
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 119–131
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

119

Understanding the Source of Semantic Regularities in Word Embeddings

Hsiao-Yu Chiang
School of Information

University of California, Berkeley, USA
hsiaoyuchiang@berkeley.edu

Jose Camacho-Collados
School of Computer Science and Informatics

Cardiff University, United Kingdom
camachocolladosj@cardiff.ac.uk

Zachary A. Pardos
Graduate School of Education

University of California, Berkeley, USA
pardos@berkeley.edu

Abstract

Semantic relations are core to how humans un-
derstand and express concepts in the real world
using language. Recently, there has been a
thread of research aimed at modeling these re-
lations by learning vector representations from
text corpora. Most of these approaches focus
strictly on leveraging the co-occurrences of re-
lationship word pairs within sentences. In this
paper, we investigate the hypothesis that exam-
ples of a lexical relation in a corpus are fun-
damental to a neural word embedding’s abil-
ity to complete analogies involving the rela-
tion. Our experiments, in which we remove
all known examples of a relation from train-
ing corpora, show only marginal degradation
in analogy completion performance involving
the removed relation. This finding enhances
our understanding of neural word embeddings,
showing that co-occurrence information of a
particular semantic relation is the not the main
source of their structural regularity.

1 Introduction

The representation of words has been a long-
standing task in natural language processing (NLP).
The main underlying principle is known for
decades, as explained by Firth (1957). This prin-
ciple was based on the idea that the meaning of a
word can be understood by its surrounding com-
pany (i.e., the words in its context). Most modern
representation learning theory in NLP is based on
this assumption, with vector representation being
the most successful area to date (Turney and Pantel,
2010). More recently, low-dimensional word repre-
sentations learned from text corpora using neural
networks (i.e., word embeddings) have emerged
(Mikolov et al., 2013a; Pennington et al., 2014;
Bojanowski et al., 2017) stemming from cogni-
tive frameworks based on distributed representa-
tion (Hinton et al., 1986; Feldman and Ballard,

1982). Neural word embeddings have been proven
to contain useful information about concepts and
entities, and provide a generalization boost to many
NLP applications (Goldberg, 2017). Surprisingly,
these representations have also been shown to ex-
hibit linear relationships between words in the vec-
tor space, demonstrated by analogy. For example,
Mikolov et al. (2013b) showed that a simple op-
eration such as king-man+woman will result in a
point near queen in the vector space1. These word
analogies have been extensively investigated in the
literature, aiming to shed light on this surprising
property. However, while there has been a body of
research seeking to understand how these analogies
work (Arora et al., 2016; Gittens et al., 2017; Etha-
yarajh et al., 2019; Allen and Hospedales, 2019),
and noting issues about their methodology (Linzen,
2016; Gladkova et al., 2016; Nissim et al., 2020),
there has not been a specific analysis on the source
of statistical cues that leads to their high perfor-
mance on this task.

Concurrently, a thread of research has focused
on explicitly modeling lexical relationships of word
pairs in text corpora (Jameel et al., 2018; Espinosa-
Anke and Schockaert, 2018; Washio and Kato,
2018; Joshi et al., 2019; Camacho-Collados et al.,
2019). While these methods employ different
means for learning relation vectors, they share a
common initial premise: only co-occurring words
in the corpus are considered2. While this simplified
assumption works well enough in practice, pro-
viding a useful signal even in downstream NLP
applications, in this paper we find that valuable
information is likely lost in the process. In fact, we

1More information of how word analogies work can be
found in Section 2.1.

2Some of these methods also provide tools to learn rep-
resentations for out-of-vocabulary pairs (Joshi et al., 2019;
Camacho-Collados et al., 2019). However, their initial vector
spaces are based on co-occurring word pairs only.
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find that a text corpus provides enough information
to infer pairwise relations without training on any
specific examples of a given relation.

In our experiments, we focus on semantic rela-
tions in particular, which are the most suited for
both word and relation embedding models. Neural
word embeddings are used to learn representations
from text corpora, with word analogies as the eval-
uation mechanism to test our hypothesis. We run
an extensive set of control experiments where the
co-occurrence information is completely removed
from the reference corpora. The results show that,
with relationship instance removal, analogy perfor-
mance degrades to only a limited extent, overall.3

This finding suggests that neural embeddings do
not learn lexical relation regularities from exam-
ples of the relation, but that they are still able to
be inferred through the semantic featurization of
individual words.

2 Related Work

2.1 Understanding analogies in word
embeddings

The surprising result of Mikolov et al. (2013b),
showing that word embedding can solve linear anal-
ogy problems, led to a careful investigation by re-
searchers from different fields. A line of research
proposed mathematical formalisms to try to under-
stand the intrinsic properties of word embeddings.
Arora et al. (2016) was one of the first to provide a
rigorous theoretical explanation on the linear alge-
braic structure of word embeddings. Their formal-
ism is based on a latent variable model that makes
assumptions on the nature of the vector space.
Later works rely on the notion of paraphrasing
(Gittens et al., 2017; Allen and Hospedales, 2019),
based on the observation that different words can
be used in similar contexts interchangeably, drop-
ping some of the previous assumptions made by
Arora et al. (2016). Concurrently, other works have
attempted to provide explanations of the composi-
tional properties of distributional models through
additions (Levy and Goldberg, 2014a; Paperno and
Baroni, 2016; Ethayarajh et al., 2019), which lie at
the core of word analogy completion.

