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Abstract

We present a differentiable stack data struc-
ture that simultaneously and tractably encodes
an exponential number of stack configurations,
based on Lang’s algorithm for simulating non-
deterministic pushdown automata. We call the
combination of this data structure with a recur-
rent neural network (RNN) controller a Non-
deterministic Stack RNN. We compare our
model against existing stack RNNs on vari-
ous formal languages, demonstrating that our
model converges more reliably to algorithmic
behavior on deterministic tasks, and achieves
lower cross-entropy on inherently nondeter-
ministic tasks.

1 Introduction

Although recent neural models of language have
made advances in learning syntactic behavior, re-
search continues to suggest that inductive bias
plays a key role in data efficiency and human-like
syntactic generalization (van Schijndel et al., 2019;
Hu et al., 2020). Based on the long-held observa-
tion that language exhibits hierarchical structure,
previous work has proposed coupling recurrent neu-
ral networks (RNNs) with differentiable stack data
structures (Joulin and Mikolov, 2015; Grefenstette
et al., 2015) to give them some of the computa-
tional power of pushdown automata (PDAs), the
class of automata that recognize context-free lan-
guages (CFLs). However, previously proposed dif-
ferentiable stack data structures only model deter-
ministic stacks, which store only one version of
the stack contents at a time, theoretically limiting
the power of these stack RNNs to the determinis-
tic CFLs.

A sentence’s syntactic structure often cannot be
fully resolved until its conclusion (if ever), requir-
ing a human listener to track multiple possibilities
while hearing the sentence. Past work in psycholin-
guistics has suggested that models that keep multi-
ple candidate parses in memory at once can explain

human reading times better than models which as-
sume harsher computational constraints. This abil-
ity also plays an important role in calculating ex-
pectations that facilitate more efficient language
processing (Levy, 2008). Current neural language
models do not track multiple parses, if they learn
syntax generalizations at all (Futrell et al., 2019;
Wilcox et al., 2019; McCoy et al., 2020).

We propose a new differentiable stack data struc-
ture that explicitly models a nondeterministic PDA,
adapting an algorithm by Lang (1974) and refor-
mulating it in terms of tensor operations. The algo-
rithm is able to represent an exponential number of
stack configurations at once using cubic time and
quadratic space complexity. As with existing stack
RNN architectures, we combine this data structure
with an RNN controller, and we call the resulting
model a Nondeterministic Stack RNN (NS-RNN).

We predict that nondeterminism can help lan-
guage processing in two ways. First, it will im-
prove trainability, since all possible sequences of
stack operations contribute to the objective func-
tion, not just the sequence used by the current
model. Second, it will improve expressivity, as it
is able to model concurrent parses in ways that a
deterministic stack cannot. We demonstrate these
claims by comparing the NS-RNN to determin-
istic stack RNNs on formal language modeling
tasks of varying complexity. To show that non-
determinism aids training, we show that the NS-
RNN achieves lower cross-entropy, in fewer pa-
rameter updates, on some deterministic CFLs. To
show that nondeterminism improves expressivity,
we show that the NS-RNN achieves lower cross-
entropy on nondeterministic CFLs, including the
“hardest context-free language” (Greibach, 1973),
a language which is at least as difficult to parse as
any other CFL and inherently requires nondeter-
minism. Our code is available at https://github.
com/bdusell/nondeterministic-stack-rnn.

https://github.com/bdusell/nondeterministic-stack-rnn
https://github.com/bdusell/nondeterministic-stack-rnn
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2 Background and Motivation

In all differentiable stack-augmented networks that
we are aware of (including ours), a network called
the controller, which is some kind of RNN (typi-
cally an LSTM), is augmented with a differentiable
stack, which has no parameters of its own. At each
time step, the controller emits weights for various
stack operations, which at minimum include push
and pop. To maintain differentiability, the weights
need to be continuous; different designs for the
stack interpret fractionally-weighted operations dif-
ferently. The stack then executes the fractional op-
erations and produces a stack reading, which is a
vector that represents the top of the updated stack.
The stack reading is used as an extra input to the
next hidden state update.

Designs for differentiable stacks have proceeded
generally along two lines. One approach, which
we call superposition (Joulin and Mikolov, 2015),
treats fractional weights as probabilities. The other,
which we call stratification (Sun et al., 1995;
Grefenstette et al., 2015), treats fractional weights
as “thicknesses.”

