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Abstract

Relation extraction (RE) is the task of
identifying relation instance(s) between two
entities given a corpus whereas Knowledge
base (KB) modeling is the task of representing
a knowledge base, in terms of relations
between entities. This paper proposes an
architecture for the relation extraction (RE)
task that integrates semantic information with
knowledge base (KB) modeling in a novel
manner.  Existing approaches for relation
extraction either don’t utilize knowledge base
modelling or use separately trained KB models
for the RE task. @ We present a model
architecture that internalizes KB modeling
in relation extraction. This model applies
a novel approach to encode sentences into
contextualized relation embeddings (CRE),
which can then be used together with
parameterized entity embeddings to score
relation instances. The proposed CRE model
achieves state of the art performance on
datasets derived from The New York Times
Annotated Corpus' and FreeBase?. The source
code has been made available® to reproduce
the results.

1 Introduction

Relation extraction (RE) is a sub-task under the
broad category of information extraction (IE) that
aims to identify relationship(s) between named
entities based on textual information (corpus). The
groundtruth relationship(s) between an entity pair
can be either internal, if each sentence in the
corpus is explicitly labeled, or external, in the form
of relation instances in a standalone knowledge
base (KB). Such knowledge bases, like Freebase

&qual contribution
"https://catalog.ldc.upenn.edu/
LDC2008T19
2https://developers.google.com/
freebase
Shttps://github.com/codchen/CRE

Rohan Badlani*
Dept. of Computer Science
Stanford University

rohan.badlani@cs.stanford.edu

11

Bollacker et al. (2008), are collaboratively edited
by human beings and thus offer high informational
fidelity.

In this paper, we focus on the problem of
predicting the collection of relations for a new
entity pair based on the usage of that entity pair in
its respective collection of sentences. To this end,
we assume the general construction that given a
dataset with a set of named entity pairs and each
entity pair’s respective collection of sentences as
input along with entity pair’s respective collection
of relations as output, our goal is to train a
model with the objective of predicting collection
of relevant relation(s) for a new entity pair based
on its contextual usage.

Distant supervision Mintz et al. (2009) is the
most popular approach for this problem, that has
achieved its success by leveraging knowledge
base information for relation extraction tasks.
However, this restricts the usage of semantic
information present in knowledge bases, since
the distant supervision work mainly incorporates
the knowledge base information as labels instead
of treating it as a graph and thereby losing
the dense relationships between different entities.
Knowledge base modelling is an independent
area of research and there has been some recent
work on utilizing knowledge base modeling and
incorporating internal structural information from
them to the relation extraction task. Bordes et al.
(2013), Trouillon et al. (2016).

Weston et al. (2013) conducted the first
research work that utilized knowledge bases as a
structural graph by training a TransE (Bordes et al.
(2013)) KB model alongside a traditional distant
supervision extractor. However, this has been a
simple combination of both ideas but despite its
simplicity, the model was able to beat the then-
state-of-the-art models in Relation Extraction tasks.
The work by Han et al. (2018), on the other hand,
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Figure 1: Contextualized Relation Embedding (CRE) Model Architecture

The details of "Sentence Encoder” can be found in figure 2.

The scoring function takes one CRE vector and two entity embedding vectors as inputs, and outputs a scalar score.

went a step further by sharing some model weights
between the distant supervision extractor and the
knowledge base model. However, although there is
some shared architecture, but the objective function
for the KB modelling and the distant supervision
remain separate. Another notable work by Xu
and Barbosa (2019) combines the two models
through an additional objective function that guides
the training but during prediction time there is
no any shared architecture and hence knowledge
base information is not really incorporated well for
relation prediction.

The model presented in this paper differs from
all previous work in that it is a single relation
extraction model that internalizes knowledge base
modeling. Instead of treating relation embeddings
as parameters like in standalone knowledge
embedding models (eg: TransE (Weston et al.,
2013)), where such embeddings have no context
of any textual information, our model expresses
relation embeddings as context-aware latent states
generated by encoding textual data.  Such
contextualized embeddings represent a natural
link between the textual input and the knowledge
base modeling objective, so that the end-to-end
information transformation is completely internal
to the model. The entity embeddings, on the
other hand, are not contextualized and will still be
trained as parameters of the same model, because
they need to serve as bridges across different
entity pairs and globalize the knowledge base
modeling which is now based on contextualized
relation embeddings localized to each entity pair.
A significant innovation of this work is that each
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sentence in which a pair of entities occurs, we
represent each possible relation between them as
a function of that entire sentence and score the
relation for that entity pair and sentence using the
representation of the relation.

