An Expectation Maximisation Algorithm for Automated Cognate
Detection

Roddy MacSween

Homerton College & Computer Laboratory

University of Cambridge
rlm72@cantab.ac.uk

Abstract

In historical linguistics, cognate detection is
the task of determining whether sets of words
have common etymological roots. Inspired by
the comparative method used by human lin-
guists, we develop a system for automated cog-
nate detection that frames the task as an infer-
ence problem for a general statistical model
consisting of observed data (potentially cog-
nate pairs of words), latent variables (the cog-
nacy status of pairs) and unknown global pa-
rameters (which sounds correspond between
languages). We then give a specific instance
of such a model along with an expectation-
maximisation algorithm to infer its parameters.
We evaluate our system on a dataset of 8140
cognate sets, finding its performance of our
method to be comparable to the state of the
art. We additionally carry out qualitative anal-
ysis demonstrating various advantages it has
over existing systems. We also suggest several
ways our work could be extended within the
general theoretical framework we propose.

1 Introduction

In historical linguistics, two words are deemed cog-
nate if they share a root in a parent language, for ex-
ample German ‘Nacht’ and English ‘night’ which
both originate from Proto-Indo-European *ndk"ts.
The task of cognate detection is interesting in its
own right, but is also an important part of the larger
task of proto-language reconstruction.

As described in Campbell (2013), the compar-
ative method used by historical linguists to recon-
struct an ancestral language from a set of poten-
tially cognate words in daughter languages con-
sists of three steps: assembling cognates, estab-
lishing sound correspondences and reconstructing
proto-sounds. Automation of this method is made
challenging by the fact that “the comparative lin-
guist typically jumps back and forth among these
steps” because of a mutual dependence between
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cognacy judgements and hypothesised sound corre-
spondences. Whether two words should be deemed
cognate depends on whether the sounds in them
correspond according to known rules for the lan-
guages. For instance, the ¢ and ts sounds in English
and German are known to correspond, which is ev-
idence for “tooth” and ‘“Zahn” being cognate. But
sound correspondence rules are themselves theo-
rised based on which sounds coincide in known
cognate pairs. Therefore a linguist must iteratively
adapt their hypotheses about which words are cog-
nate and which sounds correspond until they can
reach a definite conclusion.

Existing approaches to automated cognate detec-
tion (ACD) fail to fully capture this idea of dealing
with mutual dependence using an iterative method.
Some early approaches are not iterative at all, while
several more recent methods are iterative to some
extent but either only carry out a small fixed num-
ber of iterations or use incomplete and ad hoc meth-
ods to update sound correspondences based on ten-
tative cognacy judgements. In this paper we design
and implement an iterative algorithm that uses the
method of expectation maximisation for statisti-
cal inference, which is close to historical linguists’
method of updating sound correspondences in one
iteration based on cognacy judgements from the
previous iteration.

This probabilistic approach is the main novel
feature of our work, but we also build on existing
approaches in other ways. Other than the work
of List (2012), previous computational methods
generally use little linguistic theory as a basis for
making cognate judgements; in contrast, our model
uses phonological features as a factor in determin-
ing how likely phones are to correspond. We also
use a new method of clustering to turn cognate
judgements between pairs of words into sets of
cognates from multiple languages. We evaluate our
system on a dataset consisting of 8140 cognate sets
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partitioned into 10 typological groups originated
by List (2012).

