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Abstract

The language acquisition literature shows that
children do not build their lexicon by seg-
menting the spoken input into phonemes and
then building up words from them, but rather
adopt a top-down approach and start by seg-
menting word-like units and then break them
down into smaller units. This suggests that the
ideal way of learning a language is by starting
from full semantic units. In this paper, we in-
vestigate if this is also the case for a neural
model of Visually Grounded Speech trained
on a speech-image retrieval task. We evalu-
ated how well such a network is able to learn
a reliable speech-to-image mapping when pro-
vided with phone, syllable, or word boundary
information. We present a simple way to in-
troduce such information into an RNN-based
model and investigate which type of boundary
is the most efficient. We also explore at which
level of the network’s architecture such infor-
mation should be introduced so as to maximise
its performances. Finally, we show that using
multiple boundary types at once in a hierarchi-
cal structure, by which low-level segments are
used to recompose high-level segments, is ben-
eficial and yields better results than using low-
level or high-level segments in isolation.

1 Introduction and Prior Work

Visually Grounded Speech (VGS) models whether
CNN-based (Harwath and Glass, 2015; Harwath
et al., 2016; Kamper et al., 2017) or RNN-based
(Chrupata et al., 2017; Merkx et al., 2019) became
recently popular as they enable to model complex
interaction between two modalities, namely speech
and vision, and can thus be used to model child
language acquisition, and more specifically lexical
acquisition. Indeed, these models are trained to
solve a speech-image retrieval task. That is, given
a spoken input description, they are trained to re-
trieve the image that matches the description the
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best. This task requires the model to identify lexi-
cal units that might be relevant in the spoken input,
detect which objects are present in the image, and fi-
nally see if those objects match the detected spoken
lexical units. Their task is thus very close to that
of a child learning its mother tongue, who is sur-
rounded by a visually perceptible context and tries
to match parts of the acoustic input to surrounding
visible situations. Research in language acquisition
have put forward that children do not build their lex-
icon by segmenting the spoken input into phonemes
and then building up words, but rather adopt a top-
down approach (Bortfeld et al., 2005) and start by
identifying and memorising whole words (Jusczyk
and Aslin, 1995) or chunks of words (Bannard and
Matthews, 2008) and then segment the spoken in-
put into smaller units, such as phonemes. This sug-
gests that the most efficient way of segmenting the
spoken input to map a visual context to its descrip-
tion is at word level. From a more technological
point of view, speech-based models lag behind their
textual counterparts. For example, speech-image
retrieval performs worse than text-image retrieval,
despite being trained on the same data, the only
changing factor being the modality where text or
speech is used as a query. This begs the question:
what makes text inherently better than speech for
such applications? Is it because text is made up
of already-segmented (discrete) units which lack
internal variation, or because these discrete units
(usually tokens) stand for full semantic units, or a
combination of both?

Since the pioneering computational modelling
work of lexical acquisition by Roy and Pentland
(2002), neural network enabled an even tighter in-
teraction between the visual and the audio modal-
ities. Recent works suggest that networks trained
on a speech-image retrieval task perform an im-
plicit segmentation of their input. Whether CNN-
based approaches or RNN-based approaches are
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employed, all seem to segment individual words
from the inputted spoken utterance (Harwath et al.,
2016; Chrupata et al., 2017; Havard et al., 2019;
Havard et al., 2019; Merkx et al., 2019). This result
stands also for languages other than English, such
as Hindi or Japanese (Harwath et al., 2018; Havard
et al., 2019; Azuh et al., 2019; Ohishi et al., 2020).
Chrupata et al. (2017) and Merkx et al. (2019),
however, observed that not all layers encode word-
like units, suggesting that some layers specialise
in lexical processing whereas some other do not
encode such information.

Contributions Our research question can be
framed as follows: what is the segmentation that
maximises the performance of an audio-visual net-
work if speech were to be segmented? To answer
this question we investigate how it is possible to
give speech boundary information to a neural net-
work and explore which type of boundary (phone,
syllable, or word) is the most efficient. We also ex-
plore where such information should be provided,
that is, at which layer of the architecture is the
addition of this information the most beneficial?

2 Model & Data

Data We use two different data sets in our experi-
ments: MS COCO (Lin et al., 2014) and Flickr8k
(Hodosh et al., 2013). Both corpora were initially
conceived for computer vision purposes and both
feature a set of images along with five written de-
scriptions of the images. The captions were not
computer generated but written by humans. We
use the audio extensions of both data sets: for
Flickr8k, we use the captions provided by Har-
wath and Glass (2015), and for COCO we use
Synthetic COCO data set introduced by (Chrupata
et al., 2017; Chrupata et al., 2017). The captions
of Harwath and Glass (2015) were gathered using
Amazon Mechanical Turk and were thus uttered
by humans. This data set is particularly challeng-
ing as it features multiple speakers and the quality
of the recording is uneven from one caption to an-
other. The spoken captions of Chrupata et al. (2017)
feature synthetic speech generated with Google’s
Text-to-Speech system. For both corpora, we ex-
tracted speech-to-text alignments through the Maus
forced aligner (Kisler et al., 2017) online platform,
resulting in alignments at word and phone levels.