While these works formalize word analogies and
attempt to explain how they work mathematically,

3In a few specific relations the degradation is more marked.
Nonetheless, this degradation does not surpass 50% even in
the most unfavorable case for accuracy, and for other metrics
this degradation does not surpass 20%.

our empirical analysis is focused on understand-
ing the source of signal in corpora that affect the
performance of word analogy completion, without
asserting any predefined assumption. In particular,
we are mostly interested in determining whether
relationship pair co-occurrence in sentences is nec-
essary in order for a word embedding to succeed at
analogy completion.

2.2 Issues in word analogies

A number of publications have encountered
methodological issues in the word analogy task
through word embeddings. Levy and Goldberg
(2014a) found that the addition operations may
not be optimal, as they are reduced to three
separate similarity problems that can be solved
through more appropriate operations. Linzen
(2016) showed that simple baselines based on near-
est neighbour searches are competitive in the anal-
ogy categories proposed by Mikolov et al. (2013b).
Because of this, Gladkova et al. (2016) proposed
a new dataset, partially addressing some of the
previous shortcomings. Other works have shown
that linear relationships, while being implicit, are
not directly apparent in the word embedding space,
and therefore word analogies may not be the best
method to retrieve this information (Drozd et al.,
2016; Schluter, 2018; Bouraoui et al., 2018). Fi-
nally, Gonen and Goldberg (2019) and Nissim et al.
(2020) cautioned against over-reliance on analo-
gies as a means to uncover and correct for biases
in word embeddings.

These methodological observations challenge
the supremacy of analogy evaluations as the op-
timal proxy for downstream task performance of
a word embedding. Nevertheless, they represent
a valuable mechanism with which to compare the
semantic regularities of two different neural em-
beddings. In particular, word analogies represent
an ideal benchmark for our research questions, as
the impact of co-occurrence statistics within word
relations can be evaluated directly through anal-
ogy validation. This would not be the case for
other more complicated tasks such as relation clas-
sification or extraction, which may add additional
confounds.

3 Methodology

In this section we explain the experimental method-
ology we follow to answer our main research ques-
tion. First, we briefly describe how to solve word



121

analogies using word embeddings (Section 3.1).
We then explain our methodology to compile cor-
pora to train word embeddings (Section 3.2).

3.1 Solving word analogies with neural word
embeddings

The first step to solve word analogies using neural
word embeddings is to first learn word vectors from
an unlabeled text corpora. To do so, standard word
embedding models such as Word2Vec (Mikolov
et al., 2013a), GloVe (Pennington et al., 2014) or
FastText (Bojanowski et al., 2017) are often used.
The output of these models is a vector space where
each word is represented as a single point. With
these vectors, mathematical operations can then be
made to solve a given analogy.

Formally, given three words (a, b and c), the task
of word analogy completion consists of predicting
the most appropriate word d that satisfies a is to b
as c is to d. In this case, both a-b and c-d are part
of the same relationship. For instance, in the case
of Paris, France and Berlin, the word to retrieve
would be Germany. In this case both Paris-France
and Berlin-Germany belong to the capital-of re-
lation. With word embeddings this can be solved
with the simple vector operation4 ~b−~a+~c, retriev-
ing the word whose vector is closest to that point
in the space.

Word analogy completion is used as the main
evaluation for our experiments.

3.2 Corpus preparation

Our main research question is whether an explicit
observation of a relationship in a corpus is neces-
sary to complete an example of that relationship via
analogy. To this end, given a reference unlabeled
corpus, we devise the following methodology per
lexical relation type.

3.2.1 Sentence removal
First, for each relation type (e.g. capital-of ) in a
dataset, we remove all sentences from the corpus
that contain word pairs belonging to the relation.
This results in a modified corpus for each relation
type and a respective word embedding for each
relation type trained on the modified corpus. For
example, for the pair Lisbon-Portugal, we would
remove all sentences from our reference corpus

4Levy and Goldberg (2014a) showed that a multiplication
operation can also be used to solve analogies. However, for
this analysis we focused on the traditional solution of the
problem proposed by Mikolov et al. (2013b).

where Lisbon and Portugal co-occur, and this pro-
cess would be repeated for all pairs of the capital-of
relation.

3.2.2 Sentence replacement
This setting is similar to the sentence removal
strategies with the added inclusion of new sen-
tences to replace the removed ones. In particular,
for each removed sentence containing a word pair
of a relation type, two sentences from a similar
corpus replace it, where each sentence contains
one of the words in the pair. This is arguably the
most fairly comparable setting to no removal, as
the number of occurrences for each word in the
relation would be approximately the same with re-
spect to the default setting. The overall number
of sentences would be slightly higher, though this
is negligible in comparison to the full corpus (see
Section 4.1 for the specific details on the corpora
used for the evaluation).