Superposition In the model of Joulin and
Mikolov (2015), the controller emits at each time
step a probability distribution over three stack op-
erations: push a new vector, pop the top vector, and
no-op. The stack simulates all three operations at
once, setting each stack element to the weighted
interpolation of the elements above, at, and below
it in the previous time step, weighted by push, no-
op, and pop probabilities respectively. Thus, each
stack element is a superposition of possible values
for that element. Because stack elements depend
only on a fixed number of elements from the pre-
vious time step, the stack update can largely be
parallelized. Yogatama et al. (2018) developed an
extension to this model that allows a variable num-
ber of pops per time step, up to a fixed limit K.
Suzgun et al. (2019) also proposed a modification
of the controller parameterization.

Stratification The model proposed by Sun et al.
(1995) and later studied by Grefenstette et al.
(2015) takes a different approach, assigning a
strength between 0 and 1 to each stack element.
If the stack elements were the layers of a cake,
then the strengths would represent the thickness of
each layer. At each time step, the controller emits a
push weight between 0 and 1 which determines the
strength of a new vector pushed onto the stack, and

a pop weight between 0 and 1 which determines
how much to slice off the top of the stack. The
stack reading is computed by examining the top
layer of unit thickness and interpolating the vectors
proportional to their strengths. This relies on min
and max operations, which can have zero gradi-
ents. In practice, the model can get trapped in local
optima and requires random restarts (Hao et al.,
2018). This model also affords less opportunity for
parallelization because of the interdependence of
stack elements within the same time step. Hao et al.
(2018) proposed an extension that uses memory
buffers to allow variable-length transductions.

Nondeterminism In all the above models, the
stack is essentially deterministic in design. In order
to recognize a nondeterministic CFL like {wwR}

from left to right, it must be possible, at each time
step, for the stack to track all prefixes of the input
string read so far. None of the foregoing models,
to our knowledge, can represent a set of possib-
lities like this. Even for deterministic CFLs, this
has consequences for trainability; at each time step,
training can only update the model from the van-
tage point of a single stack configuration, making
the model prone to getting stuck in local minima.

To overcome this weakness, we propose incor-
porating a nondeterministic stack, which affords
the model a global view of the space of possible
ways to use the stack. Our controller emits a proba-
bility distribution over stack operations, as in the
superposition approach. However, whereas super-
position only maintains the per-element marginal
distributions over the stack elements, we propose to
maintain the full distribution over the whole stack
contents. We marginalize the distribution as late as
possible, when the controller queries the stack for
the current top stack symbol.

In the following sections, we explain our model
and compare it against those of Joulin and Mikolov
(2015) and Grefenstette et al. (2015). Despite tak-
ing longer in wall-clock time to train, our model
learns to solve the tasks optimally with a higher
rate of success.

3 Pushdown Automata

In this section, we give a definition of nondetermin-
istic PDAs (§3.2), describe how to process strings
with nondeterministic PDAs in cubic time (§3.3),
and reformulate this algorithm in terms of tensor
operations (§3.4).
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3.1 Notation

Let ε be the empty string. Let 1[φ] be 1 when propo-
sition φ is true, 0 otherwise. If A is a matrix, let Ai:
and A: j be the ith row and jth column, respectively,
and define analogous notation for tensors.

3.2 Definition

A weighted pushdown automaton (PDA) is a tuple
M = (Q,Σ,Γ, δ, q0,⊥), where:

• Q is a finite set of states.
• Σ is a finite input alphabet.
• Γ is a finite stack alphabet.
• δ : Q×Γ×Σ×Q×Γ∗ → R≥0 maps transitions,

which we write as q, x
a
−→ r, y, to weights.

• q0 ∈ Q is the start state.
• ⊥ ∈ Γ is the initial stack symbol.

In this paper, we do not allow non-scanning tran-
sitions (that is, those where a = ε). Although
this does not reduce the weak generative capac-
ity of PDAs (Autebert et al., 1997), it could affect
their ability to learn; we leave exploration of non-
scanning transitions for future work.

For simplicity, we will assume that all transitions
have one of the three forms:

q, x
a
−→ r, xy push y on top of x

q, x
a
−→ r, y replace x with y

q, x
a
−→ r, ε pop x.

This also does not reduce the weak generative ca-
pacity of PDAs.

Given an input string w ∈ Σ∗ of length n, a con-
figuration is a triple (i, q, β), where i ∈ [0, n] is
an input position indicating that all symbols up to
and including wi have been scanned, q ∈ Q is a
state, and β ∈ Γ∗ is the content of the stack (writ-
ten bottom to top). For all i, q, r, β, x, y, we say that
(i−1, q, βx) yields (i, r, βy) if δ(q, x

wi
−−→ r, y) > 0. A

run is a sequence of configurations starting with
(0, q0,⊥) where each configuration (except the last)
yields the next configuration.

Because our model does not use the PDA to ac-
cept or reject strings, we omit the usual definitions
for the language accepted by a PDA. This is also
why our definition lacks accept states.