Architecture The models we train in our exper-
iments all have the same architecture and are based

on that of Chrupata et al. (2017).! As all mod-
els of VGS, be they CNN-based or RNN-based,
this architecture has two main components: an im-
age encoder and a speech encoder. Such models
are trained to solve a speech-image retrieval task,
that is, given a query in the form of a spoken de-
scription, they should retrieve the closest matching
image fitting the description.

The image encoder is a simple linear layer that
reduces pre-computed VGG image vectors to the
desired dimension. The speech encoder, which re-
ceives MFCC vectors as input, consists of a 1D
convolutional layer, followed by five stacked recur-
rent layers with residual connections, followed by
an attention mechanism. We use uni-directional
recurrent layers and not bi-directional recurrent
layers even though it has been shown they lead to
better results (Merkx et al., 2019). Indeed, we aim
at having a cognitively plausible model: humans
process speech in a left-to-right fashion, as speech
is being gradually uttered, and not from both ends
simultaneously. We use the same loss function as
initially used by Chrupata et al. (2017):

L(u,i,a) = Z <

U,

Z max|[0, o« + d(u,i) — d(u, 1))

u

4 Z max|[0, « + d(u, i) — d(u, Zl)])
’ (D

This contrastive loss function encourages the net-
work to minimise the cosine distance d by a margin
a between an image ¢ and its corresponding ut-
terance u, while maximising the distance between
mismatching image/utterance pairs '/u and i/u’. In
our experiments we set a = 0.2.

Hyperparameters For both COCO and
Flickr8k we use 1D convolutions with 64 filters of
length 6 and a stride of 1 to preserve the original
time resolution (and hence, boundary position).
We use 512 units per recurrent layer for COCO
and 1024 for Flickr8k. All models were trained
using Adam optimiser and an initial learning
rate of 0.0002. For our experiments we use the
pre-computed MFCC vectors and pre-computed
VGG vectors provided by Chrupata et al. (2017).
We also use the same training, validation and
testing splits.>

"The code we use is based on https://github.com/
gchrupala/vgs

212 MFCC coef. plus energy for COCO; 12 MFCC coef.

plus energy as well as deltas and delta deltas for Flickr8k.
3Training/Validation/Test split contain
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Figure 1: Graphical representation of the different GRUs used in our experiments. Figure 1a shows a Vanilla GRU.
Figure 1b shows GRUpack. in the ALL condition where all the vectors produced at each time step are passed on
to the next layer. 1c shows GRUpack. in the KEEP condition where only the last vector of a segment is passed on
to the next layer, thus resulting in a output sequence shorter than the input sequence. The red crosses inscribed in
a square (X)) signal that the output vector computed at a given timestep is not passed on to the next timestep and
that the initial state hq is passed on instead. The red crosses inscribed in a circle () signal that the output vector
computed at a given timestep is not passed on to the next layer. Dotted line group vectors belonging to a same
segment (either phone, syllable-connected, syllable-word, or word). Note that hg is only passed on to the next state
at the end of a segment, thus effectively materialising a boundary by manually resetting the history. Also note that
the x1, x2, ..., ¢4 figured in this representation could either be the original input sequence (in our case, acoustic
vectors) or could also be the output of the previous recurrent layer.

3 Integrating Segmentation Information does not take into account resyllabification (1-a),

whereas “‘syllables-connected” will refer to sylla-
3.1 Boundary Types bles that result of a segmentation that takes into ac-
As previously stated, we are interested in supply-  count resyllabification (1-b). It should be noted that
ing our network with linguistic information such  in the syllables-connected condition, most word
as segment boundaries. We define a segment as  boundaries are lost.> In the syllables-word condi-
either being a phoneme, a syllable, or a word. We  tion, however, all word boundaries are preserved
consider two different types of syllables. Indeed,  and the segmentation inside a word may result
when we speak, words are not uttered one after  in a morphemic segmentation (as for example in
the other in a disconnected fashion, but are rather  “runway” /1an.wey/ or “air.plane” /e1.plein/). Nev-
blended together through a process called “resyllab-  ertheless, this is not always the case, especially
ification”. In English, this phenomenon is visible  for longer words that are of non-germanic ori-
when a word ending with a consonant is followed  gin (such as “elephant” /e.le.fant/ or “computer”
by a word starting with a vowel. In this case, the fi-  /kom.pju.to/). We expect models trained in the
nal consonant of the first word tends to be detached  syllables-connected condition to perform worse
from it and attached to the next word, thus crossing  than those trained in the syllables-word condi-

the word boundary. This phenomenon is illustrated  tion as resyllabification hinders word recognition
in Example (1) where phonemes in red indicate a  (Vroomen and Gelder, 1999).

resyllabification phenomenon. Segment boundaries were derived from the

forced alignment metadata so as to indicate which
MFCC vector constitutes a boundary or not.’
Therefore, for each caption we have a sequence
X of length T of d-dimensional acoustic vec-

tors X = [1:‘11,:5%, ...,xf}] and a corresponding

(D) This is an article.
Transcription® /O1s#iz#on#artikol/

a. No resyllabification  /01s.1z.on.a1.t1.kal/
b. With resyllabification [01.s1.zo.nar.tr.kol/

For the rest of this article “syllables-word” will

refer to syllables that result of a segmentation that SWord boundaries are not lost in the following cases: V#V
and C#C when CC is not an allowed complex onset. C and V

113,287/5,000/5,000 images (COCO) and 6,000/1,000/1,000 respectively refer to “consonant” and “vowel”.

images (Flickr8k). ®As the force aligner used does not provide alignment
*We use “#” to signal word boundaries and “.” to signal at the syllable level, we wrote a custom script to recreate
syllable boundaries. syllables from the phonemic transcription.
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sequence of scalars B representing boundaries
B = [b1,bo,...,br], by € {0,1}, where by = 1
if x4 is a segment boundary, 0 otherwise.

