Neural Coreference Resolution for Arabic

Abdulrahman Aloraini'-* Juntao Yu'* Massimo Poesio’
'Queen Mary University of London, United Kingdom
2Qassim University, Saudi Arabia
{a.aloraini, juntao.yu, m.poesio}@qmul.ac.uk

Abstract

No neural coreference resolver for Arabic exists, in fact we are not aware of any learning-based
coreference resolver for Arabic since (Bjorkelund and Kuhn, 2014). In this paper, we introduce a
coreference resolution system for Arabic based on Lee et al’s end-to-end architecture combined
with the Arabic version of BERT and an external mention detector. As far as we know, this is
the first neural coreference resolution system aimed specifically to Arabic, and it substantially
outperforms the existing state-of-the-art on OntoNotes 5.0 with a gain of 15.2 points conLL F1.
We also discuss the current limitations of the task for Arabic and possible approaches that can
tackle these challenges.

1 Introduction

Coreference resolution is the task of grouping mentions in a text that refer to the same real-world entity
into clusters (Poesio et al., 2016) . Coreference resolution is a difficult task that requires reasoning, context
understanding, and background knowledge of real-world entities, and has driven research in both natural
language processing and machine learning, particularly since the release of the onToNOTES multilingual
corpus providing annotated coreference data for Arabic, Chinese and English and used for the 2011 and
2012 conLL shared tasks (Pradhan et al., 2012). Since then, there has been substantial research on English
coreference, most recently using neural coreference approaches (Lee et al., 2017; Lee et al., 2018; Kantor
and Globerson, 2019a; Joshi et al., 2019b; Joshi et al., 2019a; Yu et al., 2020b; Wu et al., 2020), leading
to a significant increase in the performance of coreference resolvers for English. By contrast, there has
been almost no research on Arabic coreference; the performance for Arabic coreference resolution has
not improved much since the conLL 2012 shared task, and in particular no neural architectures have
been proposed—the current state-of-the-art system remains the model proposed in (Bjorkelund and Kuhn,
2014). In this paper we close this very obvious gap by proposing what to our knowledge is the first neural
coreference resolver for Arabic.!

One explanation for this lack of research might simply be the lack of training data large enough for
the task. Another explanation might be that Arabic is more problematic than English because of its
rich morphology, its many dialects, and/or its high degree of ambiguity. We explore the first of these
possibilities. Coreference resolution can be further divided into two subtasks—mention detection and
mention clustering—as illustrated in Figure 1. In early work, coreference’s two subtasks were usually
carried out in a pipeline fashion (Soon et al., 2001; Fernandes et al., 2014; Bjorkelund and Kuhn, 2014;
Wiseman et al., 2015; Wiseman et al., 2016; Clark and Manning, 2016a; Clark and Manning, 2016b),
with candidate mentions selected prior the mention clustering step. Since Lee et al. (2017) introduced
an end-to-end neural coreference architecture that achieved state of the art by carrying out the two tasks
jointly, as first proposed by Daume and Marcu (2005), most state-of-the-art systems have followed this
approach. However, no end-to-end solution was attempted for Arabic. We intend to explore whether an
end-to-end solution would be practicable with a corpus of more limited size.
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1. Mention Detection Obama nominated Clinton as his secretary of state
on Monday. He chose her because she had foreign
affairs experience.

2. Mention Clustering Obama nominated Clinton as his secretary of state
on Monday. He chose her because she had foreign
affairs experience.

Figure 1: The first step in coreference resolution is mention detection. The detected mentions are under-
lined. The second step is mention clustering. We have two clusters {Obama, his, he} and {Clinton, her,
she}. The mention detector might identify other words as mentions, but for simplicity we present only
the mentions of the two clusters.

