
Proceedings of the 24th Conference on Computational Natural Language Learning, pages 26–40
Online, November 19-20, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

26

Neural Proof Nets

Konstantinos Kogkalidis and Michael Moortgat and Richard Moot
Utrecht Institute of Linguistics OTS, Utrecht University

LIRMM, Université de Montpellier, CNRS
{k.kogkalidis,m.j.moortgat}@uu.nl, richard.moot@lirmm.fr

Abstract

Linear logic and the linear λ-calculus have a
long standing tradition in the study of natu-
ral language form and meaning. Among the
proof calculi of linear logic, proof nets are of
particular interest, offering an attractive geo-
metric representation of derivations that is un-
burdened by the bureaucratic complications of
conventional prooftheoretic formats. Build-
ing on recent advances in set-theoretic learn-
ing, we propose a neural variant of proof nets
based on Sinkhorn networks, which allows us
to translate parsing as the problem of extract-
ing syntactic primitives and permuting them
into alignment. Our methodology induces a
batch-efficient, end-to-end differentiable archi-
tecture that actualizes a formally grounded yet
highly efficient neuro-symbolic parser. We
test our approach on Æthel, a dataset of type-
logical derivations for written Dutch, where it
manages to correctly transcribe raw text sen-
tences into proofs and terms of the linear λ-
calculus with an accuracy of as high as 70%.

1 Introduction

There is a broad consensus among grammar for-
malisms that the composition of form and meaning
in natural language is a resource-sensitive process,
with the words making up a phrase contributing
exactly once to the resulting whole. The sentence
“the Mad Hatter offered” is ill-formed because of
a lack of grammatical material, “offer” being a di-
transitive verb; “the Cheshire Cat grinned Alice a
cup of tea” on the other hand is ill-formed because
of an excess of material, which the intransitive verb
“grin” cannot accommodate.

Given the resource-sensitive nature of language,
it comes as no surprise that Linear Logic (Gi-
rard, 1987), in particular its intuitionistic version
ILL, plays a central role in current logic-based
grammar formalisms. Abstract Categorial Gram-
mars and Lambda Grammars (de Groote, 2001;

Muskens, 2001) use ILL “as-is” to characterize
an abstract level of grammatical structure from
which surface form and semantic interpretation
are obtained by means of compositional transla-
tions. Modern typelogical grammars in the tra-
dition of the Lambek Calculus (Lambek, 1958),
e.g. Multimodal TLG (Moortgat, 1996), Displace-
ment Calculus (Morrill, 2014), Hybrid TLG (Kub-
ota and Levine, 2020), refine the type language to
account for syntactic aspects of word order and con-
stituency; ILL here is the target logic for semantic
interpretation, reached by a homomorphism relat-
ing types and derivations of the syntactic calculus
to their semantic counterparts.

A common feature of the aforementioned for-
malisms is their adoption of the parsing-as-
deduction method: determining whether a phrase
is syntactically well-formed is seen as the outcome
of a process of logical deduction. This logical
deduction automatically gives rise to a program
for meaning composition, thanks to the remark-
able correspondence between logical proof and
computation known as the Curry-Howard isomor-
phism (Sørensen and Urzyczyn, 2006), a natural
manifestation of the syntax-semantics interface.
The Curry-Howard λ-terms associated with deriva-
tions are neutral with respect to the particular se-
mantic theory one wants to adopt, accommodating
both the truth-conditional view of formal semantics
and the vector-based distributional view (Muskens
and Sadrzadeh, 2018), among others.

Despite their formal appeal, grammars based on
variants of linear logic have fallen out of favour
within the NLP community, owing to a scarcity
of large-scale datasets, but also due to difficul-
ties in aligning them with the established high-
performance neural toolkit. Seeking to bridge the
gap between formal theory and applied practice,
we focus on the proof nets of linear logic, a lean
graphical calculus that does away with the bureau-

27

cratic symbol-manipulation overhead characteristic
of conventional prooftheoretic presentations (§2).
Integrating proof nets with recent advances in neu-
ral processing, we propose a novel approach to
linear logic proof search that eliminates issues com-
monly associated with higher-order types and hypo-
thetical reasoning, while greatly reducing the com-
putational costs of structure manipulation, back-
tracking and iterative processing that burden stan-
dard parsing techniques (§3).

Our proposed methodology relies on two key
components. The first is an encoder/decoder-based
supertagger that converts raw text sentences into
linear logic judgements by dynamically construct-
ing contextual type assignments, one primitive sym-
bol at a time. The second is a bi-modal encoder that
contextualizes the generated judgement in conjunc-
tion with the input sentence. The contextualized
representations are fed into a Sinkhorn layer, tasked
with finding the valid permutation that brings prim-
itive symbol occurrences into alignment. The ar-
chitecture induced is trained on labeled data, and
assumes the role of a formally grounded yet highly
accurate parser, which transforms raw text sen-
tences into linear logic proofs and computational
terms of the simply typed linear λ-calculus, further
decorated with dependency annotations that allow
reconstruction of the underlying dependency graph
(§4).

2 Background

We briefly summarize the logical background we
are assuming, starting with ILL(, the implication-
only fragment of ILL, then moving on to the
dependency-enhanced version ILL(,3,2 which we
employ in our experimental setup.

2.1 ILL(

Formulas (or types) of ILL(are inductively de-
fined according to the grammar below:

T ::= A | T1 (T2

Formula A is taken from a finite set of atomic for-
mulas A ⊂ T ; a complex formula T1 (T2 is
the type signature of a transformation that applies
on T1 ∈ T and produces T2 ∈ T , consuming the
argument in the process. This view of formulas as
non-renewable resources makes ILL(the logic of
linear functions.1

1We refer to Wadler (1993) for a gentle introduction.

We can present the inference rules of ILL(to-
gether with the associated linear λ-terms in Natural
Deduction format. Judgements are sequents of the
form x1 : T1, . . . , xn : Tn ` M : C. The antecedent
left of the turnstile is a typing environment (or con-
text), a sequence of variables xi, each given a type
declaration Ti. These variables serve as the param-
eters of a program M of type C that corresponds to
the proof of the sequent.

Proofs are built from axioms x : T ` x : T with
the aid of two rules of inference:

Γ ` M : T1 (T2 ∆ ` N : T1

Γ,∆ ` (M N) : T2
(E (1)

Γ, x : T1 ` M : T2

Γ ` λx.M : T1 (T2
(I (2)

(1) is the elimination of the implication and mod-
els function application; it proposes that if from
some context Γ one can derive a program M of type
T1 (T2, and from context ∆ one can derive a
program N of type T1, then from the multiset union
Γ,∆ one can derive a term (M N) of type T2.

(2) is the introduction of the implication and
models function abstraction; it proposes that if
from a context Γ together with a type declaration
x : T1 one can derive a program term M of type T2,
then from Γ alone one can derive the abstraction
λx.M, denoting a linear function of type T1(T2.

