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Abstract
We present BERTweet, the first public large-
scale pre-trained language model for English
Tweets. Our BERTweet, having the same ar-
chitecture as BERTbase (Devlin et al., 2019), is
trained using the RoBERTa pre-training pro-
cedure (Liu et al., 2019). Experiments show
that BERTweet outperforms strong baselines
RoBERTabase and XLM-Rbase (Conneau et al.,
2020), producing better performance results
than the previous state-of-the-art models on
three Tweet NLP tasks: Part-of-speech tag-
ging, Named-entity recognition and text clas-
sification. We release BERTweet under the
MIT License to facilitate future research and
applications on Tweet data. Our BERTweet
is available at: https://github.com/
VinAIResearch/BERTweet.

1 Introduction

The language model BERT (Devlin et al., 2019)—
the Bidirectional Encoder Representations from
Transformers (Vaswani et al., 2017)—and its vari-
ants have successfully helped produce new state-
of-the-art performance results for various NLP
tasks. Their success has largely covered the com-
mon English domains such as Wikipedia, news
and books. For specific domains such as biomed-
ical or scientific, we could retrain a domain-
specific model using the BERTology architecture
(Beltagy et al., 2019; Lee et al., 2019; Gururangan
et al., 2020).

Twitter has been one of the most popular micro-
blogging platforms where users can share real-
time information related to all kinds of topics and
events. The enormous and plentiful Tweet data
has been proven to be a widely-used and real-time
source of information in various important ana-
lytic tasks (Ghani et al., 2019). Note that the char-
acteristics of Tweets are generally different from
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those of traditional written text such as Wikipedia
and news articles, due to the typical short length of
Tweets and frequent use of informal grammar as
well as irregular vocabulary e.g. abbreviations, ty-
pographical errors and hashtags (Eisenstein, 2013;
Han et al., 2013). Thus this might lead to a chal-
lenge in applying existing language models pre-
trained on large-scale conventional text corpora
with formal grammar and regular vocabulary to
handle text analytic tasks on Tweet data. To the
best of our knowledge, there is not an existing lan-
guage model pre-trained on a large-scale corpus of
English Tweets.

To fill the gap, we train the first large-scale lan-
guage model for English Tweets using a 80GB
corpus of 850M English Tweets. Our model uses
the BERTbase model configuration, trained based
on the RoBERTa pre-training procedure (Liu et al.,
2019). We evaluate our model and compare it with
strong competitors, i.e. RoBERTabase and XLM-
Rbase (Conneau et al., 2020), on three downstream
Tweet NLP tasks: Part-of-speech (POS) tagging,
Named-entity recognition (NER) and text classi-
fication. Experiments show that our model out-
performs RoBERTabase and XLM-Rbase as well as
the previous state-of-the-art (SOTA) models on all
these tasks. Our contributions are as follows:

• We present the first large-scale pre-trained lan-
guage model for English Tweets.

• Our model does better than its competitors
RoBERTabase and XLM-Rbase and outperforms
previous SOTA models on three downstream
Tweet NLP tasks of POS tagging, NER and text
classification, thus confirming the effectiveness
of the large-scale and domain-specific language
model pre-trained for English Tweets.

• We also provide the first set of experiments in-
vestigating whether a commonly used approach
of applying lexical normalization dictionaries
on Tweets (Han et al., 2012) would help im-
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prove the performance of the pre-trained lan-
guage models on the downstream tasks.

• We publicly release our model under the name
BERTweet which can be used with fairseq
(Ott et al., 2019) and transformers (Wolf
et al., 2019). We hope that BERTweet can serve
as a strong baseline for future research and ap-
plications of Tweet analytic tasks.

2 BERTweet

In this section, we outline the architecture, and de-
scribe the pre-training data and optimization setup
that we use for BERTweet.

Architecture
Our BERTweet uses the same architecture as
BERTbase, which is trained with a masked lan-
guage modeling objective (Devlin et al., 2019).
BERTweet pre-training procedure is based on
RoBERTa (Liu et al., 2019) which optimizes the
BERT pre-training approach for more robust per-
formance. Given the widespread usage of BERT
and RoBERTa, we do not detail the architecture
here. See Devlin et al. (2019) and Liu et al. (2019)
for more details.