As an example, consider the following PDA, for

the language {wwR | w ∈ {0, 1}∗}:

M = (Q,Σ,Γ, δ, q1,⊥)

Q = {q1, q2}

Σ = {0, 1}

Γ = {0, 1,⊥}

where δ contains the transitions

q1, x
a
−→ q1, xa x ∈ Γ, a ∈ Σ

q1, a
a
−→ q2, ε a ∈ Σ

q2, a
a
−→ q2, ε a ∈ Σ.

This PDA has a possible configuration with an
empty stack (⊥) iff the input string read so far is of
the form wwR.

To make a weighted PDA probabilistic, we re-
quire that all transition weights be nonnegative and,
for all a, q, x:∑

r∈Q

∑
y∈Γ∗

δ(q, x
a
−→ r, y) = 1.

Whereas many definitions make the model gener-
ate symbols (Abney et al., 1999), our definition
makes the PDA operations conditional on the input
symbol a. The difference is not very important, be-
cause the RNN controller will eventually assume
responsibility for reading and writing symbols, but
our definition makes the shift to an RNN controller
below slightly simpler.

3.3 Recognition
Lang (1974) gives an algorithm for simulating all
runs of a nondeterministic PDA, related to Ear-
ley’s algorithm (Earley, 1970). At any point in time,
there can be exponentially many possibilities for
the contents of the stack. In spite of this, Lang’s
algorithm is able to represent the set of all possi-
bilities using only quadratic space. As this set is
regular, its representation can be thought of as a
weighted finite automaton, which we call the stack
WFA, similar to the graph-structured stack used in
GLR parsing (Tomita, 1987).

Figure 1 depicts Lang’s algorithm as a set of in-
ference rules, similar to a deductive parser (Shieber
et al., 1995; Goodman, 1999), although the visual
presentation is rather different. Each inference rule
is drawn as a fragment of the stack WFA. If the
transitions drawn with solid lines are present in
the stack WFA, and the side conditions in the right
column are met, then the transition drawn with a
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dashed line can be added to the stack WFA. The
algorithm repeatedly applies inference rules to add
states and transitions to the stack WFA; no states
or transitions are ever deleted.

Each state of the stack WFA is of the form
(i, q, x), where i is a position in the input string,
q is a PDA state, and x is the top stack symbol. We
briefly explain each of the inference rules:

Axiom creates an initial state and pushes⊥ onto
the stack.

Push pushes a y on top of an x. Unlike Lang’s
original algorithm, this inference rule applies
whether or not state ( j−1, q, x) is reachable.

Replace pops a z and pushes a y, by backing up
the z transition (without deleting it) and adding a
new y transition.

Pop pops a z, by backing up the z transition as
well as the preceding y transition (without deleting
them) and adding a new y transition.

The set of accept states of the stack WFA
changes from time step to time step; at step j, the
accept states are {( j, q, x) | q ∈ Q, x ∈ Γ}. The lan-
guage recognized by the stack WFA at time j is the
set of possible stack contents at time j.

An example run of the algorithm is shown in
Figure 2, using our example PDA and the string
0110. At time step j = 3, the PDA reads 1 and
either pushes a 1 (path ending in state (3, q1, 1)) or
pops a 1 (path ending in state (3, q2, 0)). Similarly
at time step j = 4, and the existence of a state with
top stack symbol ⊥ indicates that the string is of
the form wwR.

The total running time of the algorithm is pro-
portional to the number of ways that the inference
rules can be instantiated. Since the Pop rule con-
tains three string positions (i, j, and k), the time
complexity is O(n3). The total space requirement is
characterized by the number of possible WFA tran-
sitions. Since transitions connect two states, each
with a string position (i and j), the space complex-
ity is O(n2).

3.4 Inner and Forward Weights

To implement this algorithm in a typical neural-
network framework, we reformulate it in terms of
tensor operations. We use the assumption that all
transitions are scanning, although it would be pos-
sible to extend the model to handle non-scanning
transitions using matrix inversions (Stolcke, 1995).

Define Act(Γ) = •Γ∪Γ∪{ε} to be a set of possible
stack actions: if y ∈ Γ, then •y means “push y,” y

means “replace with y,” and ε means “pop.”
Given an input string w, we pack the transition

weights of the PDA into a tensor ∆ with dimensions
n × |Q| × |Γ| × |Q| × |Act(Γ)|:

∆[ j][q, x→ r, •y] = δ(q, x
w j
−−→ r, xy)

∆[ j][s, z→ r, y] = δ(s, z
w j
−−→ r, y)

∆[ j][s, z→ r, ε] = δ(s, z
w j
−−→ r, ε).

