
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 442–454
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

442

Analysing Word Representation in the Input and Output Layers of Neural
Language Models

Steven Derby Paul Miller Barry Devereux
Queen’s University Belfast, Belfast, United Kingdom

{sderby02, p.miller, b.devereux}@qub.ac.uk

Abstract

Researchers have recently demonstrated that
tying the neural weights between the input
look-up table and the output classification
layer can improve training and lower perplex-
ity on sequence learning tasks such as lan-
guage modelling. Such a procedure is possi-
ble due to the design of the softmax classifi-
cation layer, which previous work has shown
to comprise a viable set of semantic represen-
tations for the model vocabulary, and these
these output embeddings are known to per-
form well on word similarity benchmarks. In
this paper, we make meaningful comparisons
between the input and output embeddings and
other SOTA distributional models to gain a bet-
ter understanding of the types of information
they represent. We also construct a new set
of word embeddings using the output embed-
dings to create locally-optimal approximations
for the intermediate representations from the
language model. These locally-optimal em-
beddings demonstrate excellent performance
across all our evaluations.

1 Introduction

Neural Language Modelling has recently gained
popularity in NLP. A Neural Network Language
Model (NNLM) is tasked with learning a condi-
tional probability distribution over the occurrences
of words in text (Mikolov et al., 2011). This lan-
guage modelling objective requires a neural net-
work with sufficient capacity to learn meaning-
ful linguistic information such as semantic knowl-
edge and syntactic structure. Due to their abil-
ity to learn these important linguistic phenomena,
NNLMs have been successfully employed as an
effective method for generative pretraining (Dai
and Le, 2015) and transfer learning to other nat-
ural language tasks (Peters et al., 2018a; Howard
and Ruder, 2018; Radford et al., 2018). As pre-
viously suggested by Bengio et al. (2003), Mnih

and Hinton (2007) and Mnih and Teh (2012), the
weights of the final fully-connected output layer,
or output embeddings, which compute the condi-
tional probability distribution over the lexicon, also
constitute a legitimate set of embedding vectors
representing word meaning, as is the case for the
input embeddings. This commonality between the
input and output layers of the NNLM has motivated
researchers to tie these representations together dur-
ing training, improving performance on language
modelling tasks (Inan et al., 2016; Press and Wolf,
2017). Furthermore, such a procedure is intuitive,
since both the input and output embeddings of the
network would appear to be performing a similar
task of encoding information about lexical content.
As described by Inan et al. (2016), they clearly live
in an identical semantic space in language mod-
els, unlike other machine learning models were the
input and output embeddings have no direct link.

On the other hand, it would also be reasonable
to assume that the output representations require
highly task-specific features (Peters et al., 2018a,b;
Devlin et al., 2019). Despite their utility in lan-
guage modelling, in-depth analysis of these input
and output vector representations remains limited.
The goal of this work is to gain a deeper under-
standing of the aspects of language captured in
these contrasting representations. Our two main
contributions1 are as follows:

1. We perform an investigation to uncover both
the broad types of semantic knowledge and
fine-grained linguistic phenomena encoded
within each set of word representations.

2. We propose a simple method for construct-
ing locally-optimal approximations that we
use to extend our analysis to the intermediate
representations from the network.

1Code available at https://github.com/
stevend94/CoNLL2020

https://github.com/stevend94/CoNLL2020
https://github.com/stevend94/CoNLL2020
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Though generally considered task-agnostic, by
making extensive comparisons between these neu-
ral representations we may reason about the type
of information most salient in the representations
in each semantic space. Our results demonstrate
that the input and output embeddings share little in
common with respect to their strength and weak-
nesses, while the locally-optimal embeddings gen-
erally perform the best on most downstream tasks.