The approach we followed to adapt the state-of-the-art English coreference resolution architecture to
Arabic is as follows. We started with a strong baseline system (Lee et al., 2018; Kantor and Globerson,
2019a), enhanced with contextual BERT embeddings (Devlin et al., 2019). We then explored three methods
for improving the model’s performance for Arabic. The first method is to pre-process Arabic words
with heuristic rules. We follow Althobaiti et al. (2014) to normalize the letters with different forms, and
removing all the diacritics. This results in a substantial improvement of 7 percentage points over our
baseline. The second route is to replace multilingual BERT with a BERT model trained only on the Arabic
texts (ARABERT) (Antoun et al., 2020). Multilingual BERT is trained with 100+ languages; as a result, it
is not optimized for any of them. As shown by Antoun et al. (2020), monolingual BERT trained only on
the Arabic texts has better performance on various NLp tasks. We found the same holds for coreference:
using embeddings from monolingual BERT, the model further improved the conrLL F1 by 4.8 percentage
points. Our third step is to leverage the end-to-end system with a separately trained mention detector
(Yu et al., 2020a). We show that a better mention detection performance can be achieved by using a
separately trained mention detector. And by using a hybrid training strategy between the end-to-end and
pipeline approaches (end-to-end annealing) our system gains an additional 0.8 percentage points. Our
final system achieved a coNLL F1 score of 63.9%, which is is 15% more than the previous state-of-the-art
system (Bjorkelund and Kuhn, 2014) on Arabic coreference with the conLL dataset. Overall, we show
that the state-of-the-art English coreference model can be adapted to Arabic coreference leading to a
substantial improvement in performance when compared to previous feature-based systems.

2 Related Work

2.1 English Coreference Resolution

Like with other natural language processing tasks, most state-of-the-art coreference resolution systems
are evaluated on English data. Coreference resolution for English is an active area of research. Until
the appearance of neural systems, state-of-the-art systems for English coreference resolution were either
rule-based (Lee et al., 2011) or feature-based (Soon et al., 2001; Bjorkelund and Nugues, 2011; Fernandes
et al., 2014; Bjorkelund and Kuhn, 2014; Clark and Manning, 2015). Wiseman et al. (2015) introduced
a neural network-based approach to solving the task in a non-linear way. In their system, the heuristic
features commonly used in linear models are transformed by a tanh function to be used as the mention
representations. Clark and Manning (2016b) integrated reinforcement learning to let the model optimize
directly on the B> scores. Lee et al. (2017) first presented a neural joint approach for mention detection
and coreference resolution. Their model does not rely on parse trees; instead, the system learns to detect
mentions by exploring the outputs of a bi-directional LSTM. Lee et al. (2018) is an extended version of
Lee et al. (2017) mainly enhanced by using ELMo embeddings (Peters et al., 2018), in addition, the use
of second-order inference enabled the system to explore partial entity level features and further improved
the system by 0.4 percentage points. Later the model was further improved by Kantor and Globerson
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(2019a) who use BerT embeddings (Devlin et al., 2019) instead of ELMo embeddings. In these systems,
both BERT and ELMo embeddings are used in a pre-trained fashion. More recently, Joshi et al. (2019b)
fine-tuned the BErRT model for coreference, resulting in a small further improvement. Later, Joshi et al.
(2019a) introduces SPANBERT which is trained for tasks that involve spans. Using SPANBERT, they
achieved a substantial gain of 2.7% when compared with the Joshi et al. (2019b) model. Wu et al. (2020)
reformulate the coreference resolution task as question answering task and achieved the state-of-the-art
results by pretrain the system first on the large question answering corpora.