(1)

We compute the transition weights of the stack
WFA (except for the initial transition) as a tensor
of inner weights γ, with dimensions n × n × |Q| ×
|Γ| × |Q| × |Γ|. Each element, which we write as
γ[i −→ j][q, x −→ r, y], is the weight of the stack
WFA transition

i, q, x j, r, y
y

The equations defining γ are shown in Figure 3.
Because these equations are a recurrence relation,
we cannot compute γ all at once, but (for example)
in order of increasing j.

Additionally, we compute a tensor α of forward
weights of the stack WFA. This tensor has dimen-
sions n × |Q| × |Γ|, and its elements are defined by
the recurrence

α[1][r, y] = 1[r = q0 ∧ y = ⊥]

α[ j][r, y] =

j−1∑
i=1

∑
q,x

α[i][q, x] γ[i −→ j][q, x −→ r, y]

(2 ≤ j ≤ n).

The weight α[ j][r, y] is the total weight of reaching
a configuration (r, j, βy) for any β from the initial
configuration, and we can use α to compute the
probability distribution over top stack symbols at
time step j:

τ( j)(y) =

∑
r α[ j][r, y]∑

y′
∑

r α[ j][r, y′]
.

4 Neural Pushdown Automata

Now we couple the tensor formulation of Lang’s
algorithm for nondeterministic PDAs with an RNN
controller.

4.1 Model
The controller can be any type of RNN; in our ex-
periments, we used a LSTM RNN. At each time
step, it computes a hidden vector h( j) with d di-
mensions from the previous hidden vector, an input
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Axiom 0, q0,⊥
⊥/1

Push j−1, q, x j, r, y
y/p

p = δ(q, x
w j
−−→ r, •y)

Replace i, q, x j−1, s, z j, r, y
z/p1

y/p1 p

p = δ(s, z
w j
−−→ r, y)

Pop i, q, x k, t, y j−1, s, z j, r, y
y/p1 z/p2

y/p1 p2 p

p = δ(s, z
w j
−−→ r, ε)

Figure 1: Lang’s algorithm drawn as operations on the stack WFA. Solid edges indicate existing transitions; dashed
edges indicate transitions that are added as a result of the stack operation.

j = 0 0, q1,⊥
⊥

j = 1 0, q1,⊥
⊥

1, q1, 0
0

q1,⊥
0
−→ q1, 0

j = 2 0, q1,⊥
⊥

1, q1, 0
0

2, q1, 1
1

q1, 0
1
−→ q1, 1

j = 3 0, q1,⊥
⊥

1, q1, 0
0

2, q1, 1
1

3, q1, 1
1

3, q2, 0
0

q1, 1
1
−→ q1, 1

q1, 1
1
−→ q2, ε

j = 4 0, q1,⊥
⊥

1, q1, 0
0

2, q1, 1
1

3, q1, 1
1

3, q2, 0
0

4, q1, 0
0

4, q2,⊥

⊥

q1, 1
0
−→ q1, 0

q2, 0
0
−→ q2, ε

Figure 2: Run of Lang’s algorithm on our example PDA and the string 0110. The PDA transitions used are shown
at right.
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For 1 ≤ i < j ≤ n,

γ[i −→ j][q, x −→ r, y] =

1[i = j−1] ∆[ j][q, x→ r, •y] Push

+
∑
s,z

γ[i −→ j−1][q, x −→ s, z] ∆[ j][s, z→ r, y] Replace

+

j−2∑
k=i+1

∑
t

∑
s,z

γ[i −→ k][q, x −→ t, y] γ[k −→ j−1][t, y −→ s, z] ∆[ j][s, z→ r, ε] Pop

Figure 3: Equations for computing inner weights.

vector x( j), and the distribution over current top
stack symbols, τ( j), defined above:

h( j) = R
(
h( j−1),

[
x( j)

τ( j)

])
where R can be any RNN unit. This state is used to
compute an output vector y( j) as usual:

y( j) = softmax
(
Ah( j) + b

)
where A and b are parameters with dimensions
|Σ| × d and |Σ|, respectively. In addition, the state
is used to compute a conditional distribution over
actions, ∆[ j]:

z( j)
qxry = exp

(
Cqxry:h( j) + Dqxry

)
∆[ j][q, x→ r, y] =

z( j)
qxry∑

r′,y′ z( j)
qxr′y′

where C and D are tensors of parameters with
dimensions |Q| × |Γ| × |Q| × |Act(Γ)| × d and
|Q|× |Γ|× |Q|× |Act(Γ)|, respectively. (This is just an
affine transformation followed by a softmax over r
and y.) These equations replace equations (1).