2 Related work

Several approaches to ACD exist, with a review
of the majority given in Rama et al. (2018). Most
of these have the same overall structure: given a
list of sets of possible cognates, they align words
using some metric (typically based on the phones
that make up the words) and use some function
of scores of alignments to judge cognacy. The
alignment process generally uses methods from
bioinformatics such as the Needleman-Wunsch al-
gorithm (Needleman and Wunsch, 1970).
Normalised Edit Distance (Nerbonne and
Heeringa, 1997) (NED) performs alignment using
a manually specified distance matrix for phones. It
has been used with a simple binary measure (dis-
tance only depends on whether or not two phones
are the same) and more complex measures. This
was a relatively early method and is not iterative.
Rama et al. (2018) discuss two methods that
do not use alignment. Consonant Class Matching
(CCM) (Turchin et al., 2010) is a very simple ap-
proach: it determines whether words are cognate
based on whether their first consonants fall into the
same sound classes. On the other hand, the sys-
tem of Jdger et al. (2017) is more complex; it uses
similarity as measured by other methods such as
those below as a feature source for classification of
cognacy using Support Vector Machines (SVMs).
The online Pointwise Mutual Information
method (Rama et al., 2017) (PMI) is similar to
ours in that it performs alignment with a distance
matrix for pairs of phones which is adjusted itera-
tively. However, they do not update weights in a
probabilistic way based on tentative cognacy prob-
abilities at each iteration in the same way as us. We
take into account all pairs of possible cognates in
the dataset weighted by their estimated cognacy
probability; in comparison they use a fixed set of
cognate words deemed to be probably cognate, and
these are treated uniformly. They also do not set
weights in a linguistically motivated way. The sys-
tem of Steiner et al. (2011) is similar to PMI, but
using the LZ78 algorithm (Ziv and Lempel, 1978)
to produce weights instead of PMI scores. Gilman
(2012) describes another similar algorithm.
We use the LexStat algorithm (List, 2012) as
a baseline in evaluation of our system. LexStat
is partially iterative: it uses a simple heuristic to
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determine which pairs of words are definitely cog-
nate and then sets weights for an alignment step
based on those. In contrast, our system can iterate
indefinitely rather than just twice. Unlike methods
such as PMI, LexStat does use linguistic theory
in judging cognacy of word pairs. Rather than
computing distance between individual phones, it
groups phones into sound classes (by place and
manner of articulation) and then considers combi-
nations of sound classes and prosodic contexts as
the segments used for alignment. The use of sound
classes is similar to our framework with phonologi-
cal features, although ours is in some ways more
general. Prosodic context is not taken into account
by our system and could be a future extension.

Overall, the primary difference between our sys-
tem and previous work is the way in which we
adjust parameters for how likely two sounds are to
correspond based on intermediate estimates of cog-
nacy probabilities. Producing theories about which
sounds correspond based on cognacy judgements
is a key part of the method followed by human lin-
guists, but many existing automated methods do
not do this at all. Those that do often only make
a limited number of adjustments, or lack theoreti-
cal justification for the approach used. In contrast,
in our system this process has equal status to the
inference step in the opposite direction, and has
a rigorous probabilistic interpretation within the
expectation-maximisation framework. The prob-
abilistic framework used also has the benefit of
allowing easier identification of limitations of the
system, such as cases where unrealistic assump-
tions of independence are made. A key element of
our system that enables this approach is the fact
that we separately model the processes of generat-
ing two cognate words from a common ancestor
and two non-cognates from different ancestors. In
comparison, previous work implicitly models only
the former.

2.1 PanPhon

We initialise our parameters using weights derived
from the PanPhon database (Mortensen et al., 2016)
of phonological features with the standard categori-
sation of Chomsky and Halle (1968). These are
binary or ternary variables representing possible
axes of variation of phones. For example, the [+/-
voice] feature distinguishes between sounds such
as b, d and z where the vocal folds vibrate during
articulation and those such as p, ¢ and k where they



do not. This is relevant to our cognate detection
because phones with similar feature sets are more
likely to correspond in cognate pairs. Not all fea-
tures have equal status for this, for instance the [+/-
syllabic] feature is especially useful.

Human historical linguists form theories about
evolution of languages involving complex relation-
ships between multiple features (for example, the
change of certain stops from voiced to voiceless be-
tween Proto-Indo-European and Proto-Germanic).
Our system currently uses phonological features
in a simple language-independent way, however
one advantage it has is the fact that these sophis-
ticated linguistic theories could in principle be in-
tegrated into it simply by altering the initialisa-
tion code, without changing the overall framework.
This lowers the barrier for linguists to experiment
with adding their domain knowledge into an au-
tomated cognate detection system, since a wide
variety of linguistic models could be implemented
with changes to only a small section of the code-
base.