2.2 Arabic Coreference Resolution

There have been several studies of Arabic coreference resolution; in particular, several of the systems
involved in the conLL 2012 shared task attempted Arabic as well. li (2012) used syntactic parse trees to
detect mentions, and compared pairs of mention based on their semantic and syntactic features. Zhekova
and Kiibler (2010) proposed a language independent module that requires only syntactic information and
clusters mentions using the memory-based learner TIMBL (Daelemans et al., 2004). Chen and Ng (2012)
detected mentions by employing named entity and language-dependent heuristics. They employed mul-
tiple sieves (Lee et al., 2011) for English and Chinese, but only used an exact match sieve for Arabic
because other sieves did not provide better results. Bjorkelund and Nugues (2011) considered all noun
phrases and possessive pronouns as mentions, and trained two types of classifier: logistic regression and
decision trees. Stamborg et al. (2012) extracted all noun phrases, pronouns, and possessive pronouns as
mentions. Then they applied (Bjorkelund and Nugues, 2011)’s solver which consists of various lexical
and graph dependency features. Uryupina et al. (2012) adapted for Arabic the BART (Versley et al., 2008)
coreference resolution system, which consists of five components: pre-processing pipeline, mention fac-
tory, feature extraction module, decoder and encoder. Fernandes et al. (2014) defined a set of rules based
on parse tree information to detect mentions, and utilized a latent tree representation to learn coreference
chains. Similarly Bjorkelund and Kuhn (2014) adopted a tree representation approach to cluster mentions,
but improved the learning strategy and introduced non-local features to capture more information about
coreference relations. There have been other research studies related to anaphora resolution (Trabelsi et
al., 2016; Bouzid et al., 2017; Beseiso and Al-Alwani, 2016; Abolohom and Omar, 2015), but they only
considered pronominal anaphora. Aloraini and Poesio (2020) also considered a specific type of pronom-
inal anaphora, zero-pronoun anaphora. All current approaches suffer from a number of limitations, one
of which is that most of them rely on an extensive set of hand-chosen features.

3 System architecture

3.1 The Baseline System

We use the Lee et al. (2018) system as our baseline and replace their ELMo embeddings with the BERT
recipe of Kantor and Globerson (2019a). The input of the system is the concatenated embeddings
((emb;)L_,) of both word and character levels. The word-level fastText (Bojanowski et al., 2016) and
BERT (Devlin et al., 2019) embeddings are used together with the character embeddings learned from
a convolution neural network (CNN) during training. The input is then put through a multi-layer bi-
directional LSTM to create the token representations ((x;)7_,). The (x;)_, are used together with head
representations (h;) to form the mention representations (M;). The h; of a mention is calculated as the
weighted average of its token representations ({zs,, ..., Z¢, }), where b; and e; are the indices of the start
and the end of the mention respectively. The mention score (s, ()) is then computed by a feedforward
neural network to determine the likeness of a candidate to be mention. Formally, the system computes
hi, M; and s, (i) as follows:

Qi = FFNN, ()

_ exp(ay)
ai,t - e;
2 ey, €xp(a)
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€
hi=> ais-m
t=b;

Mi = [wbia Le,;, hi7 ¢(Z)]
Sm (1) = FENNy, (M)

where ¢(7) is the mention width feature embeddings. To make the task computationally tractable, the
system only considers mentions up to a maximum width of 30 tokens (i.e. e; — b; < 30). Further pruning
on candidate mentions is applied before approaching the antecedent selection step. The model keeps a
small portion (0.4 mention/token) of the top-ranked spans according to their mention scores (s, (7)).
Next, the system uses a bilinear function to compute a light-weight mention pair scores (s.(i, 7)) be-
tween all the valid mention pairs>. The scores are then used to select top candidate antecedents for all
candidate mentions (coarse antecedent selection). More precisely, the s.(7, j) are computed as follows:

se(i,5) = M, W.M;

After that, the system further computes a more accurate mention pair scores between the mentions and
their top candidate antecedents s,(4, j):

P jy = [Mi, Mj, M; o My, $(3, 7)]
Sa(1,J) = FFNNa (P 7))
where P(; ;) is the mention pair representation, M;, M is the representation of the antecedent and anaphor
respectively, o denotes element-wise product, and ¢(i, j) is the distance feature between a mention pair.
The next step is to compute the final pairwise score (s(7, j)). The system adds an artificial antecedent

€ to deal with cases of non-mentions, discourse-new mentions or cases when the antecedent does not
appear in the candidate list. The s(4, j) is calculated as follows:

8(27]):{ 0 1=

sm (i) + sm(J) + sc(i,5) + sa(i,j) i F#€

For each mention the predicted antecedent is the one that has the highest s(i,7). An anaphora-
antecedent link will be created only if the predicted antecedent is not €.