To obtain a grammar based on ILL(, we con-
sider the logic in combination with a lexicon, as-
signing one or more type formulas to the words of
the language. In this setting, the proof of a sequent
x1 : T1, . . . , xn : Tn ` M : C constitutes an algo-
rithm to compute a meaning M of type C, given by
substituting parameters xi with lexical meanings
wi. In the type lexicon, atomic types are used to
denote syntactically autonomous, stand-alone units
(words and phrases); e.g. NP for noun-phrase, S

for sentence, etc. Function types are assigned to
incomplete expressions, e.g. NP(S for an intran-
sitive verb consuming a noun-phrase to produce
a sentence, NP (NP (S for a transitive verb,
etc.2 Higher-order types, i.e. types of order greater
than 1, denote functions that apply to functions;
these give the grammar access to hypothetical rea-
soning, in virtue of the implication introduction
rule.3 Combined with parametric polymorphism,

2Read (as right-associative.
3O(A), the order of an atomic type, equals zero; for func-

tion types O(T1(T2) = max(O(T1) + 1,O(T2)).

28

is
3predc ADJ(3su NP(Smain

eeuwenoud
ADJ

3su NP(Smain

die
3body (3obj PRON(Ssub

)
(2mod (NP(NP)

volgen

3obj PRON(3su PRON(Ssub

x

PRON

3su PRON(Ssub

ze
PRON

Ssub

3obj PRON(Ssub

2mod (NP(NP)

de
2det (N(NP)

strategie

N

NP

NP

De strategie die ze volgen is eeuwenoud `
(
is (eeuwenoud)predc) ((die (

λxobj. (volgen x) (ze)su)body
)

mod

(
(de)det strategie

))su
: Smain

Figure 1: Example derivation and Curry-Howard λ-term for the phrase De strategie die ze volgen is eeuwenoud
(“The strategy that they follow is ancient”) from Æthel sample dpc-ind-001645-nl-sen.p.12.s.1_1,
showcasing how hypothetical reasoning enables the derivation of an object-relative clause (note how the instanti-
ation of variable x of type PRON followed by its subsequent abstraction creates an argument for the higher-order
function assigned to “die”). Judgement premises and rule names have been omitted for brevity’s sake.

higher-order types eschew the need for phantom
syntactic nodes, enabling straightforward deriva-
tions for apparent non-linear phenomena involving
long-range dependencies, elliptical conjunctions,
wh-movement and the like.

2.2 ILL(,3,2

For our experimental setup, we will be utiliz-
ing the Æthel dataset, a Dutch corpus of type-
logical derivations (Kogkalidis et al., 2020). Non-
commutative categorial grammars in the tradition
of Lambek (1958) attempt to directly capture syn-
tactic fine-structure by making a distinction be-
tween left- and right-directed variants of the im-
plication. In order to deal with the relatively free
word order of Dutch and contrary to the former,
Æthel’s type system sticks to the directionally
non-committed (for function types, but com-
pensates with two strategies for introducing syn-
tactic discrimination. First, the atomic type in-
ventory distinguishes between major clausal types
Ssub, Sv1, Smain, based on the positioning of their
verbal head (clause final, clause initial, verb sec-
ond, respectively). Secondly, function types are
enhanced with dependency information, expressed
via a family of unary modalities 3d, 2m, with de-
pendency labels d,m drawn from disjoint sets of
complement vs adjunct markers. The new construc-
tors produce types 3dA (B, used to denote the
head of a phrase B that selects for a complement
A and assigns it the dependency role d, and types
2m(A (B), used to denote adjuncts, i.e. non-
head functions that project the dependency role m
upon application. Following dependency grammar
tradition, determiners and modifiers are treated as
non-head functions.

The type enhancement induces a dependency

marking on the derived λ-term, reflecting the intro-
duction/elimination of the 3,2 constructors; each
dependency domain has a unique head, together
with its complements and possible adjuncts, de-
noted by superscripts and subscripts, respectively.
Figure 1 provides an example derivation and the
corresponding λ-term.

A shallow dependency graph can be trivially re-
constructed by traversal of the decorated λ-term,
recursively establishing labeled edges along the
path from a phrasal head to the head of each of its
dependants while skipping abstractions; see Fig-
ure 4 for an example.

De strategie die ze volgen is eeuwenoud

ROOT

predc

su

det mod
body

su

Figure 4: Shallow graph for the term of Figure 1.

2.3 Proof Nets

Despite their clear computational interpretation (Gi-
rard et al., 1988; Troelstra and Schwichtenberg,
2000; Sørensen and Urzyczyn, 2006), proofs in
natural deduction format are arduous to obtain; rea-
soning with hypotheticals necessitates a mixture
of forward and backward chaining search strate-
gies. The sequent calculus presentation, on the
other hand, permits exhaustive proof search via
pure backward chaining, but does so at the cost
of spurious ambiguity. Moreover, both the above
assume a tree-like proof structure, which hinders
their parallel processing and impairs compatibility
with neural methods. As an alternative, we turn

29

+

A (B

−
A

+

B

+

A
−
A

−
A (B

+

A
−
B

Figure 2: Links for linear logic proof nets. Left/right: positive/negative implication. Center: axiom link.

De

+

2det

−
N0

+

NP1

strategie

+

N2

die

+

3body

−
3su

+

2mod

+

PRON3
−

S4sub

−
NP5

+

NP6

ze

+

PRON7

volgen

+

3obj

−
PRON8

+

3su

−
PRON9

+

S10sub

is

+

3predc

−
ADJ11

+

3su

−
NP12

+

S13main

eeuwenoud

+

ADJ14
−

S15main

Figure 3: Proof net corresponding to the natural deduction derivation of Figure 1, with modal markings in place
of implication arrows. Atomic types at the fringe of the formula decomposition trees are marked with superscript
indices denoting their position for ease of identification. During decoding, the proof frame is flattened as the linear
sequence:

[
[SOS],2det, N, NP,[SEP], N,[SEP],3body,3su, PRON, Ssub,2

mod, NP, NP,[SEP], PRON,[SEP],3obj, . . .
]

our attention towards proof nets (Girard, 1987),
a graphical representation of linear logic proofs
that captures hypothetical reasoning in a purely
geometric manner. Proof nets may be seen as a
parallelized version of the sequent calculus or a
multi-conclusion version of natural deduction and
combine the best of both words, allowing for flexi-
ble and easily parallelized proof search while main-
taining the 1-to-1 correspondence with the terms
of the linear λ-calculus.

To define ILL proof nets, we first need the auxil-
iary notion of polarity. We assign positive polarity
to resources we have, negative polarity to resources
we seek. Logically, a formula with negative po-
larity appears in conclusion position (right of the
turnstile), whereas formulas with positive polarity
appear in premise position (left of the turnstile).
Given a formula and its polarity, the polarity of its
subformulas is computed as follows: for a positive
formula T1(T2, T1 is negative and T2 is positive,
whereas for a negative formula T1 (T2, T1 is
positive and T2 is negative.

With respect to proof search, proof nets present
a simple but general setup as follows. (1) Begin by
writing down the formula decomposition tree for all
formulas in a sequent P1, . . . Pn ` C, keeping track
of polarity information; the result is called a proof
frame. (2) Find a perfect matching between the
positive and negative atomic formulas; the result is
called a proof structure. (3) Finally, verify that the
proof structure satisfies the correctness condition;

if so, the result is a proof net.