2 Related Work

Recent trends in NLP has seen a focus towards
building generative pretraining models, which have
achieved state-of-the-art performance on down-
stream tasks (Peters et al., 2018a; Radford et al.,
2018; Devlin et al., 2019; Lan et al., 2019; Liu
et al., 2019; Yang et al., 2019). These sequence-
based autoencoder models have almost universally
adopted the convention of weight tying in their in-
put and output layers, which has been shown to
improve training and decrease perplexity scores
on language modelling tasks (Inan et al., 2016;
Press and Wolf, 2017). Motivated by these results,
researchers have proposed a number of modifica-
tions to these networks in relation to the output
classification layers. For example, Gulordava et al.
(2018a) combine weight-tying with a linear projec-
tion layer in the penultimate stage of the network to
both decouple hidden state representations from the
output embeddings and control the size of the em-
bedding vectors. Takase et al. (2017) suggest mod-
ifying the architecture of the network by adding
a gating mechanism between the input layer and
the final classification layer of NNLMs. Focusing
solely on the final classification layer, Yang et al.
(2017) propose using a number of weighted soft-
max distributions, called a Mixture of Softmaxes,
to overcome the bottleneck formed by their lim-
ited capacity. Takase et al. (2018) extend this ap-
proach by adding what they call a Direct Output
Connection, which computes the probability distri-
bution at all layers of the NNLM. Other work has
focused on weight tying such as with the Structural
Aware output layer (Pappas et al., 2018; Pappas and
Henderson, 2019). Despite their importance, there
is limited work which attempts to further analyse
these output embeddings beyond the work of Press
and Wolf (2017), who show that these represen-
tations outperform the input embeddings on word
similarity benchmarks. In recent years, such analy-
ses has gained popularity in the NLP community as

researchers have shifted their focus towards inter-
pretability in neural networks (Alishahi et al., 2019;
Linzen et al., 2019). Examples include probing
tasks, which are supervised machine learning prob-
lems that look to decode salient linguistic features
from embedding vectors (Adi et al., 2016; Wallace
et al., 2019; Tenney et al., 2019). Other work has
focused on determining whether more cognitive
aspects of meaning are adequetely encoded within
these representations, through probing (Collell and
Moens, 2016; Li and Gauthier, 2017; Derby et al.,
2020) or using cross-modal mappings (Rubinstein
et al., 2015; Fagarasan et al., 2015; Bulat et al.,
2016; Derby et al., 2019; Li and Summers-Stay,
2019). Moving beyond basic linguistic phenomena,
researchers have also investigated more complex
aspects of language such as syntactical structure us-
ing probing methods (Linzen et al., 2016; Bernardy
and Lappin, 2017; Gulordava et al., 2018b; Marvin
and Linzen, 2018).

3 Research Context and Motivation

In this section, we first discuss some background
about the input and output embeddings in NNLMs.
Then, we briefly discuss how to compute new repre-
sentations that are locally-optimal to the prediction
step from the fully-connected softmax layer of the
NNLM, by using stochastic gradient descent.

3.1 Neural Network Language Model

Consider a sequence of text (y1, y2, . . . yN ) repre-
sented as a list of one-hot token vectors. The goal
of a neural network language model is to maximize
the conditional probability of the next word based
on the previous context. For a vocabulary V , at
the time step t− 1 the network computes the prob-
ability distribution y∗t of possible target words as
follows:

et = Eyt−1

ht = f(et, ht−1)

at =Wht + b

y∗t = Softmax(at)

(3.1)

where f consists of one or many temporally
compatible layers, such as LSTMs (Hochreiter
and Schmidhuber, 1997) or masked transformers
(Vaswani et al., 2017). The function f takes in a
previous state as contextual information ht−1 ∈
Rdf and embeddings et from the look-up table
E ∈ Rde×|V |, and produces a new hidden state
ht which the fully-connected output layer uses to
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compute the probability distribution y∗t . We then
compute the cross-entropy loss L(yt, y∗t ) between
the predicted distribution and the actual distribu-
tion, and minimize the loss with gradient descent.

To consider the case of weight-tying, we first
note the fact that the size of the predicted prob-
ability distribution must span the length of the
lexicon V . Then, disregarding the bias term, as
W ∈ R|V |×df it is easy to see how we can set
E = W T if we set df = de. Weight tying has
several advantages, including less training param-
eters and improved perplexity scores on language
modelling objectives (Inan et al., 2016; Press and
Wolf, 2017). However, the information that both
the input and output embeddings must individually
learn in order to predict the correct target concept
may be entirely different.