2 Contextualized Relation Embedding

Let R stand for the set of all relations and £
stand for set of all entities. Then, for the ¢-th
entity pair, H; and 7; stand for the subject and
object respectively, both belonging to £. R, C R
stand for the set of relations existing between the
i-th entity pair. S; stands for the collection of
sentences that contain H; as the subject and 7T;
as the object; Sg ¥ stands for the k-th word of the
j-th sentence in S;, where each Sf ¥ is delimited by
spaces except for the subject and the object, whose
phrasal integrities are preserved (e.g. if it is the
subject/object of a sentence, the United States will
be considered as a single “word”).

We propose a novel neural network model
(called CRE model) that implicitly combines
knowledge base to detect relationships between
entities, given a corpus of sentences containing
those entities. The overall architecture of a CRE
model is shown in figure 1, which consists of
a sentence encoding step and a knowledge base
modeling step. During the sentence encoding step,
the model transforms each S7 ¥ into E-dimensional
embeddings. Specifically, we apply pretrained skip-
gram embeddings Mikolov et al. (2013), treating
all named entities as unknown, which results in
a W -dimensional embedding for each word. We
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Figure 2: Single Sentence Encoding Process

apply a positional embedding based on Zeng et al.
(2014), where each word’s index in the positional
“vocabulary” is defined as its relative distance to
one of the named entities. Consider the sentence “A
bear entered the fridge” and named entities “bear”
and “fridge”. The word “A” will have —1 as its
positional embedding index with respect to “bear’
and —4 with respect to “fridge”, whereas “entered”
will have +1 with respect to “bear” and —2 with
respect to “fridge”. For each word (including the
two named entities), we represent it as its skip-gram
word embedding of dimension W, concatenated
with its positional embeddings (each of dimension
P) with respect to the two named entities, to form
a final embedding of dimension E, where F =
W 4 2 x P. The skip-gram embeddings are fixed
during training, whereas the positional embeddings
are learnt. This leads to a sentence embedding of
L x E, where L is the maximum length of each
sentence. We utilize the above mentioned sentence
embeddings and learn an encoder that encodes
each sentence into a R * K embedding, which can
be represented as |R| K -dimensional embeddings,
each of which corresponds to a distinct relation
in R. Figure 2 illustrates the sentence encoding
process for a single sentence.

It is worth noting that the sentence encoder is
a generic framework where we can plug in any
model architecture (both for positional encoding
and sentence encoding). In our experiments, we
found that neural network based encoders tend to
result in better performance. We think this is due to
their ability to extract both semantic and syntactic
information. We denote sentence j’s representation
of r’s relation for entity pair i as CRE?".

In order to provide the model more context,
we explicitly apply a K-dimensional embedding
for each part of the entity pair represented by
H; and T; respectively. These entity embeddings
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are learnt as parameters during training, similar
to the positional embeddings above. We utilize
the relation embeddings (contextualized relation
embeddings) from the sentences and these entity
embeddings to form relation triplet embeddings.
Specifically, this will result in R triplets for
each sentence, since we computed R relation
embeddings for each sentence. This allows us
to apply different knowledge based models and
further enhances the generalization of our model.
Depending on the choice of knowledge based
model, we use the relation triplet embeddings to
compute its score based on the scoring function
of the respective knowledge base model. For
example, if TransE Bordes et al. (2013) is chosen
as the underlying knowledge base model with H;
and 7; as head and tail entity embeddings, then
embeddings for relation 7 derived from sentence j
will be scored as:

Scoreg’r =1 —tanh(||H; + CREzjr — T
where 0 < SCOT@{’T <2
(1)

Since most knowledge base models are
characterized by their scoring functions, it is
straightforward to swap in any knowledge base
model here for scoring purposes.

Finally, the model aggregates scores for the same
relation across all sentences so that we can obtain
a single score for each relation given an entity pair:

Score; = Z Scoreg’r )
J

For experiments in this paper, we adopted

summation as the aggregation function since we

do not have prior knowledge about our dataset and

thus want to take into account the “opinion” of all



sentences equally, but it is by no means prescriptive.