Formula decomposition is fully deterministic,
with the decomposition rules shown in Figure 2.
There are two logical links, denoting positive and
negative occurrences of an implication (correspond-
ing to the elimination and introduction rules of nat-
ural deduction, respectively). A third rule, called
the axiom link, connects two equal formulas of
opposite polarity.

To transform a proof frame into a proof struc-
ture, we first need to check the count invariance
property, which requires an equal count of positive
and negative occurrences for every atomic type,
and then connect atoms of opposite polarity. In
principle, we can connect any positive atom to any
negative atom when both are of the same type; the
combinatorics of proof search lies, therefore, in the
axiom connections (the number of possible proof
structures scales factorial to the number of atoms).
Not all proof structures are, however, proof nets.
Validating the correctness of a proof net can be
done in linear time (Guerrini, 1999; Murawski and
Ong, 2000); a common approach is to attempt a
traversal of the proof net, ensuring that all nodes are
visited (connectedness) and no loops exist (acyclic-
ity) (Danos and Regnier, 1989). There is an appar-
ent tension here between finding just a matching
of atomic formulas (which is trivial once we sat-
isfy the count invariance) and finding the correct
matching, which produces not only a proof net, but
also the preferred semantic reading of the sentence.

30

Deciding the provability of a linear logic sequent
is an NP-complete problem (Lincoln, 1995), even
in the simplest case where formulas are restricted
to order 1 (Kanovich, 1994). Figure 3 shows the
proof net equivalent to the derivation of Figure 1.

3 Neural Proof Nets

To sidestep the complexity inherent in the combi-
natorics of linear logic proof search, we investigate
proof net construction from a neural perspective.
First, we will need to convert a sentence into a
proof frame, i.e. the decomposition of a logical
judgement of the form P1, . . . Pn ` C, with Pi the
type of word i and C the goal type to be derived.
Having obtained a correct proof frame, the problem
boils down to establishing axiom links between the
set of positive and negative atoms and verifying
their validity according to the correctness criteria.
We address each of these steps via a functionally in-
dependent neural module, and define Neural Proof
Nets as their composition.

3.1 Proof Frames
Obtaining proof frames is a special case of su-
pertagging, a common problem in NLP litera-
ture (Bangalore and Joshi, 1999). Conventional
practice treats supertagging as a discriminative se-
quence labeling problem, with a neural model con-
textualizing the tokens of an input sentence before
passing them through a linear projection in order
to convert them to class weights (Xu et al., 2015;
Vaswani et al., 2016). Here, instead, we adopt the
generative paradigm (Kogkalidis et al., 2019; Bhar-
gava and Penn, 2020), whereby each type is itself
perceived as a sequence of primitive symbols.

Concretely, we perform a depth-first-left-first
traversal of formula trees to convert types to prefix
(Polish) notation. This converts a type to a linear
sequence of symbols s∈V , where V=A ∪ D, the
union of atomic types and dependency-decorated
modal markings.4 Proof frames can then be repre-
sented by joining individual type representations,
separated with an extra-logical token [SEP] denot-
ing type breaks and prefixed with a special token
[SOS] to denote the sequence start (see the cap-
tion of Figure 3 for an example). The resulting
sequence becomes the goal of a decoding process
conditional on the input sentence, as implemented
by a sequence-to-sequence model.

4Dependency decorations occur only within the scope of
an implication, so the two are merged into a single symbol for
reasons of length economy.

Treating supertagging as auto-regressive decod-
ing enables the prediction of any valid type in the
grammar, improving generalization and eliminat-
ing the need for a strictly defined type lexicon. Fur-
ther, the decoder’s comprehension of the type con-
struction process can yield drastic improvements
for beam search, allowing distinct branching paths
within individual types. Most importantly, it grants
access to the atomic sub-formulas of a sequent, i.e.
the primitive entities to be paired within a proof net
– a quality that will come into play when consider-
ing the axiom linking process later on.

3.2 Proof Structures

The conversion of a proof frame into a proof struc-
ture requires establishing a correct bijection be-
tween positive and negative atoms, i.e. linking
each positive occurrence of an atom with a single
unique negative occurrence of the same atom.

We begin by first noting that each atomic for-
mula occurrence within a proof frame can be as-
signed an identifying index according to its position
in the sequence (refer to the example of Figure 3).
For each distinct atomic type, we can then create a
table with rows enumerating negative and columns
enumerating positive occurrences of that type, or-
dered by their indexes. We mark cells indexing
linked occurrences and leave the rest empty; tables
for our running example can be seen in Figure 5.
The resulting tables correspond to a permutation
matrix ΠA for each atomic type A, i.e. a set of ma-
trices that are square, binary and doubly-stochastic,
encoding the permutation over the chain (i.e. or-
dered set) of negative elements that aligns them
with the chain of matching positive elements. This
key insight allows us to reframe automated proof
search as learning the latent space that dictates the
permutations between disjoint and non-contiguous
sub-sequences of the primitive symbols constitut-
ing a decoded proof frame.

Permutation matrices are discrete mathematical
objects that are not directly attainable by neural
models. Their continuous relaxations are, how-
ever, valid outputs, approximated by means of the
Sinkhorn operator (Sinkhorn, 1964). In essence,
the operator and its underlying theorem state that
the iterative normalization (alternating between
rows and columns) of a square matrix with pos-
itive entries yields, in the limit, a doubly-stochastic
matrix, the entries of which are almost binary. Put
differently, the Sinkhorn operator gives rise to a

31

2
0

ΠN

14
11

ΠADJ

13
15

ΠSmain

10
4
ΠSsub

3 7
8

9
ΠPRON

1 6
5

12
ΠNP

Figure 5: An alternative view of the axiom links of Figure 3, with tables ΠN, ΠADJ, ΠSmain , ΠSsub , ΠPRON, ΠNP

depicting the linked indices and corresponding permutations for each atomic type in the sentence.

non-linear activation function that applies on matri-
ces, pushing them towards binarity and bistochas-
ticity, analogous to a 2-dimensional softmax that
preserves assignment (Mena et al., 2018). Mov-
ing to the logarithmic space eliminates the positive
entry constraint and facilitates numeric stability
through the log-sum-exp trick. In that setting, the
Sinkhorn-normalization of a real-valued square ma-
trixX is defined as:

Sinkhorn(X) = lim
τ→∞

exp (Sinkhornτ (X))

where the induction is given by:

Sinkhorn0(X) = X

Sinkhornτ (X) = Tr
(
Tr
(

Sinkhorn(τ−1)(X)
)>)

with Tr the row normalization in the log-space:

Tr(X)i,j = Xi,j − log
N−1∑
r=0

e(Xr,j−max(Xr,:))

Bearing the above in mind, our goal reduces
to assembling a matrix for each atomic type in
a proof frame, with entries containing the unnor-
malized agreement scores of pairs in the cartesian
product of positive and negative occurrences of
that type. Given contextualized representations for
each primitive symbol within a proof frame, scores
can be simply computed as the inter-representation
dot-product attention. Assuming, for instance, I+A
and I−A the vectors indexing the positions of all
a positive and negative occurrences of type A
in a proof frame sequence, we can arrange the
matrices PA,NA ∈ Ra×d containing their re-
spective contextualized d-dimensional represen-
tations (recall that the count invariance property
asserts equal shapes). The dot-product attention
matrix containing their element-wise agreements
will then be given as S̃A = PAN

>
A ∈ Ra×a. Ap-

plying the Sinkhorn operator, we obtain SA =
Sinkhorn(S̃A), which, in our setup, will be mod-
eled as a continuous approximation of the underly-
ing permutation matrix ΠA.

