the effectiveness of Langsmith:

• one fully and automatically revised by Lang-
smith (MACHINE-ONLY revision)
• one revised by a human writer without Lang-

smith (HUMAN-ONLY revision), and
• one revised by a human writer us-

ing assistance features in Langsmith
(HUMAN&MACHINE revision).

The following paragraphs explain how we obtained
the above three versions of the revisions. Ap-
pendix C shows the statistics of the drafts.

MACHINE-ONLY revision. We automatically
applied the revision feature to the drafts (each sen-
tence) without the REQUEST and Select stages. For
each sentence, the revision with the highest gener-
ation probability was selected.19 We created one
MACHINE-ONLY revision for each first draft.

HUMAN-ONLY revision. Human writers revise
a given first draft. The writers can only access to
the error correction feature. This setting simulates
the situations that writers typically face.

HUMAN&MACHINE revision. Human writers
revise a given first draft with full access to the
Langsmith features.

Human writers. We asked 16 undergraduate and
master’s students at an NLP laboratory to revise
the first drafts in terms of fluency and style. The
students were Japanese natives, representatives of
the inexperienced researchers in a country where
the spoken language is considerably different from
English. Each participant revised two different first
drafts, one with the HUMAN-ONLY setting and the
other one with the HUMAN&MACHINE setting.

19The hyperparameters for decoding revisions were the
same as the revision feature in Langsmith. Re-ranking with
the language model was also employed.

Q. Strongly
agree

Slightly
agree

Slightly
disagree

Strongly
disagree

(I) 87.5 12.5 0.0 0.0
(II) 50.0 50.0 0.0 0.0
(III) 62.5 31.3 6.3 0.0
(IV) 12.5 50.0 31.3 6.3
(V) 75.0 12.5 6.3 6.3
(VI) 43.8 43.8 12.5 0.0

Table 2: Results of the user study about (I)-(VI). The
scores denote the percentage of the participants who
chose the option.

Half of the participants first revised a draft
with the HUMAN-ONLY setting, and then revised
another draft with the HUMAN&MACHINE set-
ting; the other half performed the same task in
the opposite order. Ultimately, we collected two
HUMAN&MACHINE revisions and two HUMAN-
ONLY revisions for each first draft.

Comparison and results. We compared the
quality of the three versions of the revised drafts:
MACHINE-ONLY revision, HUMAN-ONLY revi-
sion, and HUMAN&MACHINE revision. We com-
pared the revised drafts with their corresponding
final draft using BLEURT (Sellam et al., 2020),
the state-of-the-art automatic evaluation metric for
natural language generation tasks. Details of the
evaluation procedure is shown in Appendix D. Note
that the score is not in the range [0, 1], and a higher
score means that the revision is closer to the final
draft. Table 1 shows that HUMAN&MACHINE re-
visions were significantly better20 than MACHINE-
ONLY and HUMAN-ONLY revisions. The results
suggest the effectiveness of human–machine inter-
action achieved in Langsmith. Since this experi-
ment was relatively small in scale and only used
an automatic evaluation metric, we will conduct a
larger-scale experiment with human evaluations in
the future.

4.2 User study
After the experiments outlined in Section 4.1, we
asked the participants about the usability of Lang-
smith. The 16 participants were instructed to eval-
uate the following statements:

(I) Langsmith was more helpful than the Baseline
environment for the revision task.

20We applied a bootstrap hypothesis test (Koehn, 2004), and
the score of HUMAN&MACHINE was significantly higher than
the HUMAN-ONLY and MACHINE-ONLY scores (p < 0.05).

Feature percentage

revision 100
completion 31.3
correction 62.5

Table 3: Results of the user study about helpful fea-
tures. The scores denote the percentage of the partici-
pants who chose the feature (multiple choice question).

(II) Comparing the text written by the two envi-
ronments, the text written with Langsmith was
better.

(III) The feature of specifying where to intensively
revise was helpful.

(IV) The placeholder feature in the revision feature
was helpful.

(V) Providing more than one output from the revi-
sion feature was helpful.

(VI) Providing more than one output from the com-
pletion feature was helpful.

The participants evaluated the statements (I)-(VI)
on a four-point scale: (a) strongly agree, (b) slightly
agree, (c) slightly disagree, and (d) strongly dis-
agree. In addition, the participants answered
whether each feature was helpful in writing.

Results. Tables 2 and 3 show the results of our
user study. From the responses to (I) and (II), we
observed that the users were satisfied with the writ-
ing experience with Langsmith. The responses to
(III), (IV), and (V) support the idea that our RE-
QUEST and SELECT stages are helpful. Here, using
the place holders was relatively not helpful. The
responses to (VI) also suggest that showing several
candidates does not bother the users. Table 3 dis-
plays the result of whether each feature was helpful
in writing. The result indicates that the revision fea-
ture was the most useful for creating drafts using
the implemented features.