4.2 Implementation
We implemented the NS-RNN using PyTorch
(Paszke et al., 2019), and doing so efficiently
required a few crucial tricks. The first was a
workaround to update the γ and α tensors in-place
in a way that was compatible with PyTorch’s auto-
matic differentiation; this was necessary to achieve
the theoretical quadratic space complexity. The sec-
ond was an efficient implementation of a differ-
entiable einsum operation1 that supports the log
semiring (as well as other semirings), which al-
lowed us to implement the equations of Figure 3 in

1https://github.com/bdusell/semiring-einsum

a reasonably fast, memory-efficient way that avoids
underflow. Our einsum implementation splits the
operation into fixed-size blocks where the multi-
plication and summation of terms can be fully par-
allelized. This enforces a reasonable upper bound
on memory usage while suffering only a slight de-
crease in speed compared to fully parallelizing the
entire einsum operation.

5 Experiments

In this section, we describe our experiments com-
paring our NS-RNN and three baseline language
models on several formal languages.

5.1 Tasks

Marked reversal The language of palindromes
with an explicit middle marker, with strings of the
form w#wR, where w ∈ {0, 1}∗. This task should
be easily solvable by a model with a deterministic
stack, as the model can push the string w to the
stack, change states upon reading #, and predict wR

by popping w from the stack in reverse.
Unmarked reversal The language of (even-

length) palindromes without a middle marker, with
strings of the form wwR, where w ∈ {0, 1}∗. When
the length of w can vary, a language model reading
the string from left to right must use nondetermin-
ism to guess where the boundary between w and wR

lies. At each position, it must either push the input
symbol to the stack, or else guess that the middle
point has been reached and start popping symbols
from the stack. An optimal language model will in-
terpolate among all possible split points to produce
a final prediction.

Padded reversal Like the unmarked reversal
language, but with a long stretch of repeated sym-
bols in the middle, with strings of the form wapwR,
where w ∈ {0, 1}∗, a ∈ {0, 1}, and p ≥ 0. The

https://github.com/bdusell/semiring-einsum
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purpose of the padding is to confuse a language
model attempting to guess where the middle of the
palindrome is based on the content of the string. In
the general case of unmarked reversal, a language
model can disregard split points where a valid palin-
drome does not occur locally. Since all substrings
of ap are palindromes, the language model must
deal with a larger number of candidates simultane-
ously.

Dyck language The language D2 of strings
with two kinds of balanced brackets.

Hardest CFL Designed by Greibach (1973) to
be at least as difficult to parse as any other CFL:

L0 = {x1,y1,z1; · · · xn,yn,zn; |

n ≥ 0,

y1 · · · yn ∈ $D2,

xi, zi ∈ {,, $, (, ), [, ]}
∗}.

Intuitively, L0 contains strings formed by dividing
a member of $D2 into pieces (yi) and interleaving
them with “decoy” pieces (substrings of xi and zi).
While processing the string, the machine has to
nondeterministically guess whether each piece is
genuine or a decoy. Greibach shows that for any
CFL L, there is a string homomorphism h such that
a parser for L0 can be run on h(w) to find a parse
for w. See Appendix A for more information.

5.2 Data

For each task, we construct a probabilistic context-
free grammar (PCFG) for the language (see Ap-
pendix B for the full grammars and their parame-
ters). We then randomly sample a training set of
10,000 examples from the PCFG, filtering sam-
ples so that the length of a string is in the interval
[40, 80] (see Appendix C for our sampling method).
The training set remains the same throughout the
training process and is not re-sampled from epoch
to epoch, since we want to test how well the model
can infer the probability distribution from a finite
sample.

We sample a validation set of 1,000 examples
from the same distribution and a test set with string
lengths varying from 40 to 100, with 100 examples
per length. The validation set is randomized in each
experiment, but for each task, the test set remains
the same across all models and random restarts. For
simplicity, we do not filter training samples from
the validation or test sets, assuming that the chance
of overlap is very small.

5.3 Evaluation
Since, in these languages, the next symbol cannot
always be predicted deterministically from previ-
ous symbols, we do not use prediction accuracy as
in previous work. Instead, we compute per-symbol
cross-entropy on a set of strings S . Let p be any
distribution over strings; then:

H(S , p) =

∑
w∈S − log p(s)∑

w∈S |w|
.

We compute the cross-entropy for both the stack
RNN and the distribution from which S is sampled
and report the difference. This can be seen as an
approximation of the KL divergence of the stack
RNN from the true distribution.

Technically, because the RNN models do not
predict the end of the string, they estimate p(w |
|w|), not p(w). However, they do not actually use
any knowledge of the length, so it seems reasonable
to compare the RNN’s estimate of p(w | |w|) with
the true p(w). (This is why, when we bin by length
in Figure 5, some of the differences are negative.)

A benefit of using cross-entropy instead of pre-
diction accuracy is that we can easily incorporate
new tasks as long as they are expressed as a PCFG.
We do not, for example, need to define a language-
dependent subsequence of symbols to evaluate on.