3.3 Implementation

Encoder-Decoder We first encode sentences us-
ing BERTje (de Vries et al., 2019), a pretrained
BERT-Base model (Devlin et al., 2019) local-
ized for Dutch. We then decode into proof
frame sequences using a Transformer-like de-
coder (Vaswani et al., 2017).

Symbol Embeddings In order to best utilize
the small, structure-rich vocabulary of the de-
coder, we opt for lower-dimensional, position-
dependent symbol embeddings. We follow insights
from Wang et al. (2020) and embed decoder sym-
bols as continuous functions in the complex space,
associating each output symbol s ∈V with a mag-
nitude embedding rs∈R128 and a frequency em-
bedding ωs∈R128. A symbol s occurring in posi-
tion p in the proof frame is then assigned a vector
ṽs,p=rse

jωsp∈C128. We project to the decoder’s
vector space by concatenating the real and imag-
inary parts, obtaining the final representation as
vs,p = conc(<(ṽs,p),=(ṽs,p)) ∈ R256.

Tying the embedding parameters with those of
the pre-softmax transformation reduces the net-
work’s memory footprint and improves representa-
tion quality (Press and Wolf, 2017). In duality to
the input embeddings, we treat output embeddings
as functionals parametric to positions. To classify
a token occurring in position p, we first compute a
matrix Vp consisting of the local embeddings of all
vocabulary symbols, Vp = v:,p ∈ R||V||×256. The
transpose of that matrix acts then as a linear map
from the decoder’s representation to class weights,
from which a probability distribution is obtained
by application of the softmax function.

Proof Frame Contextualization Proof frames
may generally give rise to more than one distinct
proof, with only a portion of those being linguisti-
cally plausible. Frames eligible to more than one
potential semantic reading can be disambiguated
by accounting for statistical preferences, as exhib-
ited by lexical cues. Consequently, we need our

32

contextualization scheme to incorporate the senten-
tial representation in its processing flow. To that
end, we employ another Transformer decoder, now
modified to operate with no causal mask, thus al-
lowing all decoded symbols to freely attend over
one another regardless of their relative position.
This effectively converts it into a bi-modal encoder
which operates on two input sequences of differ-
ent length and dimensionality, namely the BERT
output and the sequence of proof frame symbols,
and constructs contextualized representations of
the latter as informed by the former.

Axiom Linking We index the contextualized
proof frame to obtain a pair of matrices for each
distinct atomic type in a sentence, easing the com-
plexity of the problem by preemptively dismissing
the possibility of linking unequal types; this also al-
leviates performance issues noted when permuting
sets of high cardinality (Mena et al., 2018). Post
contextualization, positive and negative items are
projected to a lower dimensionality via a pair of
feed-forward neural functions, applied token-wise.
Normalizing the dot-product attention weights be-
tween the above with Sinkhorn yields our final
output.

4 Experiments

We train, validate and test our architecture on the
corresponding subsets of the Æthel dataset, filter-
ing out samples the proof frames of which exceed
100 primitive symbols. Implementation details and
hyper-parameter tables, an illustration of the full
architecture, dataset statistics and example parses
are provided in Appendix A.5

4.1 Training

We train our architecture end-to-end, including all
BERT parameters apart from the embedding layer,
using AdamW (Loshchilov and Hutter, 2018).

In order to jointly learn representations that ac-
commodate both the proof-frame and the proof-
structure outputs, we back-propagate a loss signal
derived as the addition of two loss functions. The
first is the Kullback-Leibler divergence between
the predicted proof frame symbols and the label-
smoothed ground-truth distribution (Müller et al.,
2019). The second is the negative log-likelihood be-
tween the Sinkhorn-activated dot-product weights

5The implementing code can be found at github.com/
konstantinosKokos/neural-proof-nets.

and the corresponding binary-valued permutation
matrices.

Throughout training, we validate by measuring
the per-symbol and per-sentence typing accuracy
of the greedily decoded proof frame, as well as the
linking accuracy under the assumption of an error-
free decoding. We perform model selection on the
basis of the above metrics and reach convergence
after approximately 300 epochs.

4.2 Testing
We test model performance using beam search. For
each input sentence, we consider the β best de-
code paths, with a path’s score being the sum of
its symbols’ log probabilities, counting all sym-
bols up to the last expected [SEP] token. Neural
decoding is followed by a series of filtering steps.
We first parse the decoded symbol sequences, dis-
carding beams containing subsequences that do not
meet the inductive constructors of the type gram-
mar. The atomic formulas of the passing proof
frames are polarized according to the process of
§2.3. Frames failing to satisfy the count invariance
property are also discarded. The remaining ones
constitute potential candidates for a proof structure;
their primitive symbols are contextualized by the
bimodal encoder, and are then used to compute
soft axiom link strengths between atomic formu-
las of matching types. Discretization of the output
yields a graph encoding a proof structure; we fol-
low the net traversal algorithm of Lamarche (2008)
to check whether it is a valid proof net, and, if
so, produce the λ-term in the process (de Groote
and Retoré, 1996). Terms generated this way con-
tain no redundant abstractions, being in β-normal
η-long form.

4.3 Analysis
Table 1 presents a breakdown of model perfor-
mance at different beam widths. To evaluate model
performance, we use the first valid beam of each
sample, defaulting to the highest scoring beam if
none is available. On the token level, we report
supertagging accuracy, i.e. the percentage of types
correctly assigned. We further measure the percent-
age of samples satisfying each of the following sen-
tential metrics: 1) invariance property, a condition
necessary for being eligible to a proof structure, 2)
frame correctness, i.e. whether the decoded frame
is identical to the target frame, meaning all types
assigned are the correct ones, 3) untyped term ac-
curacy, i.e. whether, regardless of the proof frame,

github.com/konstantinosKokos/neural-proof-nets
github.com/konstantinosKokos/neural-proof-nets

33

Metric (%)
Beam Size β Baseline

β = 1 β = 2 β = 3 β = 5 β = 7 alpino

Token Level
Types Correct 85.5 91.4 92.4 93.2 93.4 56.2

Sentence Level
Invariance Correct 87.6 93.4 94.9 96.1 96.6 n/a
Frame Correct 57.6 65.3 68.0 69.6 70.2 n/a
Term Correct (w/o types) 60.0 65.6 67.7 69.1 69.6 45.7
Term Correct (/w types & deps) 56.9 63.7 65.9 67.1 67.6 30.4

Table 1: Test set model performance broken down by beam size, and baseline comparison.

the untyped λ-term coincides with the true one,
and 4) typed term accuracy, meaning that both the
proof frame and the untyped term are correct.