One can certainly use maximum, minimum or
mean as the aggregation functions instead of sum
in case the dataset is such that any single sentence’s
outcome can be regarded as reliable.

We train the model with a binary cross entropy
loss, after normalizing relation scores and targets
and we use an L2 regularization that helps prevent
overfitting.

Score!
NS = ——*
Y >, Score! ®)
. IreR]
T @
L} = —m] xlog(NS]))+
r 1 - )
(m] — |7?,’|) xlog(1 — NS;)
(6)

Li=Y L+ > [[w]]

We use the normalized scores to predict the
relations for the given entity pair. Note that
normalization is still necessary for quantitative
evaluation. We pool together scores for different
entity pairs to form a precision-recall curve, so
scores need to be comparable and normalization
brings them to the same scale. The top-k prediction
can formulated as:

Topi?C = argmaxf(NSf)
k (7
TopScoref = N SiTOp ‘

3 Experiments

3.1 Data and Experimental Setup

For our experiments, we use the textual data
from The New York Times (NYT) Annotated
Corpus Riedel et al. (2010), and the knowledge
base are derived from the most recent FreeBase
Bollacker et al. (2008) dump. Note that entities
in each NYT sentence are already annotated. The
NYT and Freebase presents a more challenging
task for relation extraction models than FreeBase
and Wikipedia texts due to their heterogeneous
nature, since FreeBase itself is largely derived from
Wikipedia. We construct the dataset through the
following procedure:
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1. Filter out any relation instance from FreeBase
dump if the mapping between the ID of
either of its two entities and its corresponding
English phrase is not available.

Find the top 500K entities based on the
number of relation instances they participate
in, and further filter out any relation instance
if either of its two entities is not in the top
500K list.

. Inner join the NYT dataset with the filtered
Freebase by aligning NYT entity annotations
and Freebase entity English phrases. In other
words, no example in the NYT dataset that
contains unseen entities in the filter Freebase
is preserved, and vice versa.

Backfill an N/A relation for any entity pair
present in the filtered NYT dataset that has no
relation instance in the filtered Freebase.

After this procedure, we have a dataset that
contains 465K sentences, 35K entities, 233K entity
pairs, and 238 relations. As most entities in
this world do not possess direct relations with
other entities, the dataset is extremely unbalanced,
where only 5K entity pairs out of the 233K
have non-N/A relation. These 5K entity pairs
contribute 20K sentences out of the 465K. Because
of this imbalance, we performed train-test splits
for positive pairs and negative pairs separately,
so that test set gets around 1200 positive pairs
and 57K negative pairs. Since this test set is still
severely imbalanced and we don’t want our model
to be biased in favor an N/A prediction, we further
randomly sample the negative pairs in the test set so
that the number of sentences consisting of negative
pairs is roughly the same as that of any positive
relation. We did not perform similar filtering to the
training set from the outset, but randomly applied
such filtering at the beginning of each training
epoch, in order to utilize all training data we have.

3.2 Evaluation Metrics

In order to quantitatively evaluate the performance
of our model, we measure precision over
various recall levels. Specifically, we examine
precision-recall curves for top-1 predictions, top-
3 predictions, and top-5 predictions. Top-1
predictions, which only includes the relation
with the highest score among all relations for
a given entity pair, are widely used in related
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Figure 3: Weston et al. vs. Han et al. vs. CRE Model

literature, but we believe it alone does not provide
a comprehensive view, since each entity pair can
have multiple relations. Besides the precision-
recall curve, we also measure the mean reciprocal
rank (MRR) among top-3 predictions and top-5
predictions.

On the qualitative side, we examine the number
of distinct top-1 relation predictions, in order to
check if our model achieves high precision just
by heavily favoring certain relations, given the
unbalanced nature of our dataset.

3.3 Baseline Models

As discussed in Section 2, our proposed model
provides a deep integration of knowledge bases
in the relation prediction task. We select two
baseline models to compare performance: one
from Weston et al. (2013) as a representative of
weak integration between knowledge bases and
relation extraction, and the other from Han et al.
(2018) to represent a semi-integrated setup. Both
models have already been briefly described in the
Introduction section. Since the state of art of these
models is not publically available, we performed
hyperparameter tuning for both models on our
dataset, since they may not be exactly the same
as the datasets used in their respective work.