3 Model

3.1 General framework

We can formulate cognate detection as a probabilis-
tic inference task, where for a dataset of n pairs of
words we have a sequence X of n random variables
representing the generation of the pairs, a sequence
Z of n indicator variables for the event of each pair
being cognate, and some global parameters 6 that
P(X, Z) depends on. Then cognate detection can
be done by finding values for # maximising the
likelihood of the observed words

Z P(X,Z=216) (D

z€{0,1}m

then using the probability distribution these give
over Z to judge cognacy.

It is difficult to do this maximisation directly.
Instead, we can use an expectation-maximisation
(EM) algorithm (Dempster et al., 1977):

e Initialise 8 = 6(©)

e Find the distribution of Z for @ = 8(*) (expecta-
tion step)

e Update 0+ to take the values maximising the
expectation with respect to the above distribu-
tion of the log likelihood of the observed data
(maximisation step)
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Figure 1: Generation of voryal and fykl (Dutch and
Icelandic words for ‘bird’) as cognates

e Repeat expectation and maximisation steps until
0®) converges

3.2 Cognacy model
3.2.1 Definition

A model must be chosen that makes the max-
imisation step computationally feasible. Here,
we use two separate models for the case where
a pair of words are cognate and the case where
they are not. For two words w and w’ we model
P(X; = (w,w") | Z; = 1) by assuming the words
have been generated on a phone-by-phone basis
from some word in the parent language as shown
in Figure 1. Each pair of arrows is associated with
a parameter, for instance 0, s is the probability that
a random phone in the parent language would gen-
erate v in Dutch and f in Icelandic. Then we have

P(Xy = (w,0) | Zy = 1) = [ Oasianqun,
@

where align(w,w’) is the sequence of pairs of
aligned phones in the two words,

Figure 2 shows the similar model for P(X; =
(w,w") | Z; = 0). Here each individual arrow is
associated with a parameter «,,. Formally we have
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Figure 2: Generation of ptak and wazo (Polish and
French words for “bird”’) from separate etymons

P(X, = (w,w') | Z, =0) =

Hafirst(align(w,w’)i) 3)

H O‘secand(align('w,w’)j)
J

where first and second are the first and sec-
ond components of pairs of the alignment of the



words. We use alignments rather than the words
themselves even in the non-cognate case' because
if we used the words directly this would imply a
model where deletions only occur for words which
are cognate, which is not realistic.

4 Algorithm
4.1 E-step

The expectation step of our algorithm involves for
each pair of words X,, = (w,w’) computing the
probability under some set of parameters 6, o, o’
that they are cognate. By Bayes’ rule we have

P(Z,=c| X, = (w,w)) =
P(X, = (w,w") | Z, =¢)P(Z,=1)
P(Xy, = (w,w) | Zn = 0)P(Zy, = 0)+
P(X, = (w,w") | Z, =1)P(Z, =1)

“4)

We compute P(X,, = (w,w') | Z, = 0) and
P(X, = (w,w") | Z, = 1) using Equation 2 and
Equation 3. P(cognate) and P(—cognate) can be
either fixed values, or vary during the iteration.

Calculating P(X,, = (w,w’) | Z,) requires an
alignment of w and w’. We produce a new align-
ment at each iteration by using the Needleman-
Waunsch algorithm (Needleman and Wunsch, 1970)
with the logarithms of @ values as weights. This
gives an alignment with the maximum likelihood
of cognacy according to the model, since the
Needleman-Wunsch algorithm involves summing
weights (which is equivalent to multiplying the
original probabilities). If there are multiple best
alignments, one is chosen arbitrarily.