Numeric comparisons against other works in the
literature is neither our prime goal nor an easy task;
the dataset utilized is fairly recent, the novelty of
our methods renders them non-trivial to adapt to
other settings, and ILL-friendly categorial gram-
mars are not particularly common in experimental
setups. As a sanity check, however, and in order
to obtain some meaningful baselines, we employ
the Alpino parser (Bouma et al., 2001). Alpino
is a hybrid parser based on a sophisticated hand-
written grammar and a maximum entropy disam-
biguation model; despite its age and the domain
difference, Alpino is competitive to the state-of-the-
art in UD parsing, remaining within a 2% margin
to the last reported benchmark (Bouma and van
Noord, 2017; Che et al., 2018). We pair Alpino
with the extraction algorithm used to convert its
output into ILL(,3,2 derivations (Kogkalidis et al.,
2020); together, the two faithfully replicate the data
generating process our system has been trained on,
modulo the manual correction phase of van Noord
et al. (2013). We query Alpino for the globally op-
timal parse of each sample in the test set (enforcing
no time constraints), perform the conversion and
log the results in Table 1.

Our model achieves remarkable performance
even in the greedy setting, especially considering
the rigidity of our metrics. Untyped term accuracy
conveys the percentage of sentences for which the
function-argument structure has been perfectly cap-
tured. Typed term accuracy is even stricter; the
added requirement of a correct proof frame prac-
tically translates to no erroneous assignments of
part-of-speech and syntactic phrase tags or depen-
dency labels. Keeping in mind that dependency

information are already incorporated in the proof
frame, obtaining the correct proof structure fully
subsumes dependency parsing.

The filtering criteria of the previous paragraph
yield significant benefits when combined with
beam search, allowing us to circumvent logically
unsound analyses regardless of their sequence
scores. It is worth noting that our metrics place
the model’s bottleneck at the supertagging rather
than the permutation component. Term accuracy
closely follows along (and actually surpasses, in
the untyped case) frame accuracy. This is further
evidenced when providing the ground truth types
as input to the parser, in which case term accu-
racy reaches as high as 85.4%, indicative of the
high expressive power of Sinkhorn on top of the
the bi-modal encoder’s contextualization. On the
negative side, the strong reliance on correct type
assignments means that a single mislabeled word
can heavily skew the parse outcome, but also hints
at increasing returns from improvements in the de-
coding architecture.

5 Related Work

Our work bears semblances to other neural
methodologies related to syntactic/semantic pars-
ing. Sequence-to-sequence models have been suc-
cessfully employed in the past to decode directly
into flattened representations of parse trees (Wise-
man and Rush, 2016; Buys and Blunsom, 2017;
Li et al., 2018). In dependency parsing literature,
head selection involves building word representa-
tions that act as classifying functions over other
words (Zhang et al., 2017), similar to our dot-
product weighting between atoms.

Akin to graph-based parsers (Ji et al., 2019;
Zhang et al., 2019), our model generates parse
structures in the form of graphs. In our case, how-

34

ever, graph nodes correspond to syntactic primi-
tives (atomic types & dependencies) rather than
words, while the discovery of the graph structure
is subject to hard constraints imposed by the de-
coder’s output.

Transcription to formal expressions (logical
forms, λ-terms, database queries and executable
program instructions) has also been a prominent
theme in NLP literature, using statistical meth-
ods (Zettlemoyer and Collins, 2012) or structurally-
constrained decoders (Dong and Lapata, 2016;
Xiao et al., 2016; Liu et al., 2018; Cheng et al.,
2019). Unlike prior approaches, the decoding we
employ here is unhindered by explicit structure;
instead, parsing is handled in parallel across the
entire sequence by the Sinkhorn operator, which bi-
ases the output towards structural correctness while
requiring neither backtracking nor iterative process-
ing. More importantly, the λ-terms we generate are
not in themselves the product of a neural decoding
process, but rather a corollary of the isomorphic re-
lation between ILL(proofs and linear λ-calculus
programs.

In machine learning literature, Sinkhorn-based
networks have been gaining popularity as a means
of learning latent permutations of visual or syn-
thetic data (Mena et al., 2018) or imposing permu-
tation invariance for set-theoretic learning (Grover
et al., 2019), with so far limited adoption in the
linguistic setting (Tay et al., 2020; Swanson et al.,
2020). In contrast to prior applications of Sinkhorn
as a final classification layer, we use it over chain
element representations that have been mutually
contextualized, rather than set elements vector-
ized in isolation. Our benchmarks, combined with
the assignment-preserving property of the operator,
hint towards potential benefits from adopting it in
a similar fashion across other parsing tasks.

6 Conclusion

We have introduced neural proof nets, a data-driven
perspective on the proof nets of ILL(, and suc-
cessfully employed them on the demanding task of
transcribing raw text to proofs and computational
terms of the linear λ-calculus. The terms construed
constitute type-safe abstract program skeletons that
are free to interpret within arbitrary domains, ful-
filling the role of a practical intermediary between
text and meaning. Used as-is, they can find di-
rect application in logic-driven models of natural
language inference (Abzianidze, 2016).

Our architecture marks a departure from other
parsing approaches, owing to the novel use of the
Sinkhorn operator, which renders it both fully paral-
lel and backtrack-free, but also logically grounded.
It is general enough to apply to a variety of gram-
mar formalisms inheriting from linear logic; if aug-
mented with Gumbel sampling (Mena et al., 2018),
it can further a provide a probabilistic means to
account for derivational ambiguity. Viewed as a
means of exposing deep tecto-grammatic structure,
it paves the way for graph-theoretic approaches at
syntax-aware sentential meaning representations.

Acknowledgements

We would like to thank the anonymous review-
ers for their detailed feedback, which helped im-
prove the presentation of the paper. Konstantinos
and Michael are supported by the Dutch Research
Council (NWO) under the scope of the project
“A composition calculus for vector-based semantic
modelling with a localization for Dutch” (360-89-
070).

References
Lasha Abzianidze. 2016. Natural solution to FraCaS

entailment problems. In Proceedings of the Fifth
Joint Conference on Lexical and Computational Se-
mantics, pages 64–74, Berlin, Germany. Association
for Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450v1.

Srinivas Bangalore and Aravind K Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational linguistics, 25(2):237–265.

Aditya Bhargava and Gerald Penn. 2020. Supertag-
ging with CCG primitives. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 194–204, Online. Association for Computa-
tional Linguistics.

Gosse Bouma and Gertjan van Noord. 2017. Increas-
ing return on annotation investment: The automatic
construction of a Universal Dependency treebank
for Dutch. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 19–26, Gothenburg, Sweden. Association for
Computational Linguistics.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide-coverage computational anal-
ysis of dutch. In Computational linguistics in the
Netherlands 2000, pages 45–59. Brill Rodopi.

https://doi.org/10.18653/v1/S16-2007
https://doi.org/10.18653/v1/S16-2007
https://www.aclweb.org/anthology/2020.repl4nlp-1.23
https://www.aclweb.org/anthology/2020.repl4nlp-1.23
https://www.aclweb.org/anthology/W17-0403
https://www.aclweb.org/anthology/W17-0403
https://www.aclweb.org/anthology/W17-0403
https://www.aclweb.org/anthology/W17-0403

35

Nicolaas Govert de Bruijn. 1979. Wiskundigen, let op
uw Nederlands. Euclides, 55(juni/juli):429–435.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215–1226.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2019. Learning an executable neu-
ral semantic parser. Computational Linguistics,
45(1):59–94.