Additionally, the model has an option to use higher-order inference to allow the system to access entity
level information. We refer the reader to the original Lee et al. (2018) paper for more details. We use the
default setting of Lee et al. (2018) to do second-order inference. The final clusters are created using the
anaphora-antecedent pairs predicted by the system. Figure 2 shows the proposed system architecture of
our system.

3.2 Data Pre-processing

Arabic is a morphologically rich language. Thus, training on Arabic texts that are not pre-processed prop-
erly can suffer from sparsity (various forms for the same word) and ambiguity (same form corresponding
to multiple words). There are two reasons for these problems. First, certain letters can have different
forms which are usually misspelled, such as the various forms of the letter “alif”. Second, the placement
of diacritics on words which are assumed to be undiacritized (Habash and Sadat, 2006). Therefore, we
follow the steps proposed in (Althobaiti et al., 2014) to pre-process the data. These steps include:

* Normalizing the various forms of the letter "alif” (l,\;\-) to the letter ””.
* Removing all diacritic marks.

We show an example of an original and pre-processed sentence from OntoNotes 5.0 in Table 1. Pre-
processing the data increases the overall performance of coreference system with 7 percentage points
more as we will see in Section 5.

?Candidate mentions are paired with all the mentions appeared before them (candidate antecedents) in the document.
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Figure 2: The proposed system architecture.
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Table 1: An example on how we pre-process Arabic text. The letter ~alif” is normalized and all diacritic
marks are removed.

3.3 Multilingual vs. monolingual BERT

BERT (Devlin et al., 2019) is a language representation model consisting of multiple stacked Transformers
(Vaswani et al., 2017). BERT was pretrained on a large amount of unlabeled text, and produces distri-
butional vectors for words and contexts. Recently, it has been shown that BERT can capture structural
properties of a language, such as its surface, semantic, and syntactic aspects (Jawahar et al., 2019) which
seems related to what we need for the coreference resolution. Therefore, we set BERT to produce em-
beddings for the mentions. BERT is available for English, Chinese, and there is a version for multiple
languages, called multilingual BerT 3. Multilingual BERT is publicly available and covers a wide range of
languages including Arabic. Even though the multilingual version provides great results for many lan-
guages, it has been shown their monolingual counterparts to achieve better. Therefore, recent research
adopts the monolingual approach to pretrain BERT, developing, e.g., CAMEMBERT for French (Martin et
al., 2019), ALBERTo for Italian (Polignano et al., 2019), and others (Lee et al., 2020; Souza et al., 2019;
Kuratov and Arkhipov, 2019). ARABERT (Antoun et al., 2020) is a monolingual BERT model for Ara-
bic which was pre-trained on a collection of Wikipedia and newspaper articles. There are two versions,
ARABERT 0.1 and ARABERT 1.0, the difference being that the latter pretrained on the word morphemes
obtained using Farasa (Darwish and Mubarak, 2016). The two versions yield relatively similar scores
in various ~NLp tasks. In our experiments, we used ARABERT 0.1 because empirically it proved more
compatible with the coreference resolution system.

3.4 Mention Detection

Mention detection is a crucial part of the coreference resolution system, better candidate mentions usually
lead to better overall performance. As suggested by Yu et al. (2020a), a separately trained mention detector
can achieve a better mention detection performance when compared to its end-to-end counterpart. In this
work, we adapt the state-of-the-art mention detector of Yu et al. (2020a) to aid our system. In their paper,
Yu et al. (2020a) evaluated three different architectures for English mention detection task, we use their
best settings (BIAFFINE MD) and replace their ELMo embeddings with BERT embeddings in the same way

3https://github.com/google-research/bert
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Algorithm 1: End-to-end annealing algorithm.