4.1.1 M-step

The maximisation step takes probabilities of cog-
nacy for all pairs of words and infers the best fitting
parameters. For the o parameters the process for
this is analogous to simple maximum likelihood es-
timation with known values for Z. In that case, for
a phone x we would estimate ¢, as the frequency
of x across all words in non-cognate pairs in the
relevant taxon. Here we instead have a distribution
over Z so we use the expected frequency:

_ B3
TS, B ) ©

where E(#x) is the number of occurrences of
phone x in words of the relevant taxon, with the

!The difference being that the aligned words may contain
-, indicating insertion/deletion
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count for each occurrence weighted by the prob-
ability that the containing word is not part of a
cognate pair.

The equivalent formula could be used to estimate
0 parameters, however this might cause problems
because some pairs of corresponding phones may
not occur in the dataset but still be modelled as
having non-zero probability.

To deal with this, we use additive smooth-
ing (Manning et al., 2008) for estimation of 6 pa-
rameters. In general, given a random variable X
with d discrete values and n trials, a smoothed esti-
mator for each parameter of X is

#(X =)+

n+ Ad ©

P(X =2x) =
where #(X = x) is the number of times z oc-
curred and (3 is a smoothing parameter.

Additive smoothing typically uses the same
value for each parameter. This is appropriate when
there is no relevant prior information. However, in
this case there is some information that should be
taken into account: frequent pairs are on average
made up of frequent individual phones. Therefore
rather than using a constant smoothing parameter,
we weight it for each pair by the frequencies of its
component phones, giving an estimation of

Be.y) + SRR
> (o) E(# (2, w)) + B#pairs

Oy =

where E(#(x,y)) is the count of alignments of
phones z and y weighted by probabilities of con-
taining words being cognate, E'(#x) is the same
for individual phones, and #pairs is the total num-
ber of possible pairs of phones (the product of
the number of phones for each taxon). Note that
E(#x) here is weighted by the probability of cog-
nacy whereas in Equation 5 it was weighted by
probability of non-cognacy.

4.1.2 Initialisation

Expectation maximisation is guaranteed to find a
locally optimal set of parameters, however depend-
ing on the initial values they may not be globally
optimal. Often this is dealt with by running the
algorithm multiple times from a variety of initial
parameters. However, this will not work in our
case as our algorithm is very general; it can infer
completely arbitrary phone-level relationships be-
tween taxons and therefore most possible sets of
initial parameters will lead to poor local optima.



Therefore we must initialise the parameters in a
linguistically motivated way.

The o parameters are straightforward to set us-
ing the proportions of phones in the whole dataset
(i.e. in the same way as in the maximisation step
but taking the whole dataset to be noncognate).

The 6 parameters must be initialised in a more
complex way. Each pair of phones is assigned a
weight based on the category it falls into. These cat-
egories depend on phonological features of phones,
as given by PanPhon. The categories we use are as
follows:

1. Two identical phones

2. Two phones that differ in one phonological fea-
ture, for instance ¢ and d

3. Two phones that differ in two features

4. Two phones that differ in more than two features,
but have the same value for the syllabic feature
(are either both consonants or both vowels?)

5. A phone and a gap (representing a deletion)
6. All other pairs

Then weights for the pairs are normalised to give
valid probabilities.

4.1.3 Clustering

Using the expectation-maximisation algorithm de-
scribed above gives probabilities of cognacy for
one pair of taxons, but the dataset we use has mul-
tiple taxons. Therefore some method is needed to
turn scored pairs of words into clusters of cognates.
Previous approaches use clustering algorithms
from bioinformatics such as UPGMA (Sokal, 1958)
for this (e.g. (List, 2012)) which produce clusters
of cognates with low average distances.

We use a method that is instead concerned with
the maximum distance between pairs in a cluster.
This seems more similar to the approach a hu-
man linguist would take: when trying to determine
whether a language is part of some family, they
would not consider on average how close it is to
each member, but rather try to find a single member
that is inarguably related to it.

Our method is to create a graph where nodes are
words and there is an edge between two words if

This feature specifies whether a phone can be the nu-
cleus of a syllable (Chomsky and Halle, 1968, 354). Vowels
are [+syllabic] and (unless they are syllabic) consonants are
[—syllabic].

their computed cognacy probability exceeds some
threshold. Then the clusters of cognates are the
connected components of this graph. We find these
clusters using the well-known algorithm described
in Hopcroft and Tarjan (1973).