3.2 Hidden State Word Representations

While these output embeddings can function as a
set of semantic representations, their real goal is to
instead compute the conditional probability distri-
bution over the lexicon using context information
from the hidden layers of the network. As such, the
output embeddings may contain certain features
that are specific to the language modelling objec-
tive, allowing them to identify information from
the hidden layers that is relevant to predicting the
target word. In addition to considering the input
and output embeddings, we also consider the acti-
vation vectors from the latent layers of the language
model in order to extend the scope of our analysis.
From the perspective of how these layers represent
lexical information, we are interested in the activa-
tion vectors in the hidden layers that lead to high
prediction probabilities for the target words.

Intuitively, in order to find some activation vector
from the latent layers that best represents a partic-
ular word, we would like to generate a sentence
fragment that is optimal with respect to predicting
that word (i.e. the hidden state ht for the sentence
fragment yields the highest possible probability
value for the target word being the next word in
the sequence, given the calculations in Eqn. 3.1).
We could then use these hidden state activations
for each word as an additional embedding space,
similar to Bommasani et al. (2020). However, we
lack an efficient generative process for finding such
optimal sentence fragments. We could sample a
large number of sentence fragments from a corpus
and record which sentence fragments give the high-

est output probability for each word in our lexicon,
but this will be highly inefficient and moreover will
not guarantee that we have found the best hidden
state activation vector for each word.

In the next section, we present a procedure to
identify such optimal hidden states, which we refer
to as locally-optimal vectors.

3.3 Locally-optimal Vectors
To find a latent representation that maximally pre-
dicts the target word from the final classification
layer of the NNLM, we build a gradient-based ap-
proximation for each word. To achieve this, we
employ a similar technique to Activation Maximiza-
tion in computer vision (Simonyan et al., 2013).
For a pretrained NNLM, let W ∈ Rdf×|V | be
the weight matrix (i.e. output embeddings) and let
b ∈ R|V | be the bias vector of the final prediction
layer of the network. For each word in w ∈ V , we
want to find the corresponding input I ∈ Rdf that
maximizes the probability of the word w. Let Sw
be the score function for the word w ∈ V , which
takes an input and gives the probability output of
the target class w. We can then formulate the prob-
lem as

argmax
I∈Rdf

Sw(I)− λ||I||22 (3.2)

where
Sw(I) = Softmax(W T I + b)w (3.3)

where λ is a regularisation parameter. As described
by Simonyan et al. (2013), maximizing the class
probability can be achieved by minimizing the
score for incorrect classes. This is undesirable for
visualization purposes (see Simonyan et al., 2013),
which is the reason why softmax normalization is
usually omitted, though in our case, finding the
most probable class is desirable. The regularisation
term stops the magnitude of the vectors growing too
large and instead focuses on the angular informa-
tion between representations. We refer to these rep-
resentations as AM Embeddings. Although these
embeddings have the same dimensionality as the
hidden states ht in the NNLM and play the same
role in the softmax calculation, we note that they
are not derived from any particular text sequence
input to the NNLM and indeed there may not exist
any sentence fragment that produces these hidden
state activations.

4 Methodology

For our research, we require a NNLM that provides
good performance without weight tying, so that
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Semantic Similarity Semantic Relatedness Hybrid BrainBench
Models WordSim-S SimLex999 WordSim-R MEN MTurk WordSim RW fMRI MEG

Distributional Semantic Models

Word2Vec 0.759 0.400 0.555 0.725 0.660 0.645 0.637 0.687 0.677
GloVe 0.680 0.352 0.475 0.727 0.604 0.546 0.530 0.657 0.623

FastText 0.782 0.391 0.585 0.742 0.678 0.668 0.647 0.680 0.682

Pretrained NNLM Representations

Input Embs. 0.734 0.420 0.361 0.640 0.556 0.527 0.694 0.661 0.683
Output Embs. 0.771 0.417 0.543 0.677 0.642 0.635 0.541 0.699 0.709

AM Embs. 0.793 0.486 0.614 0.741 0.685 0.692 0.649 0.705 0.710

Table 1: Results (accuracy % for BrainBench; Spearman’s ρ for the other evaluations) for the three JLM-derived
embedding spaces, along with three other state-of-the-art distributional semantic models.

we may analyse the input and output embeddings
as separate entities. We use the freely-available
language model of Jozefowicz et al. (2016), which
we refer to as JLM. The JLM network consists of
a character level embedding input and two LSTM
layers of size 8192, which both incorporate a pro-
jection layer to reduce the hidden state dimension-
ality down to 1024. The softmax output of the
model has a word-level vocabulary of 800K word
classes, and the model is trained on the one billion
word news dataset (Chelba et al., 2013).