Input: Training step: /V; Candidate mentions from external mention detector: CANDIDATEgxrgrnaL
Output: Trainable variables: W

1 n=0;

2 while n < N do

3 PIPELINEg o110 — 1/ IV

4 rand = random.random();

5 if rand < PIPELINE,;,, then

6 ‘ CANDIDATEMENTION ¢— CANDIDATEgx5rNALS
7 else

8 Generate mention candidates CANDIDATEgxp-to-gxD
9 CANDIDATEMENTION — CANDIDATEgND-10-END
10 end

11 Predict antecedent for candidate mentions;

12 Compute training loss;

13 Update W;

14 n<—n-+1

15 end

Joint Separate
R P F1 R P F1

BASELINE (MULTIBERT) 85.6 244 380 88.1 252 392
MULTIBERT+PRE 91.2 26.0 40.5 933 266 41.5
ARABERT+PRE 925 264 41.1 955 272 424

Models

Table 2: The mention detection performance comparison between the separately and jointly trained men-
tion detectors in a high recall setting.

we did for our coreference system*. The BIAFFINE MD uses contextual word embeddings and a multi-layer
bi-directional LSTM to encode the tokens. It then uses a biaffine classifier (Dozat and Manning, 2017) to
assign every possible span in the sentence a score. Finally, the candidate mentions are chosen according
to their scores. In addition to the standard high-F1 setting, the system has a further option (high-recall)
to output top mentions in the proportion of the number of tokens, this is similar to our mention detection
part of the system. Here we use the high-recall settings of the mention detector we modify the baseline
system to allow the system using the mentions supplied by the external mention detector.

To confirm our hypothesis that a separately trained mention detector can achieve a better mention de-
tection performance, we compare the mention detection performance of our system with the separately
trained mention detector. For our system, we train the models end-to-end and assess the quality of can-
didate mentions before feeding them into the mention clustering part of the system. Table 2 shows the
comparison of both systems in three different settings (MuLTIBERT (baseline), MULTIBERT+PRE (multilin-
gual BERT and data pre-processing), ARABERT+PRE (ARABERT and data pre-processing)). As we can see
from the table, the separately trained mention detector constantly have a better recall of up to 3% when
compared with the jointly trained mention detector’.

The preliminary experiments show that by simply using the mentions generated by the external mention
detector in a pipeline setting result in a lower coreference resolution performance. We believe this is
mainly because in an end-to-end setting, the model is exposed to different negative mention examples;

*We tried to add the fastText and character-based embeddings to the system but found they do not improve the mention
detection results
“Here we only care about the recall as the number of candidate mentions is fixed
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Category Training  Dev Test

Documents 359 44 44
Sentences 7,422 950 1,003
Words 264,589 30,942 30,935

Table 3: Statistics on Arabic portion of conLL-2012.

Parameter Value
bi-directional LSTM layers/size/dropout  3/200/0.4
FFNN layers/size/dropout 2/150/0.2
CNN filter widths/size [3,4,5]/50
Char/fastText/Feature embedding size 8/300/20
BERT embedding size/layer 768/Last 4
Embedding dropout 0.5

Max span width 30

Max num of antecedents 50
Mention/token ratio 0.4
Optimiser Adam (le-3)
Training step 400K

Table 4: Hyperparameters for our models.

hence, has a better ability to handle false positive candidates. To leverage the benefits between better
candidate mentions and more negative mention examples, we introduce a new hybrid training strategy
(end-to-end annealing) that initially training the system in an end-to-end fashion and linearly decreasing
the usage of end-to-end approach. At the end of the training, the system is trained purely in a pipeline
fashion. The resulted system is then tested in a pipeline fashion. Algorithm 1 shows the details of our
end-to-end annealing training strategy.