5 Evaluation

5.1 Dataset

To evaluate our system we use a dataset compiled
by List (2012) for use with LexStat. The dataset
consists of several partitions, containing words
from different taxon families. Each partition con-
tains a list of words, with their corresponding tax-
ons, glosses (meanings), IPA transcriptions and
gold-standard cognate-set annotations. Two words
are considered to be potentially cognate if they
have the same gloss (and do not belong to the same
taxon). Table 1 gives details about the number of
glosses, cognate sets and words in each partition
of the dataset we use. The original dataset has two
additional partitions, but these did not have tran-
scriptions in a suitable form and therefore were not
used. The BAI partition contains tone numerals,
but our system is unable to use the information they
provide so they are discarded in the preprocessing
step. Other than this we follow the same procedure
for all partitions. Further details about the dataset
are given in Section 4.3.4 of List (2012).

5.2 Method

The source code for our system is available
at https://github.com/roddyyaga/cognates/
and can be used to reproduce these results.

Our system has several hyperparameters that
must be set: the weights used to produce initial
0 values, the smoothing parameter 3, the number
of iterations, and the threshold used in clustering.
We set these by testing on the PIE section of the
dataset. This did not cause overfitting, since the
system does not perform better either in absolute
terms or relative to other sections on that subset.

For the weights for the initial 8 values, we used
the following values: 25,000, 5000, 50, 20, 10, 1
for the categories in subsubsection 4.1.2.

For the smoothing parameter 8 we used 0.0001.
We found that the sections of this dataset each con-
tained enough datapoints that smoothing did not im-
prove classification performance. However, a small
level of smoothing did make the system more effi-
cient, since with zero smoothing there were some
cases where all alignments of a pair of words had

480


https://github.com/roddyyaga/cognates/

Partition Description Glosses Cognate sets Words
BAI Bai dialects 110 205 1028
IEL Indo-European languages 207 1778 4393
JAP Japanese dialects 200 458 1985
ouG Uralic languages 110 239 2055
PAN Austronesian languages 210 2730 4358
GER Germanic languages and dialects 110 182 814
KSL various languages 200 1179 1400
PIE Indo-European languages 110 615 2172
ROM Romance languages 110 177 589
SLV Slavic languages 110 165 454

Table 1: Overview of the dataset used

zero probability, meaning there was a large number
of highest scoring alignments which took signifi-
cant time to iterate through.

For the threshold value we used 0.1. However,
for most sections of the dataset using these hy-
perparameters the estimated cognacy probabilities
for most pairs of words became very close to 0
or 1 after several iterations, therefore many thresh-
old values would have given similar performance.
Compared with an even spread of output probabil-
ities across the range (0, 1), this bimodal distribu-
tion has the drawback that it prevents interpretation
of the probabilities as degrees of certainty. How-
ever, it has the advantage that it makes performance
relatively independent of the choice of threshold.

Additionally, our system has a baseline proba-
bility of cognacy that must be set for each pair of
taxon. We evaluated the system both using a fixed
baseline (set to 0.005) and using a dynamic base-
line where the value for each pair of taxons was
updated after each iteration. Updates were made
using the estimated cognacy probabilities for each
pair of words produced in the expectation step. For
each pair of taxons, we estimated a new baseline
probability from these probabilities by taking the
arithmetic mean across all word pairs for that taxon
pair. The principle behind this dynamic adjustment
is that the system can learn to behave differently for
pairs of related taxons and unrelated pairs, based
on how related the words in each pair appear to be
at each iteration. We used a value of 0.005 as an
initial baseline probability for all taxon pairs. The
number of iterations was five for the fixed baseline
and four for the method with updates.