Vincent Danos and Laurent Regnier. 1989. The struc-
ture of multiplicatives. Archive for Mathematical
Logic, 28:181–203.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43.

Jean-Yves Girard. 1987. Linear logic. Theoretical
computer science, 50(1):1–101.

Jean-Yves Girard, Yves Lafont, and P. Taylor. 1988.
Proofs and Types. Cambridge Tracts in Theoretical
Computer Science 7. Cambridge University Press.

Philippe de Groote. 2001. Towards abstract categorial
grammars. In Proceedings of the 39th Annual Meet-
ing of the Association for Computational Linguistics,
pages 252–259.

Philippe de Groote and Christian Retoré. 1996. On the
semantic readings of proof-nets. In Proceedings For-
mal grammar, pages 57–70, Prague, Czech Repub-
lic. FoLLI.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano
Ermon. 2019. Stochastic optimization of sorting net-
works via continuous relaxations. In International
Conference on Learning Representations.

Stefano Guerrini. 1999. Correctness of multiplicative
proof nets is linear. In Fourteenth Annual IEEE Sym-
posium on Logic in Computer Science, pages 454–
263. IEEE Computer Science Society.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based
dependency parsing with graph neural networks. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2475–
2485.

Max I. Kanovich. 1994. The complexity of horn frag-
ments of linear logic. Annals of Pure and Applied
Logic, 69(2-3):195–241.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive type-logical su-
pertagging with self-attention networks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 113–123.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020. Æthel: Automatically ex-
tracted typelogical derivations for dutch. In Pro-
ceedings of The 12th Language Resources and Eval-
uation Conference, pages 5259–5268, Marseille,
France. European Language Resources Association.

Ysuke Kubota and Robert Levine. 2020. Type-Logical
Syntax. MIT Press.

François Lamarche. 2008. Proof nets for intuitionistic
linear logic: Essential nets. Research report, INRIA
Nancy.

Joachim Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly,
65(3):154–170.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203–3214.

Patrick Lincoln. 1995. Deciding provability of linear
logic formulas. In Jean-Yves Girard, Yves Lafont,
and Laurent Regnier, editors, Advances in Linear
Logic, pages 109–122. Cambridge University Press.

Jiangming Liu, Shay B Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 429–439.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Gonzalo Mena, David Belanger, Scott Linderman, and
Jasper Snoek. 2018. Learning latent permutations
with Gumbel-Sinkhorn networks. In International
Conference on Learning Representations.

https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://hal.archives-ouvertes.fr/hal-00823554
https://hal.archives-ouvertes.fr/hal-00823554
https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
https://www.aclweb.org/anthology/2020.lrec-1.647
https://www.aclweb.org/anthology/2020.lrec-1.647
https://hal.inria.fr/inria-00347336/file/prfnet1.pdf
https://hal.inria.fr/inria-00347336/file/prfnet1.pdf
https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=Byt3oJ-0W

36

Michael Moortgat. 1996. Multimodal linguistic infer-
ence. Journal of Logic, Language and Information,
5(3/4):349–385.

Glyn Morrill. 2014. A categorial type logic. In Cate-
gories and Types in Logic, Language, and Physics -
Essays Dedicated to Jim Lambek on the Occasion of
His 90th Birthday, volume 8222 of Lecture Notes in
Computer Science, pages 331–352. Springer.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
Advances in Neural Information Processing Systems,
pages 4696–4705.

Andrzej S. Murawski and C.-H. Luke Ong. 2000. Dom-
inator trees and fast verification of proof nets. In
Logic in Computer Science, pages 181–191.

Reinhard Muskens. 2001. Lambda grammars and the
syntax-semantics interface. In Proceedings of the
13th Amsterdam Colloquium, pages 150–155.

Reinhard Muskens and Mehrnoosh Sadrzadeh. 2018.
Static and dynamic vector semantics for lambda cal-
culus models of natural language. Journal of Lan-
guage Modelling, 6(2):319–351.

Gertjan van Noord, Gosse Bouma, Frank van Eynde,
Daniel de Kok, Jelmer van der Linde, Ineke Schuur-
man, Erik Tjong Kim Sang, and Vincent Vandeghin-
ste. 2013. Large scale syntactic annotation of writ-
ten dutch: Lassy. In Essential speech and language
technology for Dutch, pages 147–164. Springer,
Berlin, Heidelberg.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163.

Dirk Roorda. 1991. Resource Logics: Proof-
theoretical Investigations. Ph.D. thesis, Universiteit
van Amsterdam.

Richard Sinkhorn. 1964. A relationship between
arbitrary positive matrices and doubly stochastic
matrices. The annals of mathematical statistics,
35(2):876–879.

Morten Heine Sørensen and Pawel Urzyczyn. 2006.
Lectures on the Curry-Howard isomorphism. Else-
vier.

Kyle Swanson, Lili Yu, and Tao Lei. 2020. Ra-
tionalizing text matching: Learning sparse align-
ments via optimal transport. arXiv preprint
arXiv:2005.13111.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-
Cheng Juan. 2020. Sparse sinkhorn attention. arXiv
preprint arXiv:2002.11296v1.

Anne Sjerp Troelstra and Helmut Schwichtenberg.
2000. Basic Proof Theory, 2 edition, volume 43 of
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with lstms. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
model. arXiv preprint arXiv:1912.09582v1.

Philip Wadler. 1993. A taste of linear logic. In Interna-
tional Symposium on Mathematical Foundations of
Computer Science, pages 185–210. Springer.

Benyou Wang, Donghao Zhao, Christina Lioma, Qi-
uchi Li, Peng Zhang, and Jakob Grue Simonsen.
2020. Encoding word order in complex embeddings.
In International Conference on Learning Represen-
tations.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search
optimization. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1296–1306.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1341–
1350.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
250–255.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
arXiv preprint arXiv:1207.1420v1.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

https://openreview.net/forum?id=Hke-WTVtwr
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009

37

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665–676.

38

A Appendix

A.1 Model

Table 2 presents model hyper-parameters, as se-
lected by greedy grid search. An illustration of the
model can be seen in Figure 6.