4.1 Pretrained NNLM Embeddings
We first acquire the input and output embeddings
by extracting the appropriate matrices from their re-
spective locations in the JLM network, with the in-
put embeddings generated using the character-level
layers. We then construct the AM embeddings, first
by randomly initialising a set of |V | vectors before
optimising using the Adam optimiser with a learn-
ing rate of 0.001 and regularisation term λ=10−5.
We train for 100 epochs, with a batch size of 1024
using Keras. Due to the enormous size of the lexi-
con of the JLM language model, we downsample
the 800K word vocabulary by taking the first 20K
most frequently occurring words, which gives good
coverage over the evaluation datasets.

4.2 Distributional Semantic Models
We also want to compare these embeddings with
state-of-the-art distributional semantic models in
order to make meaningful comparisons. For this,
we use the skip-gram implementation of Word2Vec
(Mikolov et al., 2013) and FastText (Bojanowski
et al., 2017) using the gensim package2 and the
Python implementation of Facebook’s FastText3 re-

2https://radimrehurek.com/gensim/
3https://pypi.org/project/fasttext/

spectively. Word2Vec was trained with embeddings
of size 300 and a context window of 5, while Fast-
Text uses the default settings with embedding size
100, window size 5, and ngrams of sizes from 3 to
6. We also train a Python implementation of GloVe
(Pennington et al., 2014) for 100 epochs with a
learning rate of 0.05 to construct word embeddings
of size 300. For a fair comparison, all models are
trained on the same billion-word dataset (Chelba
et al., 2013) as JLM.

5 Experiments

To assess these representations for both task-
specific effectiveness and fine-grained linguistic
knowledge, we perform a broad range of exper-
iments. These assessments include comparison
with human understanding on word relations (In-
trinsic Evaluations), analysing performance on su-
pervised machine learning tasks (Extrinsic Evalua-
tions), and using probing tasks to isolate linguistic
phenomena. We hypothesise that the input and out-
put embeddings should perform quite well on the
intrinsic benchmarks, while the AM embeddings
should give the best results on downstream predic-
tion tasks, which we would similarly expect with
the hidden representations from the intermediate
layers of the network (Peters et al., 2018a).

5.1 Intrinsic Evaluations

We first compare the word embeddings with hu-
man semantic judgements of word pair similarity.
The rationale is that a good semantic model should
correlate with semantic ground-truth information
elicited from humans, either from conscious judg-
ments, or from patterns of brain activation as peo-
ple process the words (Bakarov, 2018).

https://radimrehurek.com/gensim/
https://pypi.org/project/fasttext/
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Binary Classification Multiclass Entailment Paraphrase
Models MR CR MPQA Subj. SST2 SST5 TREC SICK-E MRPC

Distributional Semantic Models

Word2Vec 70.76 71.18 85.88 86.34 75.78 38.82 79.20 71.38 66.49 / 79.87
Glove 68.22 69.59 84.58 86.94 73.86 36.15 78.60 70.83 69.57 / 80.97

FastText 70.64 67.87 85.77 87.59 77.59 38.87 73.20 70.57 66.49 / 79.87

Pretrained NNLM Representations

Input Embs. 71.32 76.56 87.04 88.45 76.39 40.05 85.6 79.58 73.22 / 81.51
Output Embs. 72.10 67.13 87.57 88.37 79.24 39.37 81.60 75.44 68.58 / 80.82

AM Embs. 72.76 75.15 87.76 89.20 79.85 41.27 86.00 75.14 66.49 / 79.87

Table 2: Results on the SentEval transfer learning tasks measured in % accuracy for all six of our embeddings.
Each task is grouped into four categories, Binary Classification, Multiclass Classification, Entailment/Relatedness
and Paraphrase Detection. For the MRPC dataset, the results are % accuracy and F1×100.