4 Experimental Setup

Since the BERT models are large, the fine-tuning approaches are more computationally expensive:
GPU/TPUs with large memory (32GB+) are required. In this work, we use BERT embeddings in a pre-
trained fashion to make our experiment feasible on a GTX-1080Ti GPU with 11GB memory.

4.1 Dataset

We run our model on the Arabic portion of OntoNotes 5.0, which were used in the the official coNLL-
2012 shared task (Pradhan et al., 2012). The data is divided into three splits: train, development, and test.
We used each split for its purpose, the train for training the model, the development for optimizing the
settings, and the test for evaluating the overall performance. Detailed information about the number of
documents, sentences, and words can be found in Table 3.

4.2 Evaluation Metrics

For our evaluation on the coreference system, we use the official conLL 2012 scoring script v8.01 to score
our predictions. Following standard practice, we report recall, precision, and F1 scores for MUC, B? and
CEAF,, and the average F1 score of those three metrics. For our experiments on the mention detection
we report recall, precision and F1 scores for mentions.

4.3 Hyperparameters

We use the default settings of Lee et al. (2018), and replace their GloVe/ELMo embeddings with the
fastText/BerT embeddings. Table 4 shows the hyperparameters used in our system.
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MUC B3 CEAFy, Avg.
R P FIL R P Fl R P Fl Fl

Models

Bjorkelund and Nugues (2011) 43.9 525 47.8 357 49.8 41.6 405 419 412 435

Fernandes et al. (2012) 43.6 497 46.5 384 477 425 482 450 46.5 452
Bjorkelund and Kuhn (2014) 475 533 503 44.1 493 46.6 492 495 493 487
BASELINE (MULTIBERT) 457 669 543 388 643 484 457 579 51.1 513
MULTIBERT+PRE 56.1 67.1 61.1 500 634 560 548 61.1 578 58.3
ARABERT+PRE 62.3 70.8 663 563 658 60.7 588 661 622 63.1
ARABERT+PRE+MD 63.2 709 668 57.1 663 613 61.6 655 635 639

Table 5: Coreference resolution results on Arabic test set.

Models R P F1

BASELINE (MULTIBERT) 56.5 79.1 659
MULTIBERT+PRE 674 788 72.6
ARABERT+PRE 70.6 799 75.0

ARABERT+PRE+MD 729 804 764

Table 6: Mention detection results on Arabic test set.

5 Evaluation

5.1 Results

Baseline We first evaluate our baseline system using the un-pre-processed data and the multilingual BERT
model. As we can see from Table 5, the baseline system already outperforms the previous state-of-the-art
system which is based on handcrafted features by a large margin of 2.6 percentage points. The better F1
scores are mainly as a result of a much better precision in all three metrics evaluated, the recall is lower
than the previous state-of-the-art system (Bjorkelund and Kuhn, 2014).

Data pre-processing We then apply heuristic rules to pre-process the data. The goal of pre-processing
is to reduce the sparsity of the data by normalizing the letters that have different forms and removing the
diacritics. By doing so, we created a ’clean’ version of the data. As we can see from Table 5, the simple
pre-processing on the data achieved a large gain of 7 percentage points when compared with the baseline
model trained on the original data. Since the pre-processing largely reduced the data sparsity, the recall of
all three matrices has been largely improved. We further compare the mention scores of two models (see
Table 6). As illustrated in the table, the system trained on the pre-processed data achieved a much better
recall and a similar precision when compared with the baseline. This suggests that data pre-processing is
an efficient and effective way to improve the performance of the Arabic coreference resolution task.

Language Specific BERT Embeddings Next, we evaluate the effect of the language-specific BERT
embeddings. The monolingual BErT model (ARABERT) trained specifically on Arabic Wikipedia and
several news corpora has been shown that it can outperform the multilingual BERT model on several NLP
tasks for Arabic. Here we replace the multilingual BERT model with the ARABERT model to generate the
pre-trained word embeddings. We test our system with ARABERT on the pre-processed text, the results
are shown in Table 5 and Table 6. As we can see from the Tables, the model enhanced by the ARABERT
achieved large gains of 4.7 and 2.4 percentage points when compared to the model using multilingual BERT
on coreference resolution and mention detection respectively. Both recall and precision are improved for
all the metrics evaluated which confirmed the finding in Antoun et al. (2020) that ARABERT model is
better suited for Arabic NLP tasks.