For both the sentence replacement and sentence
removal strategies, we also experiment with a more
aggressive setting. In this setting (referred to as
removal+ or replacement+ in our experiments), all
sentences containing any two words from the vo-
cabulary of the relation5 are removed, in the case
of removal+, or replaced, in the case of replace-
ment+. This is the most aggressive setting where
no co-occurrence information of a given relation is
preserved.

4 Evaluation

In this section we provide the details of our ex-
perimental setup (Section 4.1) and then, the main
results of our evaluation (Section 4.2).

4.1 Experimental Setting

In the following we describe the experimental set-
ting for all our experiments. More details and code
to reproduce our experiments can be found online6.

Text corpora. As our reference corpus we se-
lected UMBC (Han et al., 2013), which is a
diverse 3-billion-token corpus of paragraphs ex-
tracted from the web, amounting to a total of 132M
sentences. In particular, we randomly select 80%
of all sentences which would be the base corpus
for the experiments. Then, we used the remaining

5Recall from the previous subsection (Section 3.1) that
each analogy instance is formed by four words.

6https://github.com/h-yuc/
Lexical-Relations-Analogies

https://github.com/h-yuc/Lexical-Relations-Analogies
https://github.com/h-yuc/Lexical-Relations-Analogies
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20% to add replacement sentences when necessary
(see Section 3.2.2 for more details on the replace-
ment setting). To complement the main results and
test the generalization of our findings, we also use
Wikipedia7 (2 billion tokens and 104M sentences)
for the base removal experiments.

Word embedding models. For word embedding
models, we use both the CBOW and Skip-Gram
variants of Word2Vec (Mikolov et al., 2013a).
These neural representation learning approaches
have shown to be amenable to analogy completion
since their introduction (Mikolov et al., 2013b).
Unlike FastText (Bojanowski et al., 2017), they do
not include character information and are there-
fore more suitable for our experiments as pure
word-based models. We use standard hyperparam-
eters for both CBOW and Skip-Gram, with 300-
dimensions and a window size of 10 in both cases.
Given the difference in speed (CBOW being around
five times faster to train) and the small performance
difference, we considered CBOW for all our main
experiments, but included Skip-Gram results in the
appendix.

Validation datasets. Google (Mikolov et al.,
2013b) and BATS (Gladkova et al., 2016) relation
example datasets are used for analogy completion.
BATS was introduced after the Google dataset to
address some of its shortcomings in the number and
type of relations, so the inclusion of both datasets in
our experiments help give a more general overview.
In particular, we focus on the semantic relations
of each dataset. Table 1 shows the statistics of the
relations considered in each of the datasets.

Evaluation protocol. For solving word analo-
gies, we follow the original methodology of
Mikolov et al. (2013b)8, as explained in Section
3.1. For simplicity, we unify the evaluation setting
for both datasets where we only consider a single
solution. In the case of BATS, we consider the
first answer as provided in the dataset, which is
generally the most specific. With the expectation
that performance after co-occurrence removal may
degrade substantially, we report analogy comple-
tion results using recall at 1 (accuracy), 10, and 50.
Recall@50, for example, reports the percentage of
analogy completions in which the expected word
was among the 50 nearest neighbors to the three

7We use the Wikipedia dump of November 2016.
8As in the original protocol, words that are included in the

instance are excluded from the nearest neighbours search.

Relation type #inst #word Example

G
oo

gl
e

cap-comm-country 506 46 Cairo, Egypt, Paris, France
capital-world 4,524 232 Muscat, Oman, Tokyo, Japan
currency 866 60 Europe, euro, Korea, won
city-in-state 2,467 94 Toledo, Ohio, Dallas, Texas
family 506 46 king, queen, man, woman
nationality-adj. 1,599 82 Greece, Greek, Spain, Spanish

BA
T

S

country-capital 2450 100 Hanoi, Vietnam, Rome, Italy
country-language 2,450 100 Jordan, Arabic, USA, English
UK city-county 2,450 100 Exeter, Devon, Wells, Somerset
name-nationality 2,450 100 Caesar, Roman, Plato, Greek
name-occupation 2,450 100 Plato, philosopher, Dante, poet
animal-young 2,450 100 bee, larva, ox, calf
animal-sound 2,450 100 bee buzz frog ribbit
animal-shelter 2,450 100 horse, stable, ant, anthill
things-color 2,450 100 coffee, black, cream, white
male-female 2,450 100 son, daughter, father, mother
hypernym-animal 2,450 100 human, primate, cat, feline
hypernym-misc 2,450 100 pastry, food, plum, fruit
hyponym-misc 2,450 100 bag, pouch, dessert, cake
meronym-subst. 2,450 100 bag, leather, penny, metal
meronym-member 2,450 100 bird, flock, page, book
meronym-part 2,450 100 day, hour, dollar, cent
synonym-intensity 2,450 100 angry, furious, ask, beg
synonym-exact 2,450 100 help, aid, child, kid
antonym-gradable 2,450 100 aware, unaware, slow, fast
antonym-binary 2,450 100 after, before, below, above

Table 1: Statistics of the word analogy datasets used
in our experiments: Number of instances (#inst) and
unique words (#word).

word subtraction and addition. The inclusion of
recall at different thresholds allows for a more com-
plete overview of the performance, as the standard
accuracy measure alone may not reflect the full
picture (Gladkova et al., 2016; Schluter, 2018).