Similarity Benchmarks A traditional method
for evaluating word embeddings uses the intu-
ition of human raters about word semantic simi-
larity. Word similarity benchmarks can, in gen-
eral, be partitioned into two types: semantic sim-
ilarity and semantic relatedness. Here, semantic
relatedness refers to the strength of association be-
tween words (e.g. COFFEE and CUP), while seman-
tic similarity reflects shared semantic properties
(e.g. COFFEE and TEA). For benchmarks focusing
on semantic relatedness/association, we use MEN
(Bruni et al., 2012), MTurk (Radinsky et al., 2011)
and WordSim353-Rel (Agirre et al., 2009), and
for semantic similarity we use SimLex-999 (Hill
et al., 2015), and WordSim353-Sim (Agirre et al.,
2009). We also include two datasets whose judge-
ment scores do not fall into either category, Word-
Sim353 (Finkelstein et al., 2002) and RareWords
(Luong et al., 2013). For the embedding vectors,
similarity is computed using the cosine between
pairs of word vectors, with Spearman’s ρ used to
measure the correlation between human scores and
the cosine similarities. We perform our analysis us-
ing the Vecto python package (Rogers et al., 2018)4.

Predicting Brain Data We also evaluate these
embeddings on another intrinsic evaluation task
that does not directly employ human semantic
judgement. Instead, this evaluation asks whether
the embedding models can reliably predict activa-
tion patterns in human brain imaging data as partic-
ipants processed the meanings of words. For this,
we use BrainBench (Xu et al., 2016)5, a semantic
evaluation platform that includes two separate neu-

4https://vecto.readthedocs.io
5http://www.langlearnlab.cs.uvic.ca/

brainbench/

roimaging datasets (fMRI and MEG) from humans
for 60 concept words. This benchmark evaluates
how well the embeddings can make predictions
about the neuroimaging data using a 2 vs. 2 test,
with 50% indicating chance accuracy.

Intrinsic evaluation results In general, the out-
put embeddings perform better than the input em-
beddings (Table 1), similar to (Press and Wolf,
2017). The only case where the input embeddings
yield higher correlations than the output embed-
dings are on Rare Words. We can attribute this to
the fact that the input embeddings are constructed
from character-level representations. In compar-
ison to the SOTA distributional models, the out-
put embeddings tend to only beat FastText on Sim-
Lex999 and BrainBench, while also struggling in
comparison to Word2Vec on semantic relatedness
and hybrid tasks. On the other hand, our AM
embeddings perform very well in all evaluations,
being the top-preforming model in most evalua-
tions and performing quite similarly to FastText on
MEN and Rare Words. While we hypothesised that
the AM embeddings should perform quite well on
downstream tasks, the ability of these novel word
embeddings to explain human semantic judgement
and reliably decode brain imaging data is surprising
and interesting.

5.2 Extrinsic Evaluations

Next, we evaluate these representations by
analysing their performance on a number of down-
stream tasks. Each task may demand a certain set
of features relevant to the task, requiring these rep-
resentations to encode a wide range of linguistic
knowledge. We expect the output embeddings to
perform better than the input embeddings and other

https://vecto.readthedocs.io
http://www.langlearnlab.cs.uvic.ca/brainbench/
http://www.langlearnlab.cs.uvic.ca/brainbench/
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Models SICK-R STS B

Distributional Semantic Models

Word2Vec 75.32 57.93
Glove 71.64 56.03

FastText 75.95 58.52

Pretrained NNLM Representaitons

Input Embs. 79.49 62.23
Output Embs. 78.86 61.72

AM Embs. 78.69 61.13

Table 3: Pearson correlation results on SICK-R
and STS B semantic relatedness benchmarks.

SOTA semantic models based on previous research,
which demonstrates that representations from the
upper layers of the NNLM tend to perform better
at prediction tasks (Peters et al., 2018a,b; Devlin
et al., 2019). Since the AM embeddings represent
a locally-optimal instance for the penultimate layer
of the network, we also expect them to perform
well.