Pre-training data
We use an 80GB pre-training dataset of uncom-
pressed texts, containing 850M Tweets (16B word
tokens). Here, each Tweet consists of at least 10
and at most 64 word tokens. In particular, this
dataset is a concatenation of two corpora:

• We first download the general Twitter Stream
grabbed by the Archive Team,1 containing
4TB of Tweet data streamed from 01/2012 to
08/2019 on Twitter. To identify English Tweets,
we employ the language identification compo-
nent of fastText (Joulin et al., 2017). We to-
kenize those English Tweets using “TweetTo-
kenizer” from the NLTK toolkit (Bird et al.,
2009) and use the emoji package to translate
emotion icons into text strings (here, each icon
is referred to as a word token).2 We also normal-
ize the Tweets by converting user mentions and
web/url links into special tokens @USER and
HTTPURL, respectively. We filter out retweeted
Tweets and the ones shorter than 10 or longer
than 64 word tokens. This pre-process results in
the first corpus of 845M English Tweets.
1https://archive.org/details/

twitterstream
2https://pypi.org/project/emoji

• We also stream Tweets related to the COVID-19
pandemic, available from 01/2020 to 03/2020.3

We apply the same data pre-process step as de-
scribed above, thus resulting in the second cor-
pus of 5M English Tweets.

We then apply fastBPE (Sennrich et al., 2016)
to segment all 850M Tweets with subword units,
using a vocabulary of 64K subword types. On av-
erage there are 25 subword tokens per Tweet.

Optimization
We utilize the RoBERTa implementation in the
fairseq library (Ott et al., 2019). We set a
maximum sequence length at 128, thus generating
850M × 25 / 128 ≈ 166M sequence blocks. Fol-
lowing Liu et al. (2019), we optimize the model
using Adam (Kingma and Ba, 2014), and use a
batch size of 7K across 8 V100 GPUs (32GB each)
and a peak learning rate of 0.0004. We pre-train
BERTweet for 40 epochs in about 4 weeks (here,
we use the first 2 epochs for warming up the learn-
ing rate), equivalent to 166M × 40 / 7K ≈ 950K
training steps.

3 Experimental setup

We evaluate and compare the performance of
BERTweet with strong baselines on three down-
stream NLP tasks of POS tagging, NER and text
classification, using benchmark Tweet datasets.

Downstream task datasets
For POS tagging, we use three datasets Ritter11-
T-POS (Ritter et al., 2011), ARK-Twitter4 (Gim-
pel et al., 2011; Owoputi et al., 2013) and
TWEEBANK-V25 (Liu et al., 2018). For NER, we
employ datasets from the WNUT16 NER shared
task (Strauss et al., 2016) and the WNUT17 shared
task on novel and emerging entity recognition
(Derczynski et al., 2017). For text classification,
we employ the 3-class sentiment analysis dataset
from the SemEval2017 Task 4A (Rosenthal et al.,
2017) and the 2-class irony detection dataset from
the SemEval2018 Task 3A (Van Hee et al., 2018).

For Ritter11-T-POS, we employ a 70/15/15
training/validation/test pre-split available from
Gui et al. (2017).6 ARK-Twitter contains two

3We collect Tweets containing at least one of 11 COVID-
19 related keywords, e.g. covid19, coronavirus, sars-cov-2.

4https://code.google.com/archive/p/
ark-tweet-nlp/downloads (twpos-data-v0.3.tgz)

5https://github.com/Oneplus/Tweebank
6https://github.com/guitaowufeng/TPANN
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files daily547.conll and oct27.conll in
which oct27.conll is further split into files
oct27.traindev and oct27.test. Fol-
lowing Owoputi et al. (2013) and Gui et al.
(2017), we employ daily547.conll as a test
set. In addition, we use oct27.traindev and
oct27.test as training and validation sets, re-
spectively. For the TWEEBANK-V2, WNUT16
and WNUT17 datasets, we use their existing
training/validation/test split. The SemEval2017-
Task4A and SemEval2018-Task3A datasets are
provided with training and test sets only (i.e. there
is not a standard split for validation), thus we sam-
ple 10% of the training set for validation and use
the remaining 90% for training.

We use a “soft” normalization strategy to all of
the experimental datasets by translating word to-
kens of user mentions and web/url links into spe-
cial tokens @USER and HTTPURL, respectively,
and converting emotion icon tokens into corre-
sponding strings. We also apply a “hard” strategy
by further applying lexical normalization dictio-
naries (Aramaki, 2010; Liu et al., 2012; Han et al.,
2012) to normalize word tokens in Tweets.

Fine-tuning
Following Devlin et al. (2019), for POS tagging
and NER, we append a linear prediction layer on
top of the last Transformer layer of BERTweet
with regards to the first subword of each word to-
ken, while for text classification we append a lin-
ear prediction layer on top of the pooled output.