3.2 Integrating Boundary Information

In order to integrate boundary information into
the model, we take advantage of how recurrent
neural networks compute their output. They can be
formalised as follows:

hy = f (htflal‘t;e) (2)

where the hidden state at timestep ¢ noted h; is a
function f of the previous hidden state h;_; and
the current input at x;, with 6 being learnable pa-
rameters of the function f. A special case arises
at the very first time step t = 1 as h;_; does not
exist. In this case, the initial state h;_1 noted hg
is set to be a vector of 0. The output of such a
network at timestep 7" is thus dependent on all the
previous timesteps. An illustration of such a net-
work is depicted in Figure 1a. In this work, we use
GRUs (Cho et al., 2014), but our methodology is
applicable to any other type of recurrent cell such
as vanilla RNNs or LSTMs.

Our approach to integrate boundary information
into the network can be formalised as follows:

h :0),ifb_1 =1
hs = f( 05 Tt; )71 t—1 . 3)
f (he—1,71;0) , otherwise

In our approach, h; is only dependent on the pre-
vious timestep h;_1 if the previous timestep was
not an acoustic vector corresponding to segment
boundary (b;—; # 0). If the previous timestep
corresponds to a segment boundary (b;—1 = 1),
we reset the hidden state so that it is equal to hyg.
Hence, vectors in the same segment are temporally
dependent, but vectors belonging to two different
segments are not. The GRUs that use this com-
puting scheme will from now on be referred to
as GRUpack., as vectors belonging to the same
segment are “packed” together.

We derived two different conditions from this
initial setting: ALL and KEEP. In the ALL condi-
tion (see Figure 1b), all the vectors belonging to a
segment are forwarded to the next layer (which can
either be a recurrent layer, or an attention mecha-
nism depending on the position of the GRUpack.
layer.) In the KEEP condition, only the last vec-
tor of each segment is forwarded to the next layer
(see Figure 1c). The length of the output and in-
put sequence stays the same in the ALL condition.

However, it should be noted that in the KEEP con-
dition, the length of the output sequence is shorter
than the input sequence. Potentially, the length of
the sequences can be different for different items in-
side a batch as the captions have a different number
of segments (be they phones, syllables or words).
For this reason, and as the subsequent layers expect
a 3D rectangular matrix,” we add padding vectors
on the sequence dimension until all the elements
of the batch have the same sequence length. The
difference between ALL and KEEP is motivated by
the fact that we believe that keeping the last vector
of a segment could constrain the network to build
more consistent representations for different oc-
currences of the same segment, as the subsequent
layers will have less information to rely on. A sim-
ilar approach to ours was proposed by Chen et al.
(2019) in an Audio-Word2Vec experiment, where
instead of being given gold segment boundaries, a
classifier outputs a probability that a given frame
constitutes a segment boundary.

4 Experiments and Results

4.1 GRUpack. Position and Random
Boundaries

In order to understand where boundary information
should be introduced (that is, at which level of the
architecture), we train as many models as the num-
ber of recurrent layers, where each time one layer
of GRUs is replaced with one GRUpack. layer.
For example, “GRUppck —3” refers to a model
where the third layer of GRUs is a GRUppck. layer
and other layers (1¢,27¢ 4t" and 5" layer) are
vanilla GRU layers. This setting will allow to ex-
plore where introducing boundary information is
the most efficient.

To understand if introducing boundary informa-
tion helps the network in its task, we compare the
performance of the models using boundary infor-
mation with a baseline model which does not use
any (thus, all the recurrent layers of the baseline ar-
chitecture are Vanilla GRU layers). This model will
from now on be referred to as BASELINE. We also
introduce another condition, where, instead of train-
ing models with real segment boundaries (which
from now on will be referred to as TRUE), we train
models with random boundaries (which from now
on will be referred to as RANDOM). Indeed, it could
be that randomly slicing speech into sub-units leads
to better results, even though the resulting units do

"0Of shape batch size x sequence x embedding dimension.
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Dataset | R@1 | R@5 | R@10
COCO 90 | 27.0 | 395
Flickr8k | 4.3 134 | 214

Table 1: Mean recalls at 1, 5, and 10 (in %) on a speech-
image retrieval task COCO and Flickr8k in the BASE-
LINE condition. Chance scores are 0.0002/0.001/0.002
for COCO and 0.001/0.005/0.01 for Flickr8k.

not constitute linguistically meaningful units. Con-
sequently, training models with random boundaries
will enable us to verify this claim. Random bound-
aries were generated by simply shuffling the posi-
tion of the real boundaries (vector B introduced
in §3.1), resulting in as many randomly positioned
boundaries as there are real ones. Note that we do
still expect the models to have reasonable results
even when using random boundaries, as acoustic
vectors are kept untouched. Nonetheless, we ex-
pect that placing random boundaries will hinder
network’s learning process and thus yield results
significantly lower than when using true bound-
aries. We expect results to be significantly lower in
the RANDOM-KEEP condition as this condition is
equivalent to randomly subsampling the input, and
thus removing a lot of information.