Transfer Learning Tasks We make use of Sen-
tEval (Conneau et al., 2017), an evaluation suite for
analysing the performance of sentence representa-
tions. Though we are working with word embed-
dings, applications rarely require words in isolation.
To build sentence embeddings, we take the aver-
age embedding vector of all words in the sentence.
SentEval includes a number of binary classification
datasets, including two movie review sentiment
datasets (MR) (Pang and Lee, 2005) and (SST2)
(Socher et al., 2013), a product review dataset (CR)
(Hu and Liu, 2004), subjectivity dataset (Subj.)
(Pang and Lee, 2004) and an opinion polarity
dataset (MPQA) (Wiebe et al., 2005). It also in-
cludes two multiclass classifications tasks, a ques-
tion type classification dataset (TREC) (Voorhees
and Tice, 2000) and a movie review dataset with
five sentiment classes (Socher et al., 2013), as well
as an entailment dataset (SICK-E) (Marelli et al.,
2014) and paraphrase detection dataset (MRPC)
(Dolan et al., 2004). For classification, we use a
one-layer PyTorch GPU model with default param-
eters and Adam optimisation.

The results (Table 2) show that, on binary clas-
sification tasks, the input and output embeddings
perform quite similarly, while both provide better
results than the distributional models in almost all
cases. Taking a closer look, we can see that the out-

Figure 1: Results on STS benchmarks from SentEval
toolkit. Here we report average Pearson and Spearman
correlation scores on each benchmark.

put embeddings perform best at predicting movie
review sentiment (MR, SST2) and opinion polar-
ity (MPQA), while the input embeddings provide
the highest scores when predicting product review
sentiment (CR) and subjectivity (Subj.). When
predicting multiple classes (TREC, SST5), the in-
put embeddings perform marginally better than the
output embeddings, though the AM embeddings
perform best overall on both binary and multiclass
datasets. Interestingly, the input embeddings are
much better at both predicting entailment (SICK-
E) and paraphrase detection (MRPC) than all other
models.

Semantic Text Similarity To further evaluate
how well these embeddings perform at judging sen-
tence relations, we also employ transfer learning
to the semantic relatedness tasks from SemEval, in
particular SICK-R (Marelli et al., 2014) and STS
B (Cer et al., 2017). The task consists of sentence
pairs with scores ranging from 0 to 5, indicating
the level of similarity between the sentences. We
see from the results (Table 3) that the input em-
beddings again give the highest correlation with
semantic relatedness scores, similar to the previous
results. Furthermore, the AM embeddings perform
worse at judging relatedness than the output em-
beddings, though the differences are quite small.
Our AM embeddings still outperform all SOTA
distributional models.

We also perform transfer learning on a set of
Semantic Textual Similarity (STS) benchmarks,
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Figure 2: Results on each probing task, divided into three categories of task; Surface Information, Syntactic
Structure and Semantic Information.

which include the 2012 (Agirre et al., 2012), 2013
(Agirre et al., 2013), 2014 (Agirre et al., 2014),
2015 (Agirre et al., 2014) and 2016 (Agirre et al.,
2016) semantic similarity tasks. Each dataset con-
tains sentence pairs similar to the relatedness tasks,
though each is taken from different sources such
as news articles or forums. Here, we record perfor-
mance using the average Pearson and Spearman
correlation for each STS dataset, with results dis-
played in Figure 1. The input embeddings again
give the best performance on all datasets, similar to
previous results on sentence relatedness. Further-
more, the AM embeddings perform better than the
output embeddings on all datasets, in contrast to
the previous findings. The results demonstrate that
the input embeddings are much more suited to sen-
tence comparison tasks than the other pretrained
NNLM embeddings.

5.3 Probing Tasks
We next examine whether the embedding vectors
capture certain linguistic properties when utilised
as sentence representations. These probing tasks
are formulated as a supervised classification prob-
lem, with strong performance indicating the pres-
ence of an isolated characteristic such as sentence
length. Similar to the transfer learning tasks, we
take the average embedding vector of all words
to generate the sentence embedding. These tasks
are taken from Conneau et al. (2018), which in-
cludes probing tasks partitioned into three separate
categories.