5.4 Baselines
We compare our NS-RNN against three baselines:
an LSTM, the Stack LSTM of Joulin and Mikolov
(2015) (“JM”), and the Stack LSTM of Grefenstette
et al. (2015) (“Gref”). We deviate slightly from
the original definitions of these models in order to
standardize the controller-stack interface to the one
defined in Section 4.1, and to isolate the effects
of differences in the stack data structure, rather
than the controller mechanism. For all three stack
models, we use an LSTM controller whose initial
hidden state is fixed to 0, and we use only one stack
for the JM and Gref models. (In early experiments,
we found that using multiple stacks did not make
a meaningful difference in performance.) For JM,
we include a bias term in the layers that compute
the stack actions and network output. We do allow
the no-op operation, and the stack reading consists
of only the top stack cell. For Gref, we set the
controller output o′t equal to the hidden state ht, so
we compute the stack actions, pushed vector, and
network output directly from the hidden state. We
encode all input symbols as one-hot vectors; there
are no embedding layers.
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5.5 Hyperparameters

For all models, we use a single-layer LSTM with
20 hidden units. We selected this number because
we found that an LSTM of this size could not com-
pletely solve the marked reversal task, indicating
that the hidden state is a memory bottleneck. For
each task, we perform a hyperparameter grid search
for each model. We search for the initial learn-
ing rate, which has a large impact on performance,
from the set {0.01, 0.005, 0.001, 0.0005}. For JM
and Gref, we search for stack embedding sizes in
{2, 20, 40}. We manually choose a small number
of PDA states and stack symbol types for the NS-
RNN for each task. For marked reversal, unmarked
reversal, and Dyck, we use 2 states and 2 stack
symbol types. For padded reversal, we use 3 states
and 2 stack symbol types. For the hardest CFL, we
use 3 states and 3 stack symbol types.

As noted by Grefenstette et al. (2015), initial-
ization can play a large role in whether a Stack
LSTM converges on algorithmic behavior or be-
comes trapped in a local optimum. To mitigate this,
for each hyperparameter setting in the grid search,
we run five random restarts and select the hyperpa-
rameter setting with the lowest average difference
in cross entropy on the validation set. This gives
us a picture not only of the model’s performance,
but of its rate of success. We initialize all fully-
connected layers except for the recurrent LSTM
layer with Xavier uniform initialization (Glorot and
Bengio, 2010), and all other parameters uniformly
from [−0.1, 0.1].

We train all models with Adam (Kingma and
Ba, 2015) and clip gradients whose magnitude is
above 5. We use mini-batches of size 10; to gener-
ate a batch, we first select a length and then sam-
ple 10 strings of that length. We train models until
convergence, multiplying the learning rate by 0.9
after 5 epochs of no improvement in cross-entropy
on the validation set, and stopping after 10 epochs
of no improvement.

6 Results

We show plots of the difference in cross entropy
on the validation set between each model and the
source distribution in Figure 4. For all tasks, stack-
based models outperform the LSTM baseline, indi-
cating that the tasks are effective benchmarks for
differentiable stacks. For the marked reversal, un-
marked reversal, and hardest CFL tasks, our model
consistently achieves cross-entropy closer to the

source distribution than any other model. Even
for the marked reversal task, which can be solved
deterministically, the NS-RNN, besides achieving
lower cross-entropy on average, learns to solve
the task in fewer updates and with much higher
reliability across random restarts. In the case of
the mildly nondeterministic unmarked reversal and
highly nondeterministic hardest CFL tasks, the
NS-RNN converges on the lowest validation cross-
entropy. On the Dyck language, which is a deter-
ministic task, all stack models converge quickly on
the source distribution. We hypothesize that this
is because the Dyck language represents a case
where stack usage is locally advantageous every-
where, so it is particularly conducive for learning
stack-like behavior. On the other hand, we note that
our model struggles on padded reversal, in which
stack-friendly signals are intentionally made very
distant. Although the NS-RNN outperforms the
LSTM baseline, the JM model solves the task most
effectively, though still imperfectly.

In order to show how each model performs when
evaluated on strings longer than those seen during
training, in Figure 5, we show cross-entropy on
separately sampled test data as a function of string
length. All test sets are identical across models
and random restarts, and there are 100 samples
per length. The NS-RNN consistently does well on
string lengths it was trained on, but it is sometimes
surpassed by other stack models on strings that are
outside the distribution of lengths it was trained
on. This suggests that the NS-RNN conforms more
tightly to the real distribution seen during training.