481

Subset LexStat | Fixed Dynamic
PIE 0.83 0.83 0.83
SLV 0.94 0.96 0.96
ouG 0.92 0.94 0.94
GER 0.94 0.95 0.96
JAP 0.93 0.93 0.93
ROM 0.94 0.90 0.90
BAI 0.89 0.88 0.89
KSL 0.94 0.90 0.93
IEL 0.81 0.77 0.81
PAN 0.81 0.80 0.83

Table 2: Comparison of F-scores achieved by LexStat
and this system (using both a fixed and dynamic base-
line).

5.3 Results

We evaluated the cognacy judgements of our sys-
tem using B-cubed F-score (List, 2012) with the
LingPy library (List et al., 2019). These results are
summarised in Table 2.

Overall our system performs very similarly to
LexStat, and our results did not differ by a large
amount depending on the method for setting the
baseline. The results in List (2012) show LexS-
tat outperforms previous systems on this dataset,
and the more recent work of Rama et al. (2018)
confirms that LexStat is still the best performing
system (at least for the language families under
consideration here). Therefore we can conclude
our system performs approximately as well as the
current state of the art.

The results of our system vary between partitions
in a way that is not illustrated by the summary in Ta-
ble 2. Figure 3 shows the F-score achieved at each
iteration by our system (using the dynamic base-
line). For some partitions of the dataset, the F-score
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Figure 3: B-cubed precision and recall at each iteration, and B-cubed F-score at each iteration

converges and plateaus after the first few iterations,
or continues to increase at every iteration. But for
other partitions such as IEL and PAN it peaks after
a couple of iterations and then decreases.

The root cause of this behaviour is unclear; IEL
and PIE have very different results after the third
iteration even though they behave similarly up to
that point and cover the same language families.
However from Figure 3 we can see that the cause
is not that the system get worse overall at judging
cognacy for the IEL and PAN partitions but rather
that it is trading decreased precision for increased
recall, because the distribution of estimated cognate
probabilities is shifting relative to the threshold.

5.4 Error analysis

We also perform a qualitative analysis of some in-
dividual errors made by our system and LexStat on
the PIE partition, and patterns among these errors.

In general, both systems tend to make the same
kinds of errors. They both judge pairs of cognates
with dissimilar forms as noncognate, for instance
French wazo and Italian uff:ello (‘bird’). Likewise,
they incorrectly judge noncognate pairs that are
coincidentally similar, such as Bulgarian kuffe and
Hindi kutta: (‘dog’). In these cases, it seems likely
that a human without prior knowledge of histori-
cal sound changes in the relevant languages would
make the same errors. In other cases, both systems
make errors that a human (even without linguistic
knowledge) would be unlikely to make. For exam-
ple, they both judge Bulgarian vsitfki and Czech
ffix/1 (‘all’) as noncognate, when intuitively it
seems clear that those words plus Polish ffistsi and
Russian fs'e form a cognate set.

The converse tendency — incorrectly grouping to-

gether sets of words that intuitively appear noncog-
nate — is only observed in our system and not Lex-
Stat. For instance, our system groups the Romance
words for “all” (French tu, Portuguese todu etc.)
with the Germanic words (Dutch ala, English o:1
etc.) while LexStat correctly distinguishes the two.
However, weaker relative performance in this re-
gard by our system is compensated for by better
performance for glosses where there are only one
or two cognate sets. For example, LexStat pro-
duces 5 cognate sets for the word “salt”: one each
for the families of Slavic, Germanic and Romance
languages (except French), one with Armenian and
French, and one with just Greek. In comparison,
apart from Armenian (which is incorrectly put in its
own set) our system correctly reaches the natural
conclusion® that all the words are cognate.

While LexStat does not incorrectly merge large
distinct cognate sets, both systems do incorrectly
judge individual noncognate pairs even when they
have dissimilar forms. This most frequently oc-
curs for short words, where chance resemblance
between one or two pairs of phones has a large
overall effect (for instance f and v in Greek fidi
and Polish vJ 3 (‘snake’)).