• Surface Information: The tasks include sen-

tence length prediction (SentLen) and decid-
ing whether a word is present in the represen-
tations (WordContent).

• Syntactical Information: Focusing on gram-
matical structure, these include tasks for pre-
dicting the maximum length of a node to the
root (TreeDepth) and predicting the top con-
stituent below the <S> node (TopConsts).

• Semantic Information: Focusing on depen-
dency knowledge, these include tasks for pre-
dicting the tense of the main verb (Tense),
the number of subjects of the main clause
(SubjNum) and the number of objects of the
main clause (ObjNum).

We exclude other probing tasks that rely on word
position in the sentence, since these averaged word
embeddings are invariant with respect to word or-
der6. The results are displayed in Figure 2. The
SOTA distributional models tend to perform worse
than the pretrained NNLM representations when
predicting SentLen and WordContent, though the
output models perform poorly compared to the in-
put and AM embeddings. The AM embeddings
perform well, perhaps because of their training ob-
jective which incentivises linear separability. When
predicting syntactic information, the input and out-
put embeddings perform similarly at classifying
TreeDepth and TopConsts, with the AM embed-
dings performing best. Finally, when predicting

6Results on these tasks confirm this, with accuracy at
chance levels.
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NNLMInput NNLMOutput NNLMTied
Models Train Validation Test Train Validation Test Train Validation Test

Distributional Semantic Models

Word2Vec 57.0 58.9 59.3 59.0 67.2 67.4 74.9 64.9 65.3
Glove 61.8 62.5 63.1 66.3 74.4 74.5 90.5 76.8 77.4

FastText 58.0 59.7 60.2 60.6 68.9 69.0 77.9 67.6 68.0

Pretrained NNLM Representaitons

Inputs Embs. 51.1 57.0 57.2 58.6 66.0 66.23 72.4 64.9 65.2
Output Embs. 52.4 57.6 58.1 47.9 56.1 56.0 55.5 53.3 53.3

AM Embs. 48.7 55.8 56.40 48.5 56.50 56.7 52.7 52.0 52.4

Table 4: Perplexity scores on the Penn Treebank for language models trained using each embedding model as fixed
vector inputs, fixed weight outputs or both tied together.

Tense, SubjNum and ObjNum, the output embed-
dings are superior, which may be due to the output
embeddings heavily encoding dependency infor-
mation that is relevant to predicting the upcoming
word during language modelling. Indeed, LSTMs
are particularly good at learning dependency in-
formation such as subject-verb agreement (Linzen
et al., 2016).

6 Neural Language Modelling

We have demonstrated that the linguistic knowl-
edge captured by the input and output embeddings
are moderately distinct. These results may imply
that the input and output embeddings of the NNLM
require a particular set of non-overlapping charac-
teristics that are important to their respective roles
in the NNLM. To further understand whether and
how these representations are distinctive to their
particular functions in the input and output layers,
we perform domain transfer on the language mod-
elling objective. For our evaluation, we test each
set of embedding vectors when fixed as certain
weights in the network:

1. NNLMIn: Fixing our embedding vectors as
the lookup table input to the language model.

2. NNLMOut: Fixing the softmax output layer
by using the transpose of the stacked embed-
ding vectors as the matrix of dense weights,
without a bias vector.

3. NNLMTied: Fixing the embedding inputs and
softmax output by using our embeddings as
the tied weights.

Here we expect the input embeddings and out-
put embeddings to perform well in the case of
NNLMIn and NNLMOut respectively, since in
these cases their role is congruent with their origi-

nal role in JLM. We also expect the other distribu-
tional models to perform well as input embeddings
based on previous research. It will also be inter-
esting to see how the AM representations perform
since they are trained using output embeddings and
thus should share a lot of their linguistic knowl-
edge. If the input and output embeddings perform
similarly, we can infer that these representations
contain considerable overlap in lexical information.
However, if they perform poorly when their roles
are switched, we can conclude that these represen-
tations must learn some role-specific features not
encoded in the other semantic spaces. See the ap-
pendix for training details, which closely follow the
medium-sized LSTM model presented by Zaremba
et al. (2014) with the Penn Treebank dataset (Mar-
cus et al., 1993).