We employ the transformers library (Wolf
et al., 2019) to independently fine-tune BERTweet
for each task and each dataset in 30 training
epochs. We use AdamW (Loshchilov and Hut-
ter, 2019) with a fixed learning rate of 1.e-5 and
a batch size of 32 (Liu et al., 2019). We compute
the task performance after each training epoch on
the validation set (here, we apply early stopping
when no improvement is observed after 5 continu-
ous epochs), and select the best model checkpoint
to compute the performance score on the test set.

We repeat this fine-tuning process 5 times with
different random seeds, i.e. 5 runs for each task
and each dataset. We report each final test result
as an average over the test scores from the 5 runs.

Baselines
Our main competitors are the pre-trained lan-
guage models RoBERTabase (Liu et al., 2019)
and XLM-Rbase (Conneau et al., 2020), which

Model Ritter11 ARK TB-V2
soft hard soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 91.7 91.5 93.7 93.2 94.9 94.6
XLM-Rlarge 92.6 92.1 94.2 93.8 95.5 95.1
RoBERTabase 88.7 88.3 91.8 91.6 93.7 93.5
XLM-Rbase 90.4 90.3 92.8 92.6 94.7 94.3
BERTweet 90.1 89.5 94.1 93.4 95.2 94.7

DCNN (Gui et al.) 89.9
DCNN (Gui et al.) 91.2 [+a] 92.4 [+a+b]
TPANN 90.9 [+a] 92.8 [+a+b]
ARKtagger 90.4 93.2 [+b] 94.6 [+c]
BiLSTM-CNN-CRF 92.5 [+c]

Table 1: POS tagging accuracy results on the
Ritter11-T-POS (Ritter11), ARK-Twitter (ARK) and
TWEEBANK-V2 (TB-v2) test sets. Result of ARK-
tagger (Owoputi et al., 2013) on Ritter11 is reported
in the TPANN paper (Gui et al., 2017). Note that
Ritter11 uses Twitter-specific POS tags for retweeted
(RT), user-account, hashtag and url word tokens which
can be tagged perfectly using some simple regular ex-
pressions. Therefore, we follow Gui et al. (2017) and
Gui et al. (2018) to tag those words appropriately for
all models. Results of ARKtagger and BiLSTM-CNN-
CRF (Ma and Hovy, 2016) on TB-v2 are reported by
Liu et al. (2018). Also note that “+a”, “+b” and “+c”
denote the additional use of extra training data, i.e.
models trained on bigger training data. “+a”: addi-
tional use of the POS annotated data from the En-
glish WSJ Penn treebank sections 00-24 (Marcus et al.,
1993). “+b”: the use of both training and validation
sets for learning models. “+c”: additional use of the
POS annotated data from the UD English-EWT train-
ing set (Silveira et al., 2014).

have the same architecture configuration as our
BERTweet. In addition, we also evaluate the pre-
trained RoBERTalarge and XLM-Rlarge although it
is not a fair comparison due to their significantly
larger model configurations.

The pre-trained RoBERTa is a strong language
model for English, learned from 160GB of texts
covering books, Wikipedia, CommonCrawl news,
CommonCrawl stories, and web text contents.
XLM-R is a cross-lingual variant of RoBERTa,
trained on a 2.5TB multilingual corpus which con-
tains 301GB of English CommonCrawl texts.

We fine-tune RoBERTa and XLM-R using the
same fine-tuning approach we use for BERTweet.

4 Experimental results

Main results

Tables 1, 2, 3 and 4 present our obtained scores for
BERTweet and baselines regarding both “soft” and
“hard” normalization strategies. We find that for
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Model
WNUT16 WNUT17

soft hard
entity surface

soft hard soft hard
O

ur
re

su
lts

RoBERTalarge 55.4 54.8 56.9 57.0 55.6 55.6
XLM-Rlarge 55.8 55.3 57.1 57.5 55.9 56.4
RoBERTabase 49.7 49.2 52.2 52.0 51.2 51.0
XLM-Rbase 49.9 49.4 53.5 53.0 51.9 51.6
BERTweet 52.1 51.3 56.5 55.6 55.1 54.1

CambridgeLTL 52.4 [+b]
DATNet (Zhou et al.) 53.0 [+b] 42.3
Aguilar et al. (2017) 41.9 40.2

Table 2: F1 scores on the WNUT16 and WNUT17 test
sets. CambridgeLTL result is reported by Limsopatham
and Collier (2016). “entity” and “surface” denote the
scores computed for the standard entity level and the
surface level (Derczynski et al., 2017), respectively.