External Mention Detector Finally, we use a separately trained mention detector to guide our models
with a better candidate mentions. We train a mention detector using the same conLL 2012 Arabic datasets
and store the top-ranked mentions in the file. We use the top-ranked mentions from the external mention
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Corpora Language Tokens Documents

English ~960,000 -
Chinese ~615,000 -

ACE

Arabic ~500,000 -

English ~1,600,000 2384
OntoNotes Chinese ~950,000 1729

Arabic ~300,000 447

Table 7: General domain coreference resolution corpora that include Arabic.

detector in a pipeline fashion, the mentions are fixed during the training of the coreference resolution
task. We use the output of the mention detector model trained on the pre-processed data and using the
ARABERT embeddings as this model performs best over three settings we tested (see Table 2). We use
the end-to-end annealing training strategy proposed in Section 3.4 to train our model with both end-to-
end and pipeline approaches. The model is then tested in a pipeline fashion. Table 5 shows our results
on coreference resolution, the model enhanced by the external mention detector achieved a gain of 0.8%
when compared to the pure end-to-end model. We further compared the mention detection performance
between two models in Table 6, as expected the new model has a much better mention recall (2.3%) when
compared to the pure end-to-end model (ARABERT+PRE), this suggests our training strategy successfully
transferred the higher recall achieved by the external mention detector to our coreference system.
Overall, our best model enhanced by the data pre-processing, monolingual Arabic BERT and the external
mention detector achieved a conLL F1 score of 63.9% and this is 15.2 percentage points better than the
previous state-of-the-art system (Bjorkelund and Kuhn, 2014) on Arabic coreference resolution.

5.2 Discussion

Coreference resolution is a difficult task, and even more so for languages such as Arabic with more limited
resourced. The main challenge is the lack of large scale coreference resolution corpora. At present there
are two multilingual coreference corpora that cover Arabic. The first is the Automatic Content Extraction
(ACE) (Doddington et al., 2004) which has ~500,000 tokens, but mentions are restricted to seven semantic
types® and some can be singletons (mentions that do not corefer). The second is OntoNotes (Pradhan et
al., 2012), which covers all entities and does not consider singletons, but the size is smaller than ACE,
with ~300,000 tokens. A summary of the two corpora in Table 7. OntoNotes has been the standard for
coreference resolution evaluation since the conLL-2012 shared task. However, its Arabic portion is small
and this scarcity poses a considerable barrier to improving coreference resolution.

Another challenge of the task is the absence of large pre-trained language models. There are two
versions of BERT: BERT-base and BERT-large. BERT-large integrates more parameters to encode better
representations for mentions which usually leads to a better performance in many NLp tasks. ARABERT
and multilingual BERT are pre-trained using the BERT-base approach because BERT-large is computationally
expensive. We are not aware of any publicly available BErT-large for Arabic that we could have used in
our experiments. We surmise that a BERT-large version of Arabic can improve the overall performance as
shown in prior works (Joshi et al., 2019b; Kantor and Globerson, 2019b).

6 Conclusion

In this paper, we modernize the Arabic coreference resolution task by adapting state-of-the-art English
coreference system to the Arabic language. We start with a strong baseline system and introduce three
methods (data pre-processing, language-specific BERT, external mention detector) to effectively enhance
the performance of the Arabic coreference resolution. Our final system enhanced by all three methods
achieved a conLL F1 score of 63.9% and improved the state-of-the-art result on Arabic coreference reso-
lution task by more than 15 percentage points.

The semantic types are person, organization, geo-political entity, location, facility, vehicle, and weapon.
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