One interesting error that reveals a shortcoming
of our system’s clustering method is its judgement
of Italian ventre as cognate with Italian textipa-
pantfa. By definition it is not possible for two
words from the same taxon to be cognate with it-
self, and our system will not judge them as such
directly. But it is possible for the clustering algo-
rithm to produce these judgements indirectly since
cognacy is transitive. In this case, one word in

3Given their phonetic similarity, e.g. Bulgarian sol, English
so:lt, French sel and Italian sale
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the set of French va tg, Portuguese vétro, Spanish
bjentre and Italian ventre has been (incorrectly)
judged as cognate with one of Italian pantfa and
Romanian pantetse. However, it is not obvious how
to resolve this, since some alternative clusterings
that avoid this impossibility (for instance in this
case putting ventre in its own cognate set) would
be strictly worse. One possible approach might be
considering all sets of edges in the cognacy prob-
ability graph where removing them would give a
possible clustering and removing the set with the
lowest total probability.

There are several patterns in the “obvious” errors
produced by both systems. Firstly, relationships be-
tween more than two words with the same gloss are
often ignored. For instance, the errors described
above with vsitfki and cognates could be avoided
by taking into account the fact that those words
form part of a mutually similar set rather than con-
sidering their relationships with other words in that
set in isolation. Similarly, the fact that the taxons
under consideration form families is ignored. For
example, there are several cases where the words
from Romance languages form one cognate set,
but one or both systems group them as two sets:
one with the French word by itself and another
containing all the others. Finally, both systems
treat the sequences of phones that form words uni-
formly. But there are many cases where cognate
pairs of words are more similar at the start than the
end, and in particular where one word is shorter
than the other. Several examples of this occur for
French, for instance s¢€ is cognate with Italian seno
(‘blood’). One way to adapt our cognacy model to
deal with this would be placing a greater emphasis
on phone correspondence probabilities at the start
of the word.

5.5 Analysis of sound correspondence
parameters

We can examine the behaviour of the system by
looking at how the @ parameters change at each it-
eration. For instance, after the first iteration on the
PIE subset the 15 pairs with the highest probabili-
ties for English and German are (-, 9), (s, 2), (9, 9),
(a, a), (t, ), (b, D), (s, 5), (1, 1), (h, ), (&, a), (£, ),
(1, D, (d, t), (r, r) and (n, n) — predominantly pairs
of identical phones. This is unsurprising given the
high initial weights given to these.

After five iterations the pairs with the probabili-
ties are quite different, the top 15 being (¢, t), (s, 2),

(t, ts), (h, h), (1, 1), (¢, 5), (v, V), (£, £), (m, m), (I, D),
(d, t), (-, n), (-, 9), (1, n) and (r, r). Many of these
such as (v, v) and (¢, ts) are well-known sound
correspondences, validating our method. Similar
results are observed for other pairs of taxons.

5.6 Armenian-Greek case study

We also tested our system on a subset of the PIE par-
tition containing only Armenian and Greek words.
Many of the sound changes between Proto-Indo-
European and Armenian are unusually dramatic,
for instance the change from *dw to erk. This
makes detecting cognates between these languages
considerably more challenging task. We also use
this case study to demonstrate how initialisation of
the model’s parameters can be done in in linguisti-
cally motivated and language specific ways.

This new dataset consists of 24 cognate pairs of
words and 75 noncognate pairs. It was produced by
dropping words from taxons other than Armenian
and Greek from the PIE partition, and also drop-
ping words from those taxons when only one taxon
had words for a gloss.

This dataset contains much smaller cognate sets
than the overall dataset (each has either 1 or 2 el-
ements) and is skewed towards noncognate pairs,
while our focus in this analysis is more on achiev-
ing correct detection of cognates rather than cor-
rectly avoiding false claims of cognacy. These
factors make B-cubed F-score an unsuitable metric
to use, as high scores for this can be achieved by
judging all pairs of words as noncognate. There-
fore instead we consider accuracy among cognate
and noncognate pairs separately.

As a baseline, we evaluated LexStat on this
dataset. We found that regardless of the thresh-
old used, it judged all pairs of words as noncog-
nate, since there were no obvious patterns of sound
correspondence.