7 Conclusion

We presented the NS-RNN, a neural language
model with a differentiable stack that explicitly
models nondeterminism. We showed that it offers
improved trainability and modeling power over pre-
vious stack-based neural language models; the NS-
RNN learns to solve some deterministic tasks more
effectively than other stack-LSTMs, and achieves
the best results on a challenging nondeterministic
context-free language. However, we note that the
NS-RNN struggled on a task where signals in the
data were distant, and did not generalize to longer
lengths as well as other stack-LSTMs; we hope to
address these shortcomings in future work. We be-
lieve that the NS-RNN will prove to be a powerful
tool for learning and modeling ambiguous syntax
in natural language.
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Figure 4: Cross-entropy difference in nats between
model and source distribution on validation set, as a
function of training time. Lines are averages of five
random restarts, and shaded regions are standard devia-
tions. After a random restart converges, the value of its
last epoch is used in the average for later epochs.
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Figure 5: Cross-entropy difference in nats on the test
set, binned by string length. Some models achieve a
negative difference, for reasons explained in §5.3. Each
line is the average of the same five random restarts
shown in Figure 4.
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A The Hardest CFL

Greibach (1973) describes a CFL, L0, which is
the “hardest” CFL in the sense that an efficient
parser for L0 is also an efficient parser for any other
CFL L. It is defined as follows. (We deviate from
Greibach’s original notation for the sake of clarity.)
Every string in L0 is of the following form:

α1;α2; · · ·αn; ∈ L0

that is, a sequence of strings αi, each terminated
by ;. No αi can contain ;. Each αi, in turn, is di-
vided into three parts, separated by commas:

αi = xi,yi,zi

The middle part, yi, is a substring of a string in D2.
The brackets in yi do not need to be balanced, but
all of the yi’s concatenated must form a string in D2,
prefixed by $. The catch is that xi and zi can be any
sequence of bracket, comma, and $ symbols, so it
is impossible to tell, in a single αi, where yi begins
and ends. A parser must nondeterministically guess
where each yi is, and cannot verify a guess until the
end of the string is reached.

The design of L0 is justified as follows. Suppose
we have a parser for L0 which, as part of its out-
put, identifies the start and end of each yi. Given a
CFG G in Greibach normal form (GNF), we can
adapt the parser for L0 to parse L(G) by construct-
ing a string homomorphism h, such that w ∈ L(G)
iff h(w) ∈ L0, and the concatenated yi’s encode a
leftmost derivation of w under G.

The homomorphism h always exists and can be
constructed from G as follows. Let the nontermi-
nals of G be V = {A1, . . . , A|V |}. Recall that in GNF,
every rule is of the form Ai → aA j1 · · · A jm and S
does not appear on any right-hand side. Define

push(Ai) = ([i(

pop(Ai) =

 )]i) Ai , S
$ Ai = S .

We encode each rule of G as

rule(Ai → aA j1 · · · A jm) =

pop(Ai) push(A j1) · · · push(A jm).

Finally, we can define h as

h(b) =

(
©,

(A→bγ)∈G
rule(A→ bγ)

)
;

where ©, concatenates strings together delimited
by commas. Then there is a valid string of yi’s iff
there is a valid derivation of w with respect to G.

B PCFGs for Generating Data

We list here the production rules and weights for the
PCFG used for each of our tasks. Let f (µ) = 1− 1

µ+1 ,
which is the probability of failure associated with
a negative binomial distribution with a mean of µ
failures before one success. For a recursive PCFG
rule, a probability of f (µ) results in an average of
µ applications of the recursive rule.

B.1 Marked reversal

We set µ = 60.

S → 0S 0 / 1
2 f (µ)

S → 1S 1 / 1
2 f (µ)

S → # / 1 − f (µ)

B.2 Unmarked reversal

We set µ = 60.

S → 0S 0 / 1
2 f (µ)

S → 1S 1 / 1
2 f (µ)

S → ε / 1 − f (µ)

B.3 Padded reversal

Let µc be the mean length of the reversed content,
and let µp be the mean padding length. We set
µc = 60 and µp = 30.

S → 0S 0 / 1
2 f (µc)

S → 1S 1 / 1
2 f (µc)

S → T0 / 1
2 (1 − f (µc))

S → T1 / 1
2 (1 − f (µc))

T0 → 0T0 / f (µp)

T0 → ε / 1 − f (µp)

T1 → 1T1 / f (µp)

T1 → ε / 1 − f (µp)

B.4 Dyck language

Let µs be the mean number of splits, and let µn be
the mean nesting depth. We set µs = 1 and µn = 40.