3.4 Model Configurations

As shown in the model details section, there can be
a myriad of options for various components of our
proposed CRE model. In this evaluation, we will
focus on the effect of different choices of sentence-
to-CRE encoders as well as underlying knowledge
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base models. Every other aspect will be kept fixed
as described in the preceding section.

For sentence-to-CRE encoders, we will explore
3 options:

e A single 1D convolutional layer with hidden
state dimension of 230 and window size of 3.

e A single LSTM layer with hidden state
dimension of 230.

e A double-layered transformer encoder with
hidden state dimension of 100 and 5-head
attention Vaswani et al. (2017).

All these encoders are followed by a tanh
activation layer and a linear layer to project the low-
dimensional hidden state onto |R| K -dimensional
space. 230 is selected as the hidden dimension
for fair comparison purpose because it is the
CNN hidden state dimension used in Han et al.
(2018). The complexity of encoders evaluated here
are limited by computational resources available
for this work, so it is possible to find more
sophisticated encoders that can achieve further
improvements. For the transformer based encoder,
an additional linear projection and tanh activation
is applied at the front to reduce the number of
parameters that need to be trained to a manageable
level.

For knowledge base model, we explore 2
options:

e TransE with embedding dimension of 50.

e ComplEx Trouillon et al. (2016) with
embedding dimension of 25 for the real part
and 25 for the imaginary part.
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Figure 4: CRE Models with different configurations

Left: precision-recall curves of the most confident prediction for each entity pairs
Middle: precision-recall curves of the top 3 most confident predictions for each entity pairs
Right: precision-recall curves of the top 5 most confident predictions for each entity pairs

Model MRR among Top-3 | MRR among Top-5
Weston et al. 0.6010 0.6194
Han et al. 0.5786 0.6005
CRE(transformer+ComplEx) 0.6413 0.6588

Table 1: MRR comparison with baseline models

The dimensions chosen here are based on reports
from each model’s respective paper.

By combining these options, we will explore
6 different model configurations in total. We
use Adam optimizer for training and consider the
model to have converged when the loss on the
current epoch is no less than the average loss of the
last ten epochs. Each model is then used to make
predictions on the same held-out test set.

In order to test for statistical significance,
we divided the dataset into 3 different subsets
randomly and recorded the results of each model
on all three subsets.

3.5 Results

3.5.1 The best model configuration

We compare the performance of the CRE models
across different configurations, which is illustrated
in figure 4. From the results, we can see that
the more sophisticated knowledge base model
(ComplEx) outperforms the simpler alternative
(TransE) at lower recall levels (less than 0.25), but
under-performs at higher recall levels. Similarly,
for different choices of sentence-to-CRE encoders,
we observe that the more complex transformer
encoder is almost perfect before recall rises above
0.25.

16

The most consistent configuration, from a
quantitative perspective, is the combination of
CNN and TransE. These results are reinforced
by the MRR comparison among different CRE
configurations, as shown in table 2. We can see that
the model that achieved the best precision-recall
result (CNN+TransE) also dominates in terms of
MRR, whereas the worst results for both metrics
are attributable to the LSTM+TransE configuration.

3.5.2 Comparison with baseline models

Figure 3 shows the precision-recall curve
comparisons between baseline models and a
CRE-based model with Transformer+ComplEx
configuration. Each model’s confidence interval
was obtained via variance among precisions at the
same recall level of 9 different runs: 3 runs for each
of 3 different random subset of the training/testing
dataset. The CRE model was able to outperform
both baseline models.

Interestingly, Weston’s approach achieved top-
1 prediction accuracy comparable with what was
reported in its original paper, but saw a particularly
sharp drop in precision as the number of predictions
examined increases. This contrast is unsurprising
though, because Weston’s approach only re-scores
its most confident predictions, so models trained
this way have no capability of making multiple



Model

CNN+TransE
CNN-+ComplEx
LSTM+TransE
LSTM+ComplEx
transformer+TransE
transformer+ComplEx

MRR among Top-3 | MRR among Top-5
0.6925 0.7059
0.6681 0.6805
0.6234 0.6506
0.6802 0.6938
0.6332 0.6549
0.6413 0.6588

Table 2: MRR comparison between different configurations of CRE

predictions for a single entity pair.