4.2 Evaluation

Models are evaluated in term of Recall @k (R@Xk).
Given a spoken query, R@k evaluates the models
ability to rank the target paired image in the top k
images. In order to evaluate if the results observed
in our different experimental conditions (TRUE-
ALL, TRUE-KEEP, RANDOM-ALL, RANDOM-KEEP)
are different from one another and from the BASE-
LINE condition, we used a two-sided proportion
Z-Test. This test is used to check if there is a statis-
tical difference between two independent propor-
tions. As for each spoken query there is only one
target image, R@k becomes a binary value which
equals 1 if the target image is ranked in the top &
images and 0 otherwise. In our case, the proportion
that we test is the number of successes over the
number of trials (which corresponds to the number
of different caption/image pairs in the test set).

4.3 Results

Overall, our experimental settings led to the train-
ing of 81 different models per data set.® BASE-

8(Seg. type € {phone,syl.-connected,syl.-word,word }
x GRUpack.{1,2,3,4,5} x {TRUE,RANDOM } x {ALL,KEEP})
+ BASELINE
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LINE results are shown in Table 1, results for
the TRUE/RANDOM conditions obtained on the
Flickr8k are shown in Table 2 and results on
COCO in Table 5 (Appendix A). We obtain lower
results on Flickr8k than on COCO which shows
how difficult the task is on natural speech. The re-
sults obtained on synthetic speech are also very low
compared to their textual counterpart.” For space
reasons, and as the results on both Flickr8k and
COCO show the same trend, we will focus in the
following pages on analysing the results obtained
on the Flickr8k data set. The results obtained on
the COCO data set are reported in Appendix A.

TRUE/RANDOM and ALL/KEEP Boundaries
One of the questions our experiments aim at an-
swering is whether introducing boundary informa-
tion helps the network in solving its task or not.
To do so, we first compare the difference between
TRUE and RANDOM boundaries. We notice dif-
ferent patterns depending on the position of the
GRUpack. layer and also depending on the ALL
and KEEP conditions.

We observe that in the ALL condition the results
between TRUE and RANDOM boundaries are overall
not statistically different from one another, and are
not significantly better or worse from the baseline
results. There is only one case where such differ-
ences are statistically significant: for the 1! layer
when using word segments. However, in the KEEP
condition, we observe a strong difference between
TRUE and RANDOM boundaries across all bound-
ary types and across most of the layers. Overall,
in the KEEP condition, models trained with TRUE
boundaries have statistically different results from
models trained with RANDOM boundaries. Also,
in such settings, the results obtained are generally
statistically better than the baseline, while in the
RANDOM-KEEP condition the results are statisti-
cally worse than the baseline.

These results show that there is overall no differ-
ence between using TRUE or RANDOM boundaries
in the ALL condition (except for one layer), hence
showing that boundary information is not used ef-
fectively by the network. In contrast, the difference
between TRUE and RANDOM in the KEEP condi-
tion shows that boundary information is effectively
used by the network. Using random boundaries
which do not delimit meaningful linguistic units
really hurts the performance of the network, espe-

9Merkx and Frank (2019) report R@1 = 27.5 on a GRU-
based model using characters as input.



Flickr8k — KEEP condition

Flickr8k — ALL condition

GRU Phones Syl.-Co. Syl.-Word Word Phones Syl.-Co. | Syl.-Word Word

Pack. | T | R T | R T | R T | T,  R| T/ R|T R T | R
5 [36 37 |36 ,25°]133 30 |32 |3 40 /39 |41 41 [43 39 |34 42
4 |38 138 [44 135 |39 1265212540 144 [39 141 |43 138 |45 145
314938 |45 131 |53%.31 |49* .3 45 44 |43 142 |44 42 |45 |38
2 | 48* 139 |51*!36 |48 34 |54%)3 45 138 |48 |36 |44 142 |47 41
1 |48 124734 119744 120739 1197 |43 134 |40 140 |44 143 |53% 4]

Table 2: Maximum R@1 (in %) for each model trained on test set of the Flickr8k data set (models were selected
based on the maximum R@ 1 on the validation set). “T” stands for TRUE (boundaries) and “R” stands for RANDOM
(boundaries). “Syl-Co.” and “Syl-Word” stand for “Syllables-Connected” and “Syllables-Word” respectively. Each
line shows the results for when a specific recurrent layer is a GRUpack. layer (see §4.1). The 1°¢ layer is the
lowest layer and the 5'” the highest. The highest R@1 in the table is shown in red. Best results between each
TRUE and RANDOM pair (columnwise) are shown in bold. :* and ™ indicate that the results are statistically better
(respectively worse) than the baseline. Results in italics show statistical significance (two-sided Z-Test, p-value
< le™2, see §4.2) between each TRUE and RANDOM pair (columnwise).

cially in the KEEP condition as most of the vectors
are removed. In the ALL condition, using TRUE or
RANDOM boundaries yields results close to that of
the BASELINE, suggesting boundary information
might act as noise and help the network regularise.
Thus, as expected, the network was effectively con-
strained to learn better representations in the KEEP
condition. We believe it is the case because in
the ALL condition, boundary information is diluted
among the neighbouring vectors while this is not
the case in the KEEP condition, as each segment is
represented by a single vector.