Training. For each relation type, we utilized
three different variants of each corpora that are used
to train word embeddings (i.e., the original corpus
and two resulting from our removal and replace-
ment strategies, as explained in Section 3.2). To
reduce the amount of training, we only considered
the default and removal strategy for Wikipedia9,
while all experiments are performed on the main
UMBC reference corpus. In total, we compiled 156
different corpora, occupying 2.2TB of disk space,
and learned 184 different word embedding models,
totalling around 1,980 hours (around 83 full days)
of model training on a high performance single
node (48-core) system.

4.2 Results

As explained in the previous section, our exper-
iments are aimed at understanding the role of
co-occurring words in a given relation type (e.g.

9Likewise, for Skip-Gram we only considered the Google
analogy dataset and a single strategy per corpus (results in the
appendix).
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Sentences removed Recall@1 (accuracy) Recall@10 Recall@50
Rm/Rp Rm+/Rp+ Def Rm Rp Rm+ Rp+ Def Rm Rp Rm+ Rp+ Def Rm Rp Rm+ Rp+

G
oo

gl
e

cap.-country 49,248 245,677 61.7 53.0 52.4 51.4 51.6 89.7 81.6 82.6 83.4 83.4 98.2 90.3 90.5 91.3 92.3
cap.-world 79,060 452,915 49.4 31.3 32.7 30.1 33.6 82.0 65.8 67.9 65.0 67.2 91.2 79.2 80.5 78.6 80.8
currency 4,260 145,179 8.7 5.1 6.9 5.8 6.2 37.3 32.6 34.2 33.1 34.5 63.5 58.7 59.6 58.4 60.4
city-state 96,666 247,238 14.1 7.7 7.7 8.6 9.1 40.4 28.0 28.0 28.9 31.5 62.1 50.1 50.0 49.9 53.8
family 450,875 2,830,852 91.1 85.0 82.0 69.8 72.9 100.0 95.3 94.7 88.1 89.7 100.0 98.4 96.8 90.5 91.1
nation-adj 145,064 492,671 86.4 80.2 81.7 81.3 83.1 96.0 96.1 95.6 96.4 95.9 97.9 97.8 97.9 97.7 97.4
AVERAGE 137,529 735,755 51.9 43.7 43.9 41.2 42.7 74.2 66.5 67.1 65.8 67.0 85.5 79.1 79.2 77.7 79.3

BA
T

S

country-cap 66,988 369,463 71.6 54.7 55.8 56.7 59.6 90.9 86.9 87.3 86.1 86.5 95.1 93.0 93.1 91.6 91.2
country-lang 21,066 649,071 26.7 24.0 24.9 16.9 19.6 60.8 56.9 57.4 47.5 52.5 74.8 73.3 73.1 62.6 69.1
city-county 2,599 56,719 1.8 1.2 1.2 0.2 0.7 10.4 7.8 8.3 2.5 5.7 27.7 25.3 25.0 6.3 17.8
name-nation. 12,069 1,808,784 20.6 17.5 18.1 18.9 16.1 54.7 50.7 51.6 50.6 46.9 72.5 68.9 69.6 65.1 65.9
name-occup. 10,934 1,030,106 45.1 41.8 42.1 12.0 34.9 72.2 70.6 69.8 30.4 65.1 80.6 79.4 79.0 44.9 76.0
animal-young 3,238 221,647 3.6 2.7 3.0 1.2 3.4 15.5 13.6 12.4 5.8 10.2 28.4 26.4 25.6 10.7 21.4
animal-sound 1,307 75,529 3.8 2.7 3.5 0.8 2.0 12.2 9.0 11.0 2.8 6.4 20.0 15.9 17.2 4.5 11.1
animal-shelter 11,892 569,567 3.3 1.7 1.7 0.6 1.0 16.6 12.4 12.5 3.4 9.3 32.0 26.0 25.7 8.0 18.8
things-color 52,219 1,179,341 11.2 11.5 11.8 12.5 10.9 41.6 39.1 41.0 41.1 33.7 59.4 55.2 56.7 54.7 49.5
male-female 108,898 445,429 48.0 42.8 43.5 38.6 40.0 70.4 69.3 68.3 63.6 64.7 79.0 77.4 77.0 73.6 72.7
hyper-animal 3,410 93,258 9.6 8.4 7.8 1.6 4.4 41.1 37.5 38.4 9.8 29.3 67.1 63.8 64.8 24.1 52.5
hyper-misc 15,157 456,525 4.7 4.4 4.2 1.6 3.1 23.8 22.9 22.3 14.8 20.9 43.0 41.5 40.8 28.2 37.6
hypo-misc 32,118 274,377 9.8 10.3 9.3 8.8 10.9 55.9 54.2 55.4 49.1 55.1 81.3 79.3 79.1 73.4 79.0
mero-subst. 68,128 1,548,273 6.5 5.4 5.3 2.9 3.7 30.7 26.0 25.8 15.6 20.8 52.5 45.2 45.4 30.5 40.7
mero-member 257,447 4,897,322 3.1 2.9 2.8 2.3 3.0 26.9 24.7 25.3 17.9 25.9 44.7 41.8 42.1 30.4 43.4
mero-part 30,016 364,053 2.9 2.7 2.4 2.7 2.7 29.0 27.4 27.2 23.9 26.9 49.8 48.1 48.1 42.0 46.7
syn-intens. 40,241 1,329,093 17.9 17.7 17.4 14.8 19.0 49.6 47.1 49.0 42.3 47.2 70.2 68.4 68.9 59.8 68.3
syn-exact 49,292 882,075 27.8 26.0 25.8 26.6 27.5 69.0 66.2 65.4 66.9 68.6 85.8 84.2 83.8 84.4 84.9
auto-grad. 237,221 2,397,131 21.3 20.0 19.8 17.1 22.1 46.2 43.3 43.6 40.4 46.9 65.1 61.5 61.6 59.1 65.4
auto-binary 1,648,965 42,023,189 27.6 26.2 27.6 28.6 35.1 59.2 56.1 56.7 57.4 67.2 71.1 69.9 70.0 71.8 80.6
AVERAGE 133,660 3,033,547 18.3 16.2 16.4 13.3 16.0 43.8 41.1 41.4 33.6 39.5 60.0 57.2 57.3 46.3 54.6