In addition, we observed the mean reciprocal
rank for CRE model is significantly higher than
baseline models, as shown in table 1, which
corresponds to the improvement we saw in terms
of precision-recall curve.

3.5.3 Qualitative evaluation

Table 3 shows most frequent relations and the
number of times each model concludes one of them
to be the most likely relation given an entity pair,
as well as the ground truth. It can be observed that
the CRE models tend to generate a less skewed
distribution of these frequent relations compared
to Han’s, which is the better of the two baseline
models in terms of quantitative performance.

4 Discussion

Our experiments from figure 3 clearly demonstrate
that models utilizing contextualized relation
embeddings that internalize both relation extractor
modeling and knowledge base modeling tend to
perform much better on relation extraction task
than architectures like Weston et al. (2013) and
Han et al. (2018) that join a relation extractor and
a knowledge base model in some arbitrary way.
We believe this is due to the fact that the “internal
knowledge base models” within CRE models are
context-aware. As a result, CRE models can take
advantage of the contextual information contained
in the corpus more effectively.

We demonstrate the generality and flexibility
of the proposed CRE model that can work with
different encoders and knowledge base models.
Moreover, it can be observed from Table 3 that
the CRE-models generate less skewed distribution
of frequent relations compared to the baseline
models, thus demonstrating that the CRE model
provides robust predictions and works well even
with imbalanced datasets.

It can be observed from Figure 4 that more
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complex configurations for our model tend to
achieve stellar results in the low recall arena but
lose steam when recall levels are high. This may
be explained by the insufficient training epochs due
to resource constraints. As a result, these complex
models did not get the chance to optimize for the
less seen prediction targets. However, it can been
seen from Table 3 that the transformer-based CRE
model was able to correctly uncover some rare
relations, like programCreator, which was missed
by the CNN-based CRE model, despite it having
better overall quantitative results. It is reasonable
to expect that given a more balanced dataset with
sufficient training time, the transformer-based CRE
model may obtain a better quantitative result than
its CNN counterpart.

Since contextual knowledge plays a big role
in the performance of CRE models, it will
be interesting to see how such models may
perform over prediction on input texts that are
heterogeneous to the New York Times. For
example, an alternative input text source could be
a collection of academic publications, which is
of very different genre compared to the New York
Times. If our hypothesis on why these models work
well is correct, then we would expect to see some
degradation in performance, though it should be no
worse than context-free approaches. This can be
overcome, of course, by utilizing pre-trained CRE
models and finetuning on the new text body, so that
the model can learn about the new context.

5 Conclusion and Future Work

In this paper, we introduced a novel contextualized
relation embedding (CRE) model for relation
extraction that incorporates knowledge base
modeling in a comprehensive and efficient manner.
We demonstrate both empirically and qualitatively
that the CRE model is able to achieve state of the
art results on relation extraction task on the New
York times dataset with Freebase as a knowledge



Relation Name Weston et al. | Han et al. | CRE+CNN | CRE+Transformer | Fact
location.contains 1085 1178 761 840 597
person.nationality 66 19 189 159 173
location.containedBy 198 205 435 346 316
people.placeOfBirth 7 0 16 17 91
people.placeOfDeath 1 0 0 22 47
usRepresentative.state 0 0 0 11
tvProgram.programCreator|| 0 0 0 1 2

Table 3: Top relation prediction counts by each model compared to truth

source. We demonstrate the flexibility of the model
by using different encoders and knowledge based
modeling schemes which are a testament to the
modular nature of this model, which can easily
be upgraded with alternative configurations with
ease. Finally, we showcase that CRE model tend
to generate a less skewed distributions of predicted
relations and the model is robust to imbalances in
the dataset.

Interesting directions of future work may include
utilizing CRE pre trained models and evalauting
if these models can be finetuned to work in low-
resource situations when the testing set distribution
is different than the training distribution. Another
interesting direction may be utilizing pre-trained
BERT-based Devlin et al. (2018) models as
sentence encoders and fine-tune them for the
relation extraction task, since such models are
already trained on large amount of textual data and
thus may hold contextual knowledge that might
be useful for this task. This may also reveal
some hidden connections between contextualized
word embeddings and contextualized relation
embeddings.
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