Parameter Value

BERTje (BERT-Base)

Layers 12
Self-attention heads 12
Feed-forward dimensionality 3 072
Feed-forward activation GELU
Input/output dimensionality 768
Vocabulary size 30 000

Decoder

Layers 3
Self-attention heads 8
Encoder-attention heads 8
Feed-forward dimensionality 512
Input/output dimensionality 256
Vocabulary size 58

Bi-modal Encoder

Layers 1
Self-attention heads 8
Encoder-attention heads 8
Feed-forward dimensionality 512
Feed-forward activation GELU
Input/output dimensionality 256

Pre-Sinkhorn Transformations

Input/Feed-forward dimensionality 256
Feed-forward activation GELU
Output dimensionality 32
Output activation LayerNorm

Table 2: Model hyper-parameters

A.2 Optimization

We train with an adaptive learning rate follow-
ing Vaswani et al. (2017), such that the learning
rate at optimization step i is given as:

768−0.5 ·min
(
i−0.5, i · warmup_steps−1.5

)
For BERT parameters, learning rate is scaled by
0.1. We freeze the oversized word embedding layer
to reduce training costs and avoid overfitting. Opti-
mization hyper-parameters are presented in Table 3.

We provide strict teacher guidance when learn-
ing axiom links, whereby the network is provided
with the original proof frame symbol sequence in-
stead of the predicted one. To speed up computa-
tion, positive and negative indexes are arranged per-
length rather than type for each batch; this allows
us to process symbol transformations, dot-product
attentions and Sinkhorn activations in parallel for
many types across many sentences. During train-
ing, we set the number of Sinkhorn iterations to
5; lower values are more difficult to reach conver-
gence with, hurting performance, whereas higher
values can easily lead to vanishing gradients, im-
peding learning (Grover et al., 2019).

Parameter Value

Batch size 32
Warmup epochs 5
Weight decay 10−5

Weight decay (BERT) 0
LR scale (BERT) 0.1
LR scale (BERT embedding) 0
Dropout rate 0.1
Label smoothing 0.1

Table 3: Optimizer hyper-parameters

A.3 Data
Figure 7 presents cumulative distributions of
dataset statistics. The kept portion of the dataset
corresponds to roughly 97% of the original, enu-
merating 55 683 training, 6 971 validation and
6 957 test samples.

A.4 Performance
Table 4 summarizes the model’s performance in
terms of untyped term accuracy over the test set
in the greedy setting, binned according to input
sentence lengths. Table 5 presents input-output
pairs from sample sentences not included in the
dataset.

Sentence Length Total Correct (%)

1 – 5 808 743 92
5 – 10 1 491 1 104 74
10 – 15 1 576 919 58
15 – 20 1 206 501 42
20 – 592 154 26

Table 4: Test set model performance broken down by
sentence length.

39

Input Sentence

Proof Frame

Axiom Links

BERT

×3

Mask MHA

MHA

FFN

×1

Symbol
Embedder

Symbol
Classifier

Atom & Polarity
Indexing

Positive
FFN

Negative
FFN

Dot-Product &
Sinkhorn

MHA

MHA

FFN

Figure 6: Schematic diagram of the full network architecture. The supertagger (orange, left) iteratively generates
a proof frame by attending over the currently available part of it plus the full input sentence. The axiom linker
(green, right) contextualizes the complete proof frame by attending over it as well as the sentence. Representations
of atomic formulas are gathered and transformed according to their polarity, and their Sinkhorn-activated dot-
product attention is computed. Discretization of the result yields a permutation matrix denoting axiom links for
each unique atomic type in the proof frame. The final output is a proof structure, i.e. the pair of a proof frame and
its axiom links.

Figure 7: log2-transformed cumulative distributions of symbol and word lengths, counts of atomic formulas, ma-
trices and matrix sizes from the portion of the dataset trained on.

40

D
e

vo
or

af
ga

an
de

st
uk

je
s

ov
er

W
is

ku
nd

ig
e

O
m

ga
ng

st
aa

lh
ad

de
n

he
tv

oo
ra

lo
ve

r
he

ts
am

en
sp

el
tu

ss
en

w
oo

rd
en

en
fo

rm
ul

es
.

“T
he

pr
ec

ed
in

g
ar

tic
le

s
on

th
e

M
at

he
m

at
ic

al
V

er
na

cu
la

rm
ai

nl
y

fo
cu

se
d

on
th

e
in

te
rp

la
y

be
tw

ee
n

w
or

ds
an

d
fo

rm
ul

es
.”

((
h
a
d
d
e
n
::

P
P
(

P
R

O
N
(

S m
ai

n
((
v
o
o
r
a
l
::

P
P
(

P
P)

m
od

(o
v
e
r
::

N
P
(

P
P
((
t
u
s
s
e
n
::

W
W
(

N
P
(

N
P
((
e
n
::

N
P
(

N
P
(

N
P
(w
o
p
r
d
e
n
::

N
P)

cn
j)
(f
o
r
m
u
l
e
s
::

N
P)

cn
j)
o
b
j
) m

od
((
h
e
t
::

N
(

N
P)

de
t
s
a
m
e
n
s
p
e
l
::

N
))

ob
j)
)pc

(h
e
t
::

P
R

O
N
)ob

j)
((
o
v
e
r
::

N
P
(

N
P
(

N
P
(W
i
s
k
u
n
d
i
g
e

_O
m
g
a
n
g
s
t
a
a
l
::

N
P)

ob
j)

m
od

((
v
o
o
r
a
f
g
a
a
n
d
e
::

N
P
(

N
P)

m
od

((
D
e
::

N
(

N
P)

de
t
s
t
u
k
j
e
s
::

N
))
)su

In
he

tw
is

ku
nd

ig
N

ed
er

la
nd

s
w

or
de

n
va

ak
de

ze
lfd

e
fo

ut
en

ge
m

aa
kt

al
s

in
he

tg
ew

on
e

N
ed

er
la

nd
s.

“T
he

sa
m

e
m

is
ta

ke
s

ar
e

of
te

n
m

ad
e

in
m

at
he

m
at

ic
al

D
ut

ch
as

in
co

m
m

on
D

ut
ch

.”
(w
o
r
d
e
n
::

P
PA

R
T
(

N
P
(

S m
ai

n
((
v
a
a
k
::

P
PA

R
T
(

P
PA

R
T
) m

od
((
I
n
::

N
P
(

P
PA

R
T
(

P
PA

R
T
((
w
i
s
k
u
n
d
i
g
::

N
P
(

N
P)

m
od

((
h
e
t
::

N
(

N
P)

de
t
N
e
d
e
r
l
a
n
d
s
::

N
))

ob
j)

m
od
g
e
m
a
a
k
t
::

P
PA

R
T
))

vc
)
((
d
e
z
e
l
f
d
e
::

C
P
(

N
(

N
P
(a
l
s
::

P
P
(

C
P
(i
n
::

N
P
(

P
P
((
g
e
w
o
n
e
::

N
P
(

N
P)

m
od

((
h
e
t
::

N
(

N
P)

de
t
N
e
d
e
r
l
a
n
d
s
::

N
))

ob
j)

cm
p_

bo
dy
)ob

co
m

p)
de

t
(f
o
u
t
e
n
::

N
)su

In
he

tw
is

ku
nd

ig
e

ta
al

ge
br

ui
k

is
er

m
ee

st
al

ee
n

sc
he

id
in

g
aa

n
te

br
en

ge
n

tu
ss

en
de

ec
ht

e
w

is
ku

nd
ig

e
ta

al
en

de
ta

al
w

aa
rm

ee
w

e
ov

er
di

e
w

is
ku

nd
ig

e
ta

al
of

ov
er

he
tw

is
ku

nd
ig

e
be

dr
ijf

sp
re

ke
n.