Table 2: UMBC corpus word analogy results using CBOW with five different configurations: Default (Def),
Remove (Rm), Replace (Rp) and their more aggressive counterparts removing all pairwise co-occurrences (Rm+
and Rp+).

capital-of ) as they pertain to analogy completion.
Table 2 shows the main set of results of the CBOW
model on the UMBC corpus. As can be observed,
and as expected, the default model (i.e., no co-
occurrence removal) trained on the original corpus
provides the highest analogy completion results,
overall. However, less expected is the low magni-
tude decrease in performance of the experiments
involving co-occurrence removal. The default ex-
periments performed analogies with 51.9% accu-
racy (R@1), on average, compared to 42.7% with
the most aggressive replace plus (Rp+) strategy
on the Google dataset, and 18.1% vs. 16.0%, re-
spectively, on the BATS dataset. Figure 1 shows
the average decrease in performance of the replace
strategy (Rp) per relation type as a percentage of
the default performance. For R@1, the decrease in
performance is lower than 10% for the majority of
relations. When considering R@10 and R@50, this
decrease in performance is even less pronounced,
which suggests that the main geometrical features
of the space were largely preserved (a more visu-

alization of the space is presented in Section 5.2).
The animal-shelter significant decrease in perfor-
mance is a special case as the performance of the
default model was very low to start with (3.3%),
which highlights the difficulty to model that par-
ticular relationship via word analogies. The same
could be attributed to the city-state (Default ac-
curacy of 14.1%), which is the relation with the
second highest decrease in performance for R@1.

Finally, Table 3 shows experimental results for
the default, remove (Rm) and remove plus (Rm+)
strategies for models trained on the Wikipedia cor-
pus. The results are slightly higher overall, given
the clean, consistent, and topically comprehensive
nature of the corpus. The overall difference be-
tween default and removal strategies was similar
to that of UMBC (reminder that the remove plus
strategy consisted of removing all sentences where
any two words from a given relation co-occur).
No co-occurrence removal (Def) vs. removal plus
(Rm+) had analogy completion accuracies of 59%
vs. 52.5%, respectively, on the Google dataset, and
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Figure 1: Average decrease in performance (%) of the CBOW model trained on the original UMBC corpus with
respect to the replace strategy (Rp) per relation type (Google and BATS datasets).

21.7% vs. 20.3% on the BATS dataset.

5 Analysis

In this section we aim to better understand the re-
sults presented in the previous section. In particular,
we analyze to what extent the performance drops
that exist are correlated with frequencies of words
in the relationship (Section 5.1). We also compare,
through principal component analysis (PCA) visu-
alization, the structure of the relation with the high-
est point decrease, before and after co-occurrence
removal (Section 5.2).

5.1 Correlation with word frequency
A natural question that may arise when looking at
the results is whether word frequency has any influ-
ence on the performance drop of co-occurring word
pairs. For instance, one may wonder if getting a
high-quality word embedding, which is generally
achieved when word frequency is sufficiently high
in the corpus, is enough to compensate for the lack
of sentences with words forming a certain rela-
tion. Or, alternatively, if the relative frequency of
co-occurring words in a relation has an effect on
the final embedding, as this would mean that fre-
quency is a necessary condition for learning robust
semantic regularities. To answer these questions,
we computed the correlation between word and
pair frequencies in a word analogy instance and the
performance drop. For the frequency indicator, we
computed two numbers, Hind and Hpair:

1. Harmonic mean10 between all individual
10We decided to use the harmonic mean because it is gener-

words in the analogy instance (Hind) was com-
puted as follows:

Hind =
n∑n

i=1
1
xi

(1)

where xi is the frequency of a word in the
given word analogy instance and n is the num-
ber of words, i.e., four in the case of individual
words in word analogies. For example, the har-
monic mean of the four words, king (220,958
occurrences in UMBC), queen (52,262), man
(751,262), and woman (296,915) would be
141,048.