S → S T / f (µs)

S → T / 1 − f (µs)

T → (S ) / 1
2 f (µn)

T → [S ] / 1
2 f (µn)

T → () / 1
2 (1 − f (µn))

T → [] / 1
2 (1 − f (µn))
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B.5 Hardest CFL
Let µc be the mean number of commas, µs f be the
mean short filler length, µl f be the mean long filler
length, ps be the probability of a semicolon, µs

be the mean number of bracket splits, and µn be
the mean bracket nesting depth. We set µc = 0.5,
µs f = 0.5, µl f = 2, ps = 0.25, µs = 1.5, and µn = 3.

S ′ → R$Q S L; / 1

L→ L′,U / 1

L′ → ,VL′ / f (µc)

L′ → ε / 1 − f (µc)

R→ U,R′ / 1

R′ → R′V, / f (µc)

R′ → ε / 1 − f (µc)

U → WU / f (µs f )

U → ε / 1 − f (µs f )

V → WV / f (µl f − 1)

V → W / 1 − f (µl f − 1)

W → ( / 0.2

W → ) / 0.2

W → [ / 0.2

W → ] / 0.2

W → $ / 0.2

Q→ L;R / ps

Q→ ε / 1 − ps

S → S Q T / f (µs)

S → T / 1 − f (µs)

T → (Q S Q) / 1
2 f (µn)

T → [Q S Q] / 1
2 f (µn)

T → (Q) / 1
2 (1 − f (µn))

T → [Q] / 1
2 (1 − f (µn))

C Sampling Strings with Fixed Length
from a PCFG

For practical reasons, we restrict strings we sample
from PCFGs to those whose lengths lie within a cer-
tain interval, say [`min, `max]. The lengths of strings
sampled randomly from PCFGs tend to have high
variance, and we often want data sets to consist of
strings of a certain length (e.g. longer strings in the
test set than in the training set).

To do this, we first sample a length ` uniformly
from [`min, `max]. Then we use an efficient dynamic
programming algorithm to sample strings directly
from the distribution of strings in the PCFG with

length `. This algorithm is adapted from an algo-
rithm presented by Aguinaga et al. (2019) for sam-
pling graphs of a specific size from a hyperedge
replacement grammar.

The algorithm operates in two phases. The first
(Algorithm 1) computes a table T such that every
entry T [A, `] contains the total probability of sam-
pling a string from the PCFG with length `. The
second (Algorithm 2) uses T to randomly sample a
string from the PCFG (using S as the nonterminal
parameter X), restricted to those with a length of
exactly `.

Let nonterminals(β) be an ordered sequence
consisting of the nonterminals in β. Let
Compositions(`, n) be a function that returns
a (possibly empty) list of all compositions of ` that
are of length n (that is, all ordered sequences of n
positive integers that add up to `).

Algorithm 1 Computing the probability table T

Require: G has no ε-rules or unary rules
1: function ComputeWeights(G,T, X, `)
2: for all rules X → β / p in G do
3: N ← nonterminals(β)
4: `′ = ` − |β| + |N |
5: for C in Compositions(`′, |N |) do

6: t[β,C]← p ×
|N|∏
i=1

T [Ni,Ci]

7: return t
8: function ComputeTable(G, n)
9: for ` from 1 to n do

10: for all nonterminals X do
11: t ← ComputeWeights(G,T, X, `)
12: T [X, `] =

∑
β,C

t[β,C]

13: return T

Because this algorithm only works on PCFGs
that are free of ε-rules and unary rules, we automat-
ically refactor our PCFGs to remove them before
providing them to the algorithm.

Some of our PCFGs do not generate any strings
for certain lengths, which is detected at line 3 of
Algorithm 2. In this case, we restart the sampling
procedure from the beginning. This means that the
distribution we are effectively sampling from is as
follows. Let G(w) be the probability of w under
PCFG G, and let G(`) be the probability of all
strings of length `, that is,

G(`) =
∑

w s.t. |w| = `

G(w).



519

Algorithm 2 Sampling a string using T

Require: T is the output of ComputeTable(G, `)
1: function SampleSized(G,T, X, `)
2: if T [X, `] = 0 then
3: error
4: t ← ComputeWeights(G,T, X, `)

5: sample (β,C) with probability
t[β,C]
T [X, `]

6: s← ε

7: i← 1
8: for j from 1 to |β| do
9: if β j is a terminal then

10: append β j to s
11: else
12: s′ ← SampleSized(G,T, β j,Ci)
13: append s′ to s
14: i← i + 1
15: return s

Then the distribution we are sampling from is

psample(w) =
1

|{` | G(`) > 0}|
G(w)
G(|w|)

.

When computing the lower-bound cross-entropy
of the validation and test sets, we must compute
psample(w) for each string w. Finding G(w) requires
re-parsing w with respect to G and summing the
probabilities of all valid parses using the Inside
algorithm. We can look up the value of G(|w|) in
the table entry T [S , |w|] produced in the sampling
algorithm.