4.3 Sanity check of the REQUEST stage

Finally, we checked the validity of our method to
control the revision based on the selected part of
the sentence (Figure 3).

Settings. We randomly collected 1,000 sentences
from the first drafts created with the translation
system. In each sentence with T tokens x =
(w1, · · · , wT), we randomly inserted edit marks
to specify a certain span s = (i, j) in x (1 ≤ i <
j ≤ T, 1 ≤ j − i ≤ 5). Specifically, special to-

kens were inserted before wi and after wj in x. We
denote the input sentence with these edit marks as
xedit. We then obtained 10-best outputs of the revi-
sion system (yedit

1 , · · · , yedit
10) for each xedit. Here,

these output sentences were generated through the
diverse beam search with the same settings as the
revision feature in Langsmith. We calculated the
following score for each input sentence and its re-
visions:

r = |{yedit
k | xi:j ∈ ngram(yedit

k), 1 ≤ k ≤ 10}|

where xi:j denotes the subsequence (wi, · · · , wj)
in x. The function ngram(·) returns a set of all the
n-grams of a given sequence. A lower r indicates
that the subsequence specified with the edit marks
are more frequently rephrased.

We also obtained a score r′ for each x. r′ was
calculated using the input without the edit marks x
and its 10-best outputs yk. We compared r and r′

for each x.

Results. We observed that r frequently21 had
lower values than r′. That is, a certain subsequence
was more rephrased by the revision system when
it had the edit marks than when it did not. These
results validate our approach of controlling the revi-
sion focus, which is implemented in the REQUEST

stage of the revision feature.

5 Conclusions

We have presented Langsmith, an academic writing
assistance system. Langsmith provides a writing
environment, in which human writers use several
assistance features to improve the quality of texts.
Our experiments suggest that our system is useful
for inexperienced, non-native writers in revising
English-language papers. We are aware that our
experimental settings were not fully well-designed
(e.g., we had only Japanese participants, and no
human evaluation). We will evaluate Langsmith
in more sophisticated settings. We hope that our
system contributes to breaking language barriers in
the academic community.

Acknowledgement

We are grateful to Ana Brassard for her feedback on
English. We also appreciate the participants of our
user studies. This work was supported by Grant-in-
Aid for JSPS Fellows Grant Number JP20J22697.

21We conducted the one-side sign test. The difference is
significant with p ≤ 0.05.

References
Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan

Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yi-
nan Wang, Andrew M. Dai, Zhifeng Chen, Timothy
Sohn, and Yonghui Wu. 2019. Gmail smart com-
pose: Real-time assisted writing. In Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Miningg (KDD’19),
page 2287–2295.

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The HOO 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation (ENLG 2011), pages 242–249.

Vidas Daudaravičius. 2015. Automated evaluation of
scientific writing: AESW shared task proposal. In
Proceedings of the Tenth Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2015), pages 56–63.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2020),
pages 2492–2501. Association for Computational
Linguistics.

David Grangier and Michael Auli. 2018. QuickEdit:
Editing text & translations by crossing words out.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL 2018), pages 272–282.

Masato Hagiwara, Takumi Ito, Tatsuki Kuribayashi,
Jun Suzuki, and Kentaro Inui. 2019. TEASPN:
Framework and protocol for integrated writing as-
sistance environments. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing: Sys-
tem Demonstrations (EMNLP-IJCNLP 2019), pages
229–234.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural
Text Degeneration. In Proceedings of the 8th Inter-
national Conference on Learning Representations
(ICLR 2020).

Takumi Ito, Tatsuki Kuribayashi, Hayato Kobayashi,
Ana Brassard, Masato Hagiwara, Jun Suzuki, and
Kentaro Inui. 2019. Diamonds in the rough: Gen-
erating fluent sentences from early-stage drafts for
academic writing assistance. In Proceedings of the
12th International Conference on Natural Language
Generation (INLG 2019), pages 40–53.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2004), pages
388–395.

John Lee and Jonathan Webster. 2012. A corpus of tex-
tual revisions in second language writing. In Pro-
ceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2012),
pages 248–252.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2017), pages 229–234.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Sys-
tem Demonstrations (NAACL 2019), pages 48–53.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2020), pages 7881–7892.

Chung-Ting Tsai, Jhih-Jie Chen, Ching-Yu Yang, and
Jason S. Chang. 2020. LinggleWrite: a coaching
system for essay writing. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations (ACL
2020), pages 127–133.