Phones, Syllables, or Words From now on, we
will focus on the results obtained in the KEEP con-
dition, as the ALL condition brings only slight im-
provement over the BASELINE condition. In our
experiments we used four different type of seg-
ments corresponding to different type of linguis-
tic units: phones, syllables-connected, syllables-
word, and words. These different type of segments
vary in length (words and syllables are longer than
phones), quantity (there are more phones and syl-
lables than words), and intrinsic linguistic infor-
mation: phones only show which are the basic
acoustic units of the language, while word seg-
ments represent meaningful units, and syllables-
word and syllables-connected are a higher form of
acoustic unit that may contain morphemic infor-
mation. Given the task the network is trained for
(speech-image retrieval), we do not expect these dif-
ferent units to perform equally well. Indeed, as this
task implies mapping an image vector describing
which objects are present in a picture and a spo-
ken description of an image, we expect word-like
segments (or segments that preserve word bound-
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aries and that bear a substantial amount of semantic
information) to perform better.

This is in fact what we observe in practice: word
units obtain statistically better results (RQ1 = 5.4)
than the baseline (4-1.1pp). Syllables-word also
bring significant improvement (RQ1 = 5.3), how-
ever, slightly less than when using word units. It
should be noted that syllables-connected segments
also obtain statistically significant improvement
over the baseline (GRUpack.—2) despite not pre-
serving all the word boundaries. However, these re-
sults are slightly worse than the syllables-word and
word segments, suggesting that preserving word
boundaries is a property that helps the network. It
appears that the size of a segment is also an impor-
tant parameter. Indeed, phone segments (naturally)
preserve word boundaries, but of course naturally
lack the internal cohesion of a morpheme or a word
as nothing links two adjacent phonemes together.
Thus, it seems that segments that preserve mean-
ing (such as words) or from which meaning can
be more easily recomposed (syllable) may facili-
tate the network’s task. The fact that syllable-like
segments perform as well as word segments might
only be an artefact of using English where a high
proportion of word is monosyllabic.'® Working on
a language such as Japanese where the syllable-to-
morpheme ratio is higher would be a future line of
work that would enable to test this hypothesis.

GRUpsck. Layer Position We introduced
boundary information at different levels of our ar-
chitecture in order to better understand at which
layer it is the most useful to add such information.

Jespersen (1929) estimates that at least 8,000 commonly
frequent words are monosyllabic in English.



o are .+ white « water his « down o are .+ white
two person man o blue jumping wo person

(a) (b)

his . down « are o+ white « water his . down
o blue jumping wo person man o blue jumping

©

Figure 2: t-SNE projections of the final vector of different occurrences of eigth randomly selected words (Flick8k)
in the BASELINE condition (2a), in the ALL condition (2b), and in the KEEP condition (2c). Plot 2a shows that
the representation learnt in the BASELINE and ALL conditions are not word-based as the final vectors of different
occurrences of the same word do not cluster together. In the KEEP condition, the model succeeded in learning
similar representations for different occurrences of the same word as words cluster together.

Our results clearly show that introducing bound-
ary information at different layers has a clear im-
pact on the results: using such information at the
first or the fifth layer is useless, as we notice it
either yields similar results to the baseline or wors-
ens the results regardless of the type of boundary
used (GRUppck.—5). When using syllable-word
segments the best results are obtained when in-
troducing the information at GRUppck —3, and at
GRUpack.—2 when using word segments. Word-
like segments seem to be the most robust represen-
tation to be used as they yield significantly better
results at three different layers (GRUpack —2,3.4).
We also notice that phone segments bring no im-
provement over the baseline at GRUpack. 4,5
showing that these layers do not handle phone like
information. All in all, these results are in line
with that of Chrupata et al. (2017) who found that
the intermediate representations of the fifth layer
is the less informative in predicting word presence,
while lower layers encode this information better.
This confirms that the middle layers of our architec-
ture deal with lexical units whereas the fifth layer
encodes information that disregards that type of
information.

4.4 Segmentation as a Means for
Compression

Recall that in the KEEP condition, only the last vec-
tor comprising a segment is kept while the other
vectors are discarded. This can be interpreted as a
form of “guided” subsampling, as usually subsam-
pling does not take into consideration linguistic fac-
tors. To understand how much information is kept
between the input and the output of a GRUpack.
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layer in the KEEP condition, we compute an aver-
age compression rate (in %) for each of the segment
types for Flickr8k. The results are the following:
phones = 90.57%, syllables-connected = 93.41%,
syllables-word = 94.36%, and words = 94.90%."!
When we re-analyse our results in light of this in-
formation, it appears we can remove a large part
of the original input (up to 94.90% if using word
segments) while conserving or increasing the orig-
inal R@1. It is not simply the effect of subsam-
pling that helps, but subsampling with meaningful
linguistic units. The effect of informed subsam-
pling is striking when we compare R@1 for RAN-
DOM-KEEP, which are always below the BASELINE,
while TRUE-KEEP are on a par with the BASELINE
or better. A counter-intuitive finding of our ex-
periments is that it is better to subsample early
on (in the first layers) and thus remove most of
the information early on than later on. Subsam-
pling with word segments in GRUpsck -2 (and
thus only keeping 5.1% of the original amount of
information for the subsequent layers) yields better
results than subsampling with the same resolution
at GRUpack —5.