2. The relative pairwise frequency (Hpair) was
computed as the previous number divided by
the harmonic mean of the number of sentences
where two words of a pair co-occur (i.e., Hco):

Hpair =
Hco

Hind
=

2 · p1 · p2
(p1 + p2)

· 1

Hind
(2)

where pi corresponds to the frequency of a
relation pair in a word analogy instance. This
number can give a better indication of how rel-
evant the co-occurrence information of a given
word pair is. Following the previous example,
the relative pairwise frequency Hpair of the
instance composed of king-queen (5,498 joint
co-occurrences in UMBC) and man-woman
(36,189) is 0.068.

ally more robust to outliers (e.g., a highly frequent word) than
the usual arithmetic mean.
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Sentences removed Recall@1 (accuracy) Recall@10 Recall@50
Rm Rm+ Def Rm Rm+ Def Rm Rm+ Def Rm Rm+

G
oo

gl
e

capital-country 162,671 521,038 61.9 54.6 55.5 93.3 89.5 90.3 97.6 94.9 96.1
capital-world 320,106 1,102,291 66.8 48.1 51.4 92.9 80.6 82.1 97.2 90.3 91.1
currency 4,327 223,588 31.4 28.5 25.3 60.9 58.2 51.3 77.9 78.4 71.0
city-in-state 344,196 659,539 19.7 12.6 15.2 54.0 34.8 39.4 72.3 55.7 58.5
family 375,904 1,012,935 78.1 73.3 72.3 94.3 92.9 89.7 95.7 94.5 93.9
nationality-adjective 437,316 1,381,200 95.9 94.9 95.5 98.5 98.6 97.6 99.8 99.7 98.9
AVERAGE 274,087 816,765 59.0 52.0 52.5 82.3 75.8 75.1 90.1 85.6 84.9

BA
T

S

country-capital 267,095 885,924 83.8 79.5 78.7 91.1 90.0 88.9 93.6 91.8 91.3
country-language 82,842 527,339 28.6 25.3 23.9 62.0 58.5 58.9 72.7 70.9 71.2
UK city-county 39,780 198,005 17.0 9.1 9.7 43.5 34.0 34.3 59.0 52.3 51.8
name-nationality 31,980 390,864 31.4 29.5 30.7 56.0 53.9 56.5 67.8 65.2 69.1
name-occupation 24,798 136,447 39.9 35.9 34.7 63.0 59.5 58.3 72.1 68.8 67.8
animal-young 7,021 135,815 5.4 2.4 2.4 20.0 12.5 10.5 33.1 24.4 22.3
animal-sound 2,921 121,416 5.3 2.8 1.7 15.2 10.5 7.6 24.2 18.6 14.5
animal-shelter 23,832 262,708 2.0 1.3 0.9 8.7 5.4 4.6 17.5 12.1 10.7
things-color 47,298 445,312 14.5 15.0 15.2 39.9 38.6 42.8 55.6 52.7 56.2
male-female 400,035 1,387,664 51.8 47.4 46.5 77.6 73.7 71.6 84.5 82.4 80.7
hypernyms-animals 11,723 77,632 20.1 16.8 14.4 57.6 52.7 47.4 75.4 71.0 66.6
hypernyms-misc 16,825 164,097 7.4 6.7 6.2 33.1 29.9 30.3 55.8 53.0 51.9
hyponyms-misc 90,811 594,541 12.4 12.4 10.9 52.2 51.2 49.4 72.7 70.6 69.8
meronyms-substance 70,896 510,291 7.8 6.7 6.9 28.9 24.2 24.9 48.7 43.4 41.4
meronyms-member 774,473 4,259,786 10.4 9.1 12.0 33.3 28.2 35.6 49.9 44.7 53.0
meronyms-part 91,041 539,371 6.7 6.1 5.5 34.0 31.5 31.7 56.5 52.0 51.4
synonyms-intensity 44,149 624,662 15.6 14.9 14.4 42.9 40.4 40.7 61.3 60.7 58.7
synonyms-exact 83,651 1,308,183 23.2 20.7 25.4 52.6 50.0 54.4 69.1 67.1 70.2
antonyms-gradable 282,330 1,233,454 21.6 18.5 22.3 49.0 46.3 49.6 67.1 64.6 66.5
antonyms-binary 1,726,724 21,329,952 29.4 26.1 44.6 57.7 55.4 77.2 72.2 70.7 85.6
AVERAGE 206,011 1,756,673 21.7 19.3 20.3 45.9 42.3 43.8 60.4 56.8 57.5

Table 3: Wikipedia corpus word analogy results using CBOW with three different configurations: Default (Def),
Remove (Rm), and its more aggressive setting removing all pairwise co-occurrences (Rm+)

With respect to performance drops, for each anal-
ogy completion instance we considered the ranks11

of the correct completion words in both the default
and replace settings and computed the difference.
Table 4 shows the results of the correlation results
in the Google analogy dataset. Not surprisingly,
the correlation between the individual frequency
of the words in an instance and the rank differ-
ence is negative in all relation types except for one
(nationality-adjective). However, the correlation is
rather weak, as the addition of new sentences com-
pensate for the initial removal, even if the sentences
are of a different kind. As for the relative frequency
of pairs in the instance, the correlation is positive
as expected. In this case, the signal is higher than
with the individual frequency case, especially in
the family relationship. Overall, this experiment
shows a level of support for our initial premises on
the effect of relative pair frequencies, but further
research would be necessary to understand other

11We only considered the position of the fifty first nearest
neighbours. If the correct word was not among the fifty nearest
neighbours, 51 was used as the position, which would be
equivalent to a wrong answer.

reasons behind the performance drop.