Ashwin K. Vijayakumar, Michael Cogswell, Ram-
prasaath R. Selvaraju, Qing Sun, Stefan Lee, David J.
Crandall, and Dhruv Batra. 2018. Diverse Beam
Search: Decoding Diverse Solutions from Neural
Sequence Models. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI 2018), pages 7371–7379.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv preprint arXiv:1910.03771.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay Less Attention with
Lightweight and Dynamic Convolutions. In Pro-
ceedings of the 7th International Conference on
Learning Representations (ICLR 2019).

Jian-Cheng Wu, Yu-Chia Chang, Teruko Mitamura,
and Jason S. Chang. 2010. Automatic Collocation
Suggestion in Academic Writing. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics Conference Short Papers
(ACL 2010), pages 115–119.

https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3292500.3330723
https://www.aclweb.org/anthology/W11-2838
https://www.aclweb.org/anthology/W11-2838
https://doi.org/10.3115/v1/W15-0607
https://doi.org/10.3115/v1/W15-0607
https://www.aclweb.org/anthology/2020.acl-main.225
https://www.aclweb.org/anthology/2020.acl-main.225
https://doi.org/10.18653/v1/N18-1025
https://doi.org/10.18653/v1/N18-1025
https://doi.org/10.18653/v1/D19-3039
https://doi.org/10.18653/v1/D19-3039
https://doi.org/10.18653/v1/D19-3039
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/W19-8606
https://doi.org/10.18653/v1/W19-8606
https://doi.org/10.18653/v1/W19-8606
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/P12-2049
https://www.aclweb.org/anthology/P12-2049
https://www.aclweb.org/anthology/E17-2037
https://www.aclweb.org/anthology/E17-2037
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.aclweb.org/anthology/2020.acl-main.704
https://www.aclweb.org/anthology/2020.acl-main.704
https://www.aclweb.org/anthology/2020.acl-demos.17
https://www.aclweb.org/anthology/2020.acl-demos.17
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1610.02424
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://www.aclweb.org/anthology/P10-2021
https://www.aclweb.org/anthology/P10-2021

Seid Muhie Yimam, Gopalakrishnan Venkatesh, John
Lee, and Chris Biemann. 2020. Automatic compila-
tion of resources for academic writing and evaluat-
ing with informal word identification and paraphras-
ing system. In Proceedings of the 12th Language
Resources and Evaluation Conference (LREC 2020),
pages 5896–5904.

Wanrong Zhu, Zhiting Hu, and Eric Xing. 2019. Text
Infilling. arXiv preprint arXiv:1901.00158.

https://www.aclweb.org/anthology/2020.lrec-1.722
https://www.aclweb.org/anthology/2020.lrec-1.722
https://www.aclweb.org/anthology/2020.lrec-1.722
https://www.aclweb.org/anthology/2020.lrec-1.722
http://arxiv.org/abs/1901.00158
http://arxiv.org/abs/1901.00158

A Details on revision model

Data. We trained the revision model using the
slightly modified version of the synthetic training
data introduced in Ito et al. (2019). They created
several types of synthetic training data with several
noising methods; (i) heuristic noising method, (i)
grammatical error generation, (iii) style removal,
and (iv) entailed sentence generation. We used the
data created by the heuristic noising method, style
removal, and the entailed sentence generation for
training the revision model. Note that we did not
use the data generated by the grammatical error
generation because grammatical error correction
feature was implemented separately from the revi-
sion feature in Langsmith.

We attached the edit marks to the subpart of
the training data generated by the style removal
method. Let x1:N = (x1, x2, · · · , xN) and y1:T =
(y1, y1, · · · , yM) be an input sentence with N to-
kens and its revision with M tokens, respectively.
Here x was the synthetic draft sentence generated
by the style removal method from y. The training
dataset consists of the pairs of (x, y).

For each (x, y), we first determined if each word
in x was rewritten compared to y. We assumed that
a token xi ∈ x was rewritten if a token with the
same lemma as xi was not in {yj |max(0, i− 3) ≤
j ≤ min(M, i+3)}. Here we obtained a sequence
c ∈ {0, 1}N , where each element ci corresponds
to whether the token xi was rewritten or not. If xi
was written in y, ci is 1; otherwise ci is 0. Then,
we defined a score r(c) for each (x, y) as follows:

r(c) =

∑N
i=1 ci
|c|

where | · | returns the length of the vector. If r(c) >
0.4, we did not attach the edit marks.