5 Towards Hierarchical Segmentation

In our current approach, only one out of the five
recurrent layers is a GRUpack . layer, which han-
dles only one type of segment. However, we can
stack as many GRUpack. as desired, provided they
are supplied with boundary information. Stacking
such layers enables us to not only integrate bound-

"Note that the compression rate for syllables-word and
words is very close, suggesting there is a significant overlap
between syllables-word units and word units.



Architecture 5 layers 4 layers 3 layers 2 layers
2""GRUpack.
1 GRUpack. 1| 2 3 4 S5 |1] 2 3 4 (1] 2 3 |1] 2
1 77177173139 7.6 179 |57 81|53 6.4
2 82|76 |58 81|63 7.3
3 7.1 | 6.5 6.7
4 6.1
5
Baseline (No GRUpack.) | 43 | 4.4 3.4 3.5

Table 3: R@1 obtained on the test set of the Flickr8k data set with a hierarchical architecture consisting of two
GRUpack. layers using phone and word segments (models were selected based on the maximum R@1 on the
validation set). Best score overall is shown in red. Best score (layer-wise) is shown in bold. Greyed out cell signal
impossible configurations. We also indicate R@1 obtained on a baseline architecture without any GRUppck ..

ary information, but also introduce structure, where
one layer handles one type of segment (e.g. phone)
and the following GRUppck. layer handles another
type of segment, that is hierarchically above the
preceding (e.g. syllable, or word).'> Harwath et al.
(2020) explored such hierarchical architecture us-
ing a CNN-based model that incorporated vector
quantisation layers and found that it improves R @k.
Our work thus attempts to verify if it is also the
case for an RNN-based model.

Phones and Words: We first explore hierarchi-
cal segmentation with phones and words on the
Flickr8k data set.'> We only consider the KEEP con-
dition as it yields better results than the ALL condi-
tion. We vary the position of the GRUppck . layers
as well as the number of layers (from 2 to 5) and
test all possible positions with two GRUpack . lay-
ers. For each configuration, the lowest GRUpack.
will receive phone boundary information, and the
next GRUppck. layer will receive word boundary
information. Note that such configuration results
in a double sequence reduction. Indeed, after the
first GRUpack. layer, they are only as many output
vectors as there are phones, and in the second, the
resulting phone vectors are recomposed together
to form words, resulting in as many output vec-
tors as there are words. Results are shown in Ta-
ble 3. Training an architecture with two GRUpack.
layers, each handling two different types of seg-
ments results in much better R@1 than the baseline
(+3.9pp) and than a single-GRUppck -layered ar-
chitecture (42.8pp), thus showing that introducing
hierarchy is beneficial. Results also confirm that

2Note that it could also be possible to use larger units, such
as chunks.

3We also explored two other hierarchical architectures that
use phones and syllables-word, and syllables-word and words.
The results are reported in Appendix B in Table 6 and Table 7.
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the layer 2 and 3 of our architecture are those that
benefit the most from adding linguistic informa-
tion, and confirm the fact that the upper layers
(such as the fifth) do not take as much advantage
of this information as the lower layers. Introducing
structure allowed us to remove two recurrent layers
without a big loss of performance (RQ@Q1 = 8.1 for
a three-layered architecture with two GRUpack.
layers) while the baseline architecture with only
three layers performs poorly.

Phones, Syllables, and Words: We also ex-
plore an architecture with 3 GRUppck. layers, to
which we provide phone, syllable-word and word
boundaries. As in our previous experiments, we
vary the number of layers (from 3 to 5), and test
all possible configurations. The results of this ex-
periment are presented in Table 4. We notice that
the best result obtained with this architecture is far
superior to the best result of a single-layered ar-
chitecture (RQ1 = 9.6, +4.2pp), but also superior
to the best result of a double-layered architecture
(+1.4pp over the phone-word architecture). Our
best results are obtained by a five-layered architec-
ture with GRUpack. in position 1, 3 and 4. How-
ever, we notice that the four-layered architecture
obtains more consistent results across all layers,
the maximum result being only —0.3pp away from
best five-layered architecture. We also notice that
the 3 layered architecture obtains a very high R@1
of 8.0 which is about two times over the baseline
results.

Our results show that the more structure we in-
troduce into the network, the better it performs.
Additionally, introducing structure enables us to re-
duce the number of layers (and hence the number of
computations) while increasing the performances
compared to the baseline. Overall, it is better to



use boundary information in coordination in a hier-
archical structure than using them in isolation.