“I
n

m
at

he
m

at
ic

al
di

sc
ou

rs
e,

th
er

e
is

us
ua

lly
a

di
st

in
ct

io
n

to
be

m
ad

e
be

tw
ee

n
th

e
re

al
m

at
he

m
at

ic
al

la
ng

ua
ge

an
d

th
e

la
ng

ua
ge

w
ith

w
hi

ch
w

e
sp

ea
k

ab
ou

tt
he

m
at

he
m

at
ic

al
la

ng
ua

ge
or

ab
ou

tt
he

m
at

he
m

at
ic

al
pr

ac
tic

e.
“

– P
ro

be
er

zi
nn

en
st

ee
ds

zo
te

st
el

le
n

da
tz

e
al

le
en

op
de

do
or

de
sc

hr
ijv

er
be

do
el

de
w

ijz
e

zi
jn

te
ru

g
te

le
ze

n.
“T

ry
to

al
w

ay
s

fo
rm

ul
at

e
se

nt
en

ce
s

in
su

ch
a

w
ay

th
at

th
ey

ca
n

on
ly

be
re

ad
in

th
e

m
an

ne
ri

nt
en

de
d

by
th

e
au

th
or

.”
– In

he
tN

ed
er

la
nd

s
ku

nn
en

ve
le

zi
nn

en
w

at
vo

lg
or

de
be

tr
ef

to
m

ge
go

oi
d

w
or

de
n.

“I
n

D
ut

ch
,m

an
y

se
nt

en
ce

s
ca

n
be

re
st

ru
ct

ur
ed

as
fa

ra
s

or
de

ri
s

co
nc

er
ne

d.
”

(k
u
n
n
e
n
::

IN
F
(

N
P
(

S m
ai

n
(w
o
r
d
e
n
::

P
PA

R
T
(

IN
F
((
w
a
t
::
(P

R
O

N
(

S s
ub
)
(

P
PA

R
T
(

P
PA

R
T
λ
x

su 0
.(
(b
e
t
r
e
f
t
::

N
(

P
R

O
N
(

S s
ub

(v
o
l
g
o
r
d
e
::

N
)ob

j)
x
0
)re

l_
bo

dy
) m

od
((
I
n
::

N
P
(

P
PA

R
T
(

P
PA

R
T
((
h
e
t
::

N
(

N
P)

de
t
N
e
d
e
r
l
a
n
d
s
::

N
)ob

j)
m

od
o
m
g
e
g
o
o
i
d
::

P
PA

R
T
))

vc
)vc

)
((
v
e
l
e
::

N
P
(

N
P)

m
od
z
i
n
n
e
n
::

N
P)

su

In
he

tN
ed

er
la

nd
s

ku
nn

en
va

ak
tw

ee
zi

nn
en

to
tè

èn
ko

rt
er

e
w

or
de

n
sa

m
en

ge
tr

ok
ke

n.
“I

n
D

ut
ch

,t
w

o
se

nt
en

ce
s

ca
n

of
te

n
be

m
er

ge
d

in
to

a
sh

or
te

ro
ne

.”
(k
u
n
n
e
n
::

IN
F
(

N
P
(

S m
ai

n
(w
o
r
d
e
n
::

P
PA

R
T
(

IN
F
((
v
a
a
k
::

P
PA

R
T
(

P
PA

R
T
) m

od
((
I
n
::

N
P
(

P
PA

R
T
(

P
PA

R
T
((
h
e
t
::

N
(

N
P)

de
t
N
e
d
e
r
l
a
n
d
s
::

N
)ob

j)
m

od
(s
a
m
e
n
g
e
t
r
o
k
k
e
n
::

P
P
(

P
PA

R
T
(t
o
t
::

N
P
(

P
P
((
è
è
n
::

A
D

J(
N

P)
de

t
k
o
r
t
e
r
e
::

A
D

J)
ob

j)
ld
))

vc
)vc

)
((
t
w
e
e
::

N
(

N
P)

de
t
z
i
n
n
e
n
::

N
)su

Po
pu

la
ir

e
ta

al
is

va
ak

m
in

de
r

be
ve

ili
gd

te
ge

n
du

bb
el

zi
nn

ig
he

id
da

n
ne

tte
ta

al
,e

n
he

tm
en

gs
el

va
n

be
id

e
ta

le
n

is
nò

g
ge

va
ar

lij
ke

r.
“I

nf
or

m
al

la
ng

ua
ge

is
of

te
n

le
ss

pr
ot

ec
te

d
ag

ai
ns

ta
m

bi
gu

ity
th

an
fo

rm
al

la
ng

ua
ge

,a
nd

th
e

m
ix

tu
re

of
bo

th
la

ng
ua

ge
s

is
ev

en
m

or
e

da
ng

er
ou

s.”
(e
n
::

S m
ai

n
(

S m
ai

n
(

((
i
s
::

P
PA

R
T
(

N
P
(

S m
ai

n
((
m
i
n
d
e
r
::

C
P
(

P
PA

R
T
(

P
PA

R
T
(d
a
n
::

N
P
(

C
P
((
n
e
t
t
e
::

N
P
(

N
P)

m
od
t
a
a
l
::

N
P)

cm
p_

bo
dy
)ob

co
m

p)
m

od
((
v
a
a
k
::

P
PA

R
T
(

P
PA

R
T
) m

od
(b
e
v
e
i
l
i
g
d
::

P
P
(

P
PA

R
T
((
t
e
g
e
n
::

N
P
(

P
P
(d
u
b
b
e
l
z
i
n
n
i
g
h
e
a
d
:

N
P)

ob
j)

pc
))
)vc

((
P
o
p
u
l
a
i
r
e
::

N
P
(

N
P)

m
od
t
a
a
l
::

N
P)

su
)cn

j)
((
i
s
::

A
P
(

N
P
(

S m
ai

n
((
n
ò
g
::

A
P
(

A
P)

m
od
g
e
v
a
a
r
l
i
j
k
e
r
::

A
P)

pr
ed

c
((
v
a
n
::

N
P
(

N
P
(

N
P
((
b
e
i
d
e
::

N
(

N
P)

de
t
t
a
l
e
n
::

N
)ob

j)
m

od
(h
e
t
::

N
(

N
P)

de
t
m
e
n
g
s
e
l
::

N
))

su
)cn

j

Ta
bl

e
5:

G
re

ed
y

pa
rs

es
of

th
e

op
en

in
g

se
nt

en
ce

s
of

th
e

fir
st

se
ve

n
pa

ra
gr

ap
hs

of
de

B
ru

ijn
(1

97
9)

,i
n

th
e

fo
rm

of
ty

pe
-a

nd
de

pe
nd

en
cy

-a
nn

ot
at

ed
λ

ex
pr

es
si

on
s.

Tw
o

of
th

em
(3

&
4)

yi
el

d
no

va
lid

pr
oo

fn
et

;t
he

re
m

ai
ni

ng
fiv

e
ar

e
bo

th
va

lid
an

d
co

rr
ec

t.