When r(c) ≤ 0.4, we obtained a span s = (a, b)
for x and c as follows:

argmax
(a,b)∈S

b∑
i=a

c′i −
a−1∑
i=0

c′i −
N+1∑
i=b+1

c′i

where c′i =


10 (ci = 1)

0 (i = 0, N + 1)

−1 (otherwise)

S = {(a, b) | a, b ∈ 1, · · · , N, a ≤ b}

Based on the obtained s = (a, b), we inserted <?
before the token xa, and ?> after the token xb. We
included the data with special symbols added by
such a procedure in the training data.

When the users select a subsequence of a sen-
tence in Langsmith, the edit marks are attached to
the input sentence. For example, if the user selects
a span “promote” in the sentence “This formulation
of the input and output promotes human-computer
interaction.”, the input to the revision feature is
formatted as follows: This formulation of
the input and output <? promotes
?> human-computer interaction.

Model. Table 4 shows the hyperparameters of
the revision model. In the decoding phase, we
used the diverse beam search (Vijayakumar et al.,
2018). Beam size is set to 15. The diverse beam
group and the diverse beam strength are 15 and 1.0,
respectively.

Specifically, we first obtained top-15 hypothe-
ses, and then these hypotheses were re-ranked by
the language model. Here, the language model
considers 20 tokens in the left context and 20 to-
kens in the right context beyond the sentence. We
excluded the hypotheses with a perplexity greater
than 1.3 times the perplexity of the input. We fi-
nally showed the top-8 revisions re-ranked to the
users. The language model used for re-ranking
is the same as the model used for the completion
feature (Appendix B).

B Details on completion model

Data. We collected 234,830 PDFs of the papers
published in ACL Anthology by 2019. We used
GROBID22 for extracting the text information from
the PDF files. The training data is formatted as
shown in Table 5. The title name is omitted with
20% probability. The order of the sections in the
same paper was shuffled.

Model. We used a pre-trained GPT-2 small
(117M). Table 6 shows the hyperparameters for
fine-tuning the pre-trained GPT-2. We used an im-
plementation in Transformers (Wolf et al., 2019).
We used nucleus sampling (Holtzman et al., 2020)
with p = 0.97 to generate the texts.

C Statistics of the drafts

Table 7 shows the statistics of the drafts collected
in Section 4. The column “word type” shows the
number of types of the tokens used in the drafts.

22https://github.com/kermitt2/grobid

https://github.com/kermitt2/grobid

Fairseq model architecture lightconv iwslt de en

Optimizer

algorithm Adam
learning rate 5e-4
adam epsilon 1e-08
adam betas (0.9, 0.98)
weight decay 0.0001
clip norm 0.0

Learning rate scheduler

type inverse sqrt
warmup updates 4000
warmup init lrarning rate 1e-7
min learning rate 1e-9

Training
batch size 24,000 tokens
updates 1,050,530 steps

Table 4: Hyperparameters of the revision feature.

@ Title @

* Section name
Texts in the section
· · ·

* Section name
Texts in the section
〈|endoftext|〉

@ Title (of another paper) @
· · ·

Table 5: The format of the training data for the comple-
tion model.

D Details on the evaluation in Section 4.1

We used BLEURT-Base with 128 max tokens.23

BLEURT is designed to evaluate the similarity of a
given sentence pair. Thus, we first split each draft
into sentences, and each sentence in the first drafts
was aligned with the most similar sentence in the
corresponding final draft.24 Sentence splitting was
achieved by spaCy. Note that the references have
been created so that the sentence separation does
not change from the original first draft. Finally, we
calculated the similarity of each sentence pair with
BLEURT, and averaged the results.

23https://storage.googleapis.com/
bleurt-oss/bleurt-base-128.zip

24Sentence similarity was also computed by BLEURT.

https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip
https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip

Model architecture gpt2

Optimizer

algorithm Adam
learning rate 5e-5
adam epsilon 1e-8
adam betas (0.9, 0.999)
weight decay 0.0
clip norm 1.0

Learning rate scheduler

type linear
warmup updates 0
max learning rate 5e-5
total epochs (just used for scheduling) 100

Training
batch size 262,144 tokens
updates 138,300 steps

Table 6: Hyperparameters for fine-tuning LMs.

drafts length word types

Final drafts (reference) 199 ± 52 108 ± 17
HUMAN&MACHINE 192 ± 40 101 ± 17
HUMAN-ONLY 192 ± 43 100 ± 16
MACHINE-ONLY 199 ± 58 105 ± 22
First drafts 202 ± 56 104 ± 22

Table 7: Statistics of the drafts. The scores are averaged over the drafts. The values following “±” denote the
standard deviation of the scores.