We then tested our system using three methods
for setting initial parameters. First we used the
same weights as before (“original weights”). Sec-
ond, we used that method except with the weights
for identical phones being reduced from 25,000 to
8500 (“lowered identical weights”). Third, we used
a variation of the second method where the weights
for several individual pairs of phones increased
to 8500 (“increased reflex weights”). Proto-Indo-
European *d has reflexes 0 and t in Greek and
Armenian respectively. Similarly, the consonant
cluster *dw has reflex d in Greek and erk in Arme-
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Method Cog. Noncog. Overall
LexStat 0.00 1.00 0.75
Original 0.13 0.96 0.75
Lowered identical 0.29 0.83 0.69
Increased reflex 0.54 0.83 0.75

Table 3: Accuracies for all pairs plus cognate and
noncognate subsets on the Armenian-Greek data. Re-
sults for our system were produced after 3 iterations.

nian. Reflecting these correspondences, we set the
weights for the pairs (9, t), (&, -), (r, 0) and (k, -) to
8500.

We experimented with increasing the weights
for corresponding reflexes with a weight of 25,000
for identical phones, but found this gave the same
results as just using the original weights. The rea-
son for this is that assigning such a high weight to
identical phones causes the initial probabilities for
other categories of correspondence to be very low,
and so only words with a high proportion of exactly
matching phones will be given a high probability
of cognacy. This is not an issue when the system is
evaluated on the original partitions of the dataset,
as these have many cognate pairs that are almost
identical. But the Armenian and Greek words gen-
erally differ more, and in particular the pairs with
the corresponding reflexes mentioned above do not
contain matching identical phones. Therefore it is
necessary to relax the emphasis on identical phones
in order to judge these words as cognate.

Table 3 shows the accuracies produced by Lex-
Stat and these three methods. LexStat judges all
pairs as noncognate, which achieves a relatively
high overall accuracy since the dataset is skewed
towards noncognates. In comparison, our system
does judge a minority of pairs as cognate, achieving
positive accuracy for cognate pairs at the cost of re-
duced accuracy for noncognates. The combined ef-
fect for our “original weights” and “increased reflex
weights” parameter settings is an overall accuracy
that is marginally higher than that of LexStat, but
the more meaningful advantage of our system for
challenging data such as this is that its parameters
can be varied to allow cognates to be detected at all.
Increasing the weights for corresponding reflexes
caused a significant* increase in accuracy for cog-
nate pairs while leaving accuracy for noncognate
pairs unchanged. This increase comes from pairs of
words containing the sound correspondences men-

4One-sided t-test, p < 0.05

tioned such as Armenian tal and Greek dino (‘to
give’) and Armenian jerku and Greek djo (‘two’)
being correctly judged as cognate when they were
not previously. This positive effect from setting ini-
tial weights based on known linguistic relationships
between languages demonstrates how our system
could be used for joint human-computer cognate
detection.

6 Conclusions

In this paper, we formalised the task of cognate
detection as inference in a general statistical model,
defined a specific example of such a model, and
then designed and implemented an expectation-
maximisation algorithm for that model. We evalu-
ated its performance on an existing dataset, finding
it to be comparable with the current state of the art.
We also evaluated it qualitatively to demonstrate
advantages it has over existing systems, such as
greater flexibility on challenging datasets.

There are many ways this system could be ex-
tended by future work. The word-level model of
cognacy could be made more sophisticated in vari-
ous regards; one that appears especially promising
from our qualitative evaluation would be to give
different weights to pairs of aligned phones de-
pending on the position they come in the word
or on neighbouring phones, which would improve
the system’s ability to capture conditioned sound
changes (Campbell, 2013, 15). A larger change
would be to modify the system to perform cognate
detection and phylogenetic reconstruction of taxon
families simultaneously. This could significantly
increase the performance of the system, since many
of the errors observed here could be avoided by us-
ing information about taxon families. It would also
build on our approach of mimicking the method
of a human linguist by going from iteratively al-
ternating between making cognate judgements and
determining sound correspondences to iteratively
alternating between those steps and reconstruction
of language family trees.
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