6.1 Perplexity Results

Results are displayed in Table 4. In the NNLMIn
models, we see that the AM embeddings provide
the best performance, even outperforming the in-
put embeddings, with the output embeddings and
SOTA distributional models performing quite well.
We also note that the input embeddings still provide
slightly better performance than the output embed-
dings in this analysis. In the case of the NNLMOut
networks, most of the distributional models per-
form poorly. The NNLM struggles when the distri-
butional models are utilised as fully-connected clas-
sification weights, while the output embeddings,
which were trained for this task, perform best,
though the AM embeddings also perform well. The
input embeddings perform poorly in the NNLMOut
model, indicating that the output embeddings do
encode role-specific knowledge not captured by
the other distributional models. Finally, when we
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tie and fix the weights, the SOTA distributional
models and input embeddings do not improve the
performance much in the NNLMTied model. Both
the output embeddings and AM embeddings have
good performance, and our AM embeddings sur-
prisingly give the best results.

7 Discussion

We can draw several conclusions from these re-
sults. As expected, the type of semantic knowledge
these representations capture is dependent on their
position in the network.

7.1 Semantic Knowledge

The input embeddings struggle with representing
word-level semantic relationships though perform
well at estimating relatedness between sentences
and paraphrase detection. The input embeddings
also seem to encode several aspects of surface-level
information such as sentence length, which is be-
havior more expected of contextualised represen-
tations of meaning. Indeed, the input embeddings
seem to contain at least some qualities that make
them suitable for building sentence-level represen-
tations. On the other hand, the output embeddings
struggle as sentence-level representations. This is
not so surprising, since these embeddings are the
input components used to construct contextual rep-
resentations in the intermediate layers, unlike the
output embeddings.

The output embeddings seem to correlate more
closely with human judgment on the word-level
association and neuroimaging data for isolated
concept words than the input embeddings. Fur-
thermore, the output embeddings are highly task-
specific to language modelling. Though other distri-
butional semantic models estimate representations
of meaning through somewhat similar language
modelling objectives, they fail to learn any mean-
ingful knowledge that is transferable to the output
classification layer of the language modelling task.

7.2 Weight Tying

There are a number of characteristics that each set
of representations seem to capture quite well given
their position in the architecture of the NNLM. In
a tied representation, we would expect the network
to learn a set of embedding vectors that encode
all such knowledge, though the contribution from
each layer may not be entirely equal. Press and
Wolf (2017) noted that, due to the update rules

that occur when using weight tying between these
layers, the output embeddings get updated at each
row after every iteration, unlike the input embed-
dings. This implies a greater degree of similarity
of the tied embedding to the untied model’s out-
put embedding than to its input embedding. From
the perspective of this work, we would also add
that a tied representation would be more similar to
the output embeddings since the information they
capture is more important to the overall learning
objective. Based on our results, while the output
embedding knowledge is quite transferable to the
input embeddings, the converse is false.

7.3 Transfer Learning

In recent years, representations from pretrained
neural language models have become a popular
choice for transfer learning to other tasks. Gener-
ally, the intermediate representations from the lay-
ers of the network are preferred, since they are con-
textualised over the sentence and generally perform
better in downstream tasks. In our work, we use
the AM embeddings to behave as a stand-in for the
intermediate layers’ hidden states that are locally-
optimal to each particular target word. Similar to
these intermediate representations, our AM embed-
dings perform quite well on downstream NLP tasks.
While this is to be expected, the results on the in-
trinsic evaluations and language modelling tasks
are surprising. We would expect these embeddings
to learn quite a bit of knowledge from the output
embeddings, though the increase in performance
on some tasks is striking. This may be due to the
activation maximisation training objective that we
employ, which forces linear separability between
words in the lexicon whilst preserving the semantic
information about each word (see Appendix).

8 Conclusion

We perform an in-depth analysis of the input and
output embeddings of neural network language
models to investigate what linguistic features are
encoded in each semantic space. We also extend
our analysis by constructing locally-optimal vec-
tors from the output embeddings, which seem to
provide overall better performance on both intrin-
sic and extrinsic evaluation tasks, beating well-
established distributional semantic models in al-
most all evaluations.
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