Model AvgRec F1
NP Accuracy

soft hard soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 72.5 72.2 72.0 71.8 70.7 71.3
XLM-Rlarge 71.7 71.7 71.1 70.9 70.7 70.6
RoBERTabase 71.6 71.8 71.2 71.2 71.6 70.9
XLM-Rbase 70.3 70.3 69.4 69.6 69.3 69.7
BERTweet 73.2 72.8 72.8 72.5 71.7 72.0

Cliche (2017) 68.1 68.5 65.8
Baziotis et al. (2017) 68.1 67.7 65.1

Table 3: Performance scores on the SemEval2017-
Task4A test set. See Rosenthal et al. (2017) for the
definitions of the AvgRec and F1

NP metrics, in which
AvgRec is the main ranking metric.

Model F1
pos Accuracy

soft hard soft hard

O
ur

re
su

lts

RoBERTalarge 73.2 71.9 76.5 75.1
XLM-Rlarge 70.8 69.7 74.2 73.2
RoBERTabase 71.0 71.2 74.0 74.0
XLM-Rbase 66.6 66.2 70.8 70.8
BERTweet 74.6 74.3 78.2 78.2

Wu et al. (2018) 70.5 73.5
Baziotis et al. (2018) 67.2 73.2

Table 4: Performance scores on the SemEval2018-
Task3A test set. F1

pos—the main ranking metric—
denotes the F1 score computed for the positive label.

each pre-trained language model the “soft” scores
are generally higher than the corresponding “hard”
scores, i.e. applying lexical normalization dictio-
naries to normalize word tokens in Tweets gener-
ally does not help improve the performance of the
pre-trained language models on downstream tasks.

Our BERTweet outperforms its main competi-
tors RoBERTabase and XLM-Rbase on all exper-
imental datasets (with only one exception that
XLM-Rbase does slightly better than BERTweet on
Ritter11-T-POS). Compared to RoBERTalarge and
XLM-Rlarge which use significantly larger model

configurations, we find that they obtain better POS
tagging and NER scores than BERTweet. How-
ever, BERTweet performs better than those large
models on the two text classification datasets.

Tables 1, 2, 3 and 4 also compare our obtained
scores with the previous highest reported results
on the same test sets. Clearly, the pre-trained lan-
guage models help achieve new SOTA results on
all experimental datasets. Specifically, BERTweet
improves the previous SOTA in the novel and
emerging entity recognition by absolute 14+% on
the WNUT17 dataset, and in text classification
by 5% and 4% on the SemEval2017-Task4A and
SemEval2018-Task3A test sets, respectively. Our
results confirm the effectiveness of the large-scale
BERTweet for Tweet NLP.

Discussion
Our results comparing the “soft” and “hard” nor-
malization strategies with regards to the pre-
trained language models confirm the previous
view that lexical normalization on Tweets is a
lossy translation task (Owoputi et al., 2013). We
find that RoBERTa outperforms XLM-R on the
text classification datasets. This finding is similar
to what is found in the XLM-R paper (Conneau
et al., 2020) where XLM-R obtains lower perfor-
mance scores than RoBERTa for sequence classifi-
cation tasks on traditional written English corpora.

We also recall that although RoBERTa and
XLM-R use 160 / 80 = 2 times and 301 / 80 ≈ 3.75
times bigger English data than our BERTweet, re-
spectively, BERTweet does better than its com-
petitors RoBERTabase and XLM-Rbase. Thus this
confirms the effectiveness of a large-scale and
domain-specific pre-trained language model for
English Tweets. In future work, we will release a
“large” version of BERTweet, which possibly per-
forms better than RoBERTalarge and XLM-Rlarge
on all three evaluation tasks.

5 Conclusion

We have presented the first large-scale language
model BERTweet pre-trained for English Tweets.
We demonstrate the usefulness of BERTweet by
showing that BERTweet outperforms its baselines
RoBERTabase and XLM-Rbase and helps produce
better performances than the previous SOTA mod-
els for three downstream Tweet NLP tasks of POS
tagging, NER, and text classification (i.e. senti-
ment analysis & irony detection).
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As of September 2020, we have collected a
corpus of about 23M “cased” COVID-19 English
Tweets consisting of at least 10 and at most 64
word tokens. In addition, we also create an “un-
cased” version of this corpus. Then we con-
tinue pre-training from our pre-trained BERTweet
on each of the “cased” and “uncased” corpora of
23M Tweets for 40 additional epochs, resulting
in two BERTweet variants of pre-trained “cased”
and “uncased” BERTweet-COVID19 models, re-
spectively. By publicly releasing BERTweet and
its two variants, we hope that they can foster future
research and applications of Tweet analytic tasks,
such as identifying informative COVID-19 Tweets
(Nguyen et al., 2020) or extracting COVID-19
events from Tweets (Zong et al., 2020).
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