Frequency Drop Correlation
Ind Pair Hind Hpair

cap.-country 26,111 2,002 15.1 -0.239 -0.114
cap.-world 4,328 434 33.8 -0.128 +0.188
currency 3,815 52 20.0 -0.092 +0.041
city-state 14,226 1,121 45.3 -0.012 +0.192
family 58,197 5,617 10.0 -0.065 +0.315
nation-adj 30,076 2,238 5.4 +0.063 +0.021
AVERAGE 22,792 1,911 22.9 -0.079 +0.107

Table 4: Pearson correlations between frequency (aver-
age among all instances in the dataset) and performance
drop between the default and replace (Rp) corpora.

5.2 Visualization

In this section, we present visualizations of the
word pairs from one lexical relation, before and af-
ter co-occurrence removal, in order to gain insight
into the effect of removal on the learned structure
of the space. In particular, we selected the rela-
tion from the Google datasets with the largest raw
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Figure 2: Capital-world vectors projected by PCA. All models trained on different subsets of UMBC: default (left)
and remove (right). Red marks (x) correspond to countries and blue dots, capitals.

performance point drop12. Figure 2 shows the two
principal components of word pairs in the capital-
world relation for both the default (Def) and re-
move (Rm) settings. A reminder from Section
3.2.1, the remove setting involves removing all sen-
tences where both words from a relation co-occur,
without any replacement. As can be seen, even in
the case of a relation with a R@1 performance gap
as high as 36.6%, the linear relations are largely
preserved in the word embedding space. This can
also be supported by the fact that the performance
drop is much smaller for R@10 and R@50 (see
Figure 1), suggesting that the correct completion
word is still somewhere near in the space. For ex-
ample, for the instance Australia, Canberra, Spain,
the correct word Madrid is found as the fifth near-
est neighbours in the Rm vector space, with the
top two words being Barcelona and Valencia (other
large Spanish cities). Intuitively, this error does not
affect the overall representation of the relation in
the vector space, as those words were already in a
similar linear relationship in the default model.

6 Discussion

6.1 The source of semantic regularities
In this paper, we find that neural word embeddings
(i.e., Word2Vec models) do not require observa-
tion of instances of the relation (e.g., Madrid is
the capital of Spain) in order to maintain nominal
accuracy in relation completion tasks. We believe
this is the first time such an observation has been
made, empirically, using natural language, though
it has been observed in neural embeddings trained

12In the appendix we also include the same visualizations
for the relations with the second largest performance drop
(city-in-state) and the smallest performance drop (nationality-
adjective), which largely share the same conclusions.

on non-linguistic data (Pardos and Nam, 2020).
In Mikolov et al. (2013b), where Word2Vec mod-

els were first introduced, the phrase ”Linguistic
Regularities” was used. While it was not made
explicit what the word regularities referred to, anal-
ogy completion was exclusively used for valida-
tion, leaving open the possibility that regularities
referred to some pattern of structure allowing for
lexical relationships to be expressed. If the regular-
ities relevant to analogy completion are not formed
from examples of the lexical relationship contained
in the analogy, then how are they formed and how
was the accuracy of the completion mostly retained
in our experiments in the absence of examples?
Instead, it may leverage the robustness of regular-
ities, or features, learned about individual words
to lay the structural foundation for inferences to
then be made about a lexical relation. Removing
co-occurrences of capitals and countries, for exam-
ple, would not completely remove the concept of
capitals and countries from the corpus. The embed-
ding of ”Madrid” would likely still encode features
associated with a busy city, government buildings,
culture, and European regionality. This is also re-
lated to work that showed relations and relevant
information from relations can be captured from
word embeddings (Jadhav et al., 2020), even if the
relation cannot be retrieved explicitly from linear
transformations (Drozd et al., 2016; Bouraoui et al.,
2018). Interestingly, however, our results indicate
that the frequency of an individual word in a corpus
is only weakly related to the robustness of features
leveraged for successful analogy completion.

Finally, even though co-occurrences of pairs
from a specific relation are not necessary to learn
the necessary features, word pairs still may play
a critical role in regularity development. Most
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word embedding models (including the Skip-Gram
model of Word2Vec) are trained in pairwise fashion
after-all, making predictions and calculating loss
based on each pair of input and context words.

6.2 Cognitive perspective

Neural embeddings come from a cognitive perspec-
tive on semantic representation. They stem from a
hypothesized architecture of the mind called Con-
nectionism (Feldman and Ballard, 1982) in which
emergent concepts (Hopfield, 1982; Hinton, 1986)
are learned as distributed representations across
the embedding space (Hinton et al., 1986). If neu-
ral word embeddings are a candidate model of a
component of human cognition, then our results
suggest that the faculties of the mind that under-
stand relational concepts (e.g., male and female)
may establish these concepts primarily through in-
duction and observations of behavior. For example,
this would mean that we learn features of male
and female separately, rather than through explicit
declaration of representative pairs (i.e., explicit co-
occurrences). It is perhaps a separate faculty of
the mind that queries this conceptual representa-
tion framework for inferences to be made about
relationships between new elements. These infer-
ences, conducted by way of analogy, may indeed
be key to innovation (Hope et al., 2017) and a possi-
ble component of human creativity (Holyoak et al.,
1996).