GRUpack. Architecture 5layers | 4 layers | 3 layers
1+2+3 8.5 9.3 8.0
1+2+4 8.1 8.6
1+2+5 7.8
1+3+4 9.6 8.4
1+3+5 7.9
1+4+5 7.8
2+3+4 8.8 8.3
2+3+5 8.5
2+4+5 8.3
3+4+5 7.8

Table 4: R@1 obtained on the test set of the Flickr8k
data set with a hierarchical architecture consisting of
three GRUpack. layers using phone, syllable-word and
word segments (models were selected based on the
maximum R@1 on the validation set).

6 Discussion and Future Work

The goal of our experiments is to see if segmenting
speech in sub-units is beneficial, and if so, which
units maximise the performance. It is indeed the
case that segmenting speech into sub-units helps.
As to which segment obtains the best performance
we observe mixed results. Indeed, word segmenta-
tion yields better results than phone segmentation,
but we do also observe that syllable-like segmenta-
tion also gives results that are in the same ballpark
as word segmentation. Nevertheless, word segmen-
tation seems to be a more robust representation
compared to syllable as such word segments con-
sistently yield better results at various levels of our
architecture.

Another finding of our experiments which we
believe is important is that one cannot subsample
speech without taking into account its linguistic
nature. Indeed, random subsampling might yield
results on a par with the baseline, but this might
only be a regularisation effect. Linguistically in-
formed subsampling (KEEP condition) yields how-
ever much better results and should be favoured.

Regarding the question of why textual ap-
proaches perform better than spoken approaches,
we conclude that the fact that tokens stand for full
semantic units plays little in their performance. The
fact that text-based models use segmented input
(either tokens or characters) also seems to play lit-
tle in the final performance, otherwise we should
have observed better results as our input was also
segmented. What seems most crucial is that the

representation of a token never changes whereas
speech exhibits lots of variation, as no word is pro-
nounced exactly in the same fashion when uttered.
Our approach helped the network in building more
consistent representations for the same word (espe-
cially in the KEEP condition, see Figure 2), even
though it did not succeed for every word. Con-
sistent representation across various occurrences
seems to be the most important factor.

Finally, our experiments allowed us to observe
that, such as for humans, the use of large units,
such as words, is indeed the most efficient solution
to learn a reliable speech-to-image mapping. In-
deed, even if phone and syllable-like units yield
non trivial results, they are less robust than word
segments. Our GRUpa k. setting also allowed us
to simply introduce hierarchy in a neural network
by simply stacking GRUpack. layers and provid-
ing different boundary information to each of them.
Our experiments allowed us to confirm the results
obtained by Harwath et al. (2020) on a CNN-based
VGS model, stating that introducing hierarchical
structures proves beneficial overall even for shal-
lower architectures. Interestingly, our hierarchical
experiments allowed us to notice that using seg-
ment boundaries in isolation only brings slight im-
provements. It is only when different levels are
combined (phones and words, or phones, syllables
and words) that the performance of the network
reaches its peak.

The future lines of work we imagine consist in
learning where the boundaries are located instead
of supplying boundary information to the network
at training and testing time. We could indeed use
ACT recurrent cells (Kreutzer and Sokolov, 2018)
or an architecture such as (Chen et al., 2019) that
would dynamically and unsupervisedly learn how
to segment the input signal into sub-units. The
additional advantage of such methods is that they
make no presupposition on the form/size of the seg-
ments, and consequently on what a good segment
should or should not be, but lets the network find
the optimal solution. Finally, we plan to also in-
troduce syntactic information and integrate chunk
boundaries and measure the impact of syntactical
grouping of spoken units.

Acknowledgments

This work was supported by grants from Neu-
roCoG IDEX UGA as part of the “Investissements
d’avenir” program (ANR-15-IDEX-02).

299



References

Emmanuel Azuh, David Harwath, and James Glass.
2019. Towards Bilingual Lexicon Discovery From
Visually Grounded Speech Audio. In Proc. Inter-
speech 2019, pages 276-280.

Colin Bannard and Danielle Matthews. 2008. Stored
word sequences in language learning: The effect
of familiarity on children’s repetition of four-word
combinations. Psychological Science, 19(3):241—
248. PMID: 18315796.

Heather Bortfeld, James L. Morgan, Roberta Mich-
nick Golinkoff, and Karen Rathbun. 2005. Mommy
and me: Familiar names help launch babies into
speech-stream segmentation.  Psychological Sci-
ence, 16(4):298-304. PMID: 15828977.

Y. Chen, S. Huang, H. Lee, Y. Wang, and C. Shen. 2019.
Audio word2vec: Sequence-to-sequence autoencod-
ing for unsupervised learning of audio segmentation
and representation. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 27(9):1481—
1493.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724—
1734. Association for Computational Linguistics.

Grzegorz Chrupala, Lieke Gelderloos, and Afra Al-
ishahi. 2017. Representations of language in a
model of visually grounded speech signal. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 613-622. Association for Computa-
tional Linguistics.

Grzegorz Chrupala, Lieke Gelderloos, and Afra Al-
ishahi. 2017. Synthetically spoken coco. [Data set]
http://doi.org/10.5281/zenodo.400926.