7 Conclusion and Future Work

In this paper we have presented a large-scale analy-
sis on the role of co-occurring relational word pairs
in completing analogies. In the analyses we have
measured to what extent the loss of co-occurrence
information within relation types affects analogy
completion using neural word embeddings. Per-
haps surprisingly, this effect is quite small, to the
point that word embeddings can complete analo-
gies of a relationship in the vector space even if
the co-occurrence information from the reference
corpus is totally removed.

In order to complement this analysis, for future
work it would be interesting to analyze to what ex-
tent the conclusions of this analysis apply to purely
distributional models, e.g., PMI-based, as they have
shown to share similarity properties with word em-
beddings (Levy et al., 2015), to the point of Skip-
Gram being viewed as an implicit co-occurrence
matrix factorization (Levy and Goldberg, 2014b).

Moreover, the analysis could be extended to other
types of relations, not only semantic. Further inves-
tigation could then focus on how the main sources
of concepts and linguistic regularities in word em-
beddings are learned, and how they can be lever-
aged to improve unsupervised relation models, e.g.,
(Jameel et al., 2018; Joshi et al., 2019). Finally, as
a follow-up to recent work aiming at understand-
ing how language models and contextualized em-
beddings capture relations (Petroni et al., 2019;
Bouraoui et al., 2020; Jiang et al., 2020), further
research could be devoted to analyze the perfor-
mance of such models with and without pairwise
co-occurrence information.
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Appendix

A Additional Experiments

In this appendix we include some additional results
that complement our main experiments.

Skip-gram results. Table 5 and 6 present the re-
sults of the Skip-gram model of Word2Vec trained
in UMBC and Wikipedia, respectively.

Performance drop. Figure 3 presents the perfor-
mance drop percentage of the remove setting (Rm)
with respect to the default setting in UMBC.

B Visualizations

Figures 4 and 5 present visualizations of the word
embedding space for the relations nationality-
adjective and city-in-state, respectively, in both
default (Def) and remove (Rm) settings. These
figures complement Figure 2 of the main paper.
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Figure 3: Average decrease in performance (%) of the CBOW model trained on the original UMBC corpus with
respect to the removal strategy (Rm) per relation type (Google and BATS datasets).

Recall@1 Recall@10 Recall@50
Def Rp Rp+ Def Rp Rp+ Def Rp Rp+

G
oo

gl
e

cap.-country 61.7 51.0 48.2 91.7 85.2 86.2 98.4 95.1 93.1
cap.-world 49.8 34.0 33.5 79.1 66.5 65.3 92.2 81.0 80.4
currency 12.1 9.5 5.8 35.7 30.6 28.1 61.8 57.7 53.0
city-state 16.6 10.2 10.7 54.6 37.5 38.4 76.3 62.5 62.8
family 82.0 67.2 63.2 100.0 90.9 82.0 100.0 94.9 87.6
nation-adj 92.4 89.2 87.9 98.0 96.6 95.9 99.8 99.3 97.2
AVERAGE 52.4 43.5 41.5 76.5 67.9 66.0 88.1 81.7 79.0

Table 5: UMBC corpus word analogy results using Skip-gram with three different configurations: Default (Def),
Replace (Rp), its more aggressive setting replacing all pairwise co-occurrences, i.e., Rp+.

Recall@1 Recall@10 Recall@50
Def Rm Rm+ Def Rm Rm+ Def Rm Rm+

G
oo

gl
e

cap.-country 68.0 52.0 45.9 96.1 86.8 84.6 99.2 97.0 95.9
cap.-world 70.0 44.6 42.2 93.7 78.6 78.1 97.9 89.1 89.9
currency 31.2 23.6 19.2 59.9 53.1 44.8 73.2 67.7 59.5
city-state 19.9 8.9 10.5 56.8 29.9 32.4 75.4 50.4 51.2
family 71.2 61.5 59.1 94.9 83.8 82.6 95.5 90.7 89.5
nation-adj 99.7 98.7 96.7 100.0 99.9 99.3 100.0 100.0 99.8
AVERAGE 60.0 48.2 45.6 83.6 72.0 70.3 90.2 82.5 80.9

Table 6: Wikipedia corpus word analogy results using Skip-gram with three different configurations: Default
(Def), Remove (Rm), its more aggressive setting removing all pairwise co-occurrences, i.e., Rm+.
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Figure 4: Nationality-adjective vectors projected by PCA. All models trained on different subsets of UMBC:
default (left) and remove (right). Red marks (x) correspond to country-adjectives and blue dots, countries.

−15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

−15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

15

20

Figure 5: City-in-state vectors projected by PCA. All models trained on different subsets of UMBC: default (left)
and remove (right). Red marks (x) correspond to states and blue dots, cities.