D. Harwath, G. Chuang, and J. Glass. 2018. Vision as
an interlingua: Learning multilingual semantic em-
beddings of untranscribed speech. In 2018 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4969-4973.

David Harwath and James Glass. 2015. Deep mul-
timodal semantic embeddings for speech and im-
ages. In 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), pages 237—
244,

David Harwath, Wei-Ning Hsu, and James R. Glass.
2020. Learning hierarchical discrete linguistic
units from visually-grounded speech. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

300

David Harwath, Antonio Torralba, and James R. Glass.
2016. Unsupervised learning of spoken language
with visual context. In Proceedings of the 30th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS’16, page 18661874, Red Hook,
NY, USA. Curran Associates Inc.

William N. Havard, Jean-Pierre Chevrot, and Lau-
rent Besacier. 2019. Models of Visually Grounded
Speech Signal Pay Attention to Nouns: A Bilingual
Experiment on English and Japanese. In ICASSP
2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 8618-8622.

William N. Havard, Jean-Pierre Chevrot, and Lau-
rent Besacier. 2019. Word Recognition, Com-
petition, and Activation in a Model of Visually
Grounded Speech. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL), pages 339-348, Hong Kong, China.
Association for Computational Linguistics.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Ar-
tificial Intelligence Research, 47:853—-899.

Otto Jespersen. 1929. Monosyllabism in English.

P.W. Jusczyk and R.N. Aslin. 1995. Infants/ detection
of the sound patterns of words in fluent speech. Cog-
nitive Psychology, 29(1):1-23.

Herman  Kamper, Shane  Settle, Gregory
Shakhnarovich, and Karen Livescu. 2017. Vi-
sually grounded learning of keyword prediction
from untranscribed speech. pages 3677-3681.

Thomas Kisler, Uwe Reichel, and Florian Schiel. 2017.
Multilingual processing of speech via web services.
Computer Speech & Language, 45:326 — 347.

Julia Kreutzer and Artem Sokolov. 2018. Learning
to segment inputs for NMT favors character-level
processing. Proceedings of the International Work-
shop on Spoken Language Translation October 29-
30, 2018 Bruges, Belgium, 1:166—172.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
C. Lawrence Zitnick, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars. 2014. Microsoft coco: Com-
mon objects in context. In Computer Vision - ECCV
2014, pages 740-755, Cham. Springer International
Publishing.

Danny Merkx and Stefan L. Frank. 2019. Learn-
ing semantic sentence representations from visually
grounded language without lexical knowledge. Nat-
ural Language Engineering, 25(4):451-466.

Danny Merkx, Stefan L. Frank, and Mirjam Ernestus.
2019. Language Learning Using Speech to Image
Retrieval. In Proc. Interspeech 2019, pages 1841—
1845.


https://doi.org/10.21437/Interspeech.2019-1718
https://doi.org/10.21437/Interspeech.2019-1718
https://doi.org/10.1111/j.1467-9280.2008.02075.x
https://doi.org/10.1111/j.1467-9280.2008.02075.x
https://doi.org/10.1111/j.1467-9280.2008.02075.x
https://doi.org/10.1111/j.1467-9280.2008.02075.x
https://doi.org/10.1111/j.0956-7976.2005.01531.x
https://doi.org/10.1111/j.0956-7976.2005.01531.x
https://doi.org/10.1111/j.0956-7976.2005.01531.x
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/P17-1057
https://doi.org/10.18653/v1/P17-1057
https://doi.org/10.5281/zenodo.400926
http://doi.org/10.5281/zenodo.400926
https://openreview.net/forum?id=B1elCp4KwH
https://openreview.net/forum?id=B1elCp4KwH
https://doi.org/10.1109/ICASSP.2019.8683069
https://doi.org/10.1109/ICASSP.2019.8683069
https://doi.org/10.1109/ICASSP.2019.8683069
https://doi.org/10.18653/v1/K19-1032
https://doi.org/10.18653/v1/K19-1032
https://doi.org/10.18653/v1/K19-1032
https://doi.org/10.1613/jair.3994
https://doi.org/10.1613/jair.3994
https://doi.org/10.1006/cogp.1995.1010
https://doi.org/10.1006/cogp.1995.1010
https://doi.org/10.21437/Interspeech.2017-502
https://doi.org/10.21437/Interspeech.2017-502
https://doi.org/10.21437/Interspeech.2017-502
https://doi.org/http://dx.doi.org/10.1016/j.csl.2017.01.005
https://workshop2018.iwslt.org/downloads/Proceedings_IWSLT_2018.pdf
https://workshop2018.iwslt.org/downloads/Proceedings_IWSLT_2018.pdf
https://workshop2018.iwslt.org/downloads/Proceedings_IWSLT_2018.pdf
https://doi.org/10.1017/S1351324919000196
https://doi.org/10.1017/S1351324919000196
https://doi.org/10.1017/S1351324919000196
https://doi.org/10.21437/Interspeech.2019-3067
https://doi.org/10.21437/Interspeech.2019-3067

Y. Ohishi, A. Kimura, T. Kawanishi, K. Kashino,
D. Harwath, and J. Glass. 2020. Trilingual semantic
embeddings of visually grounded speech with self-
attention mechanisms. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4352-4356.

Deb K. Roy and Alex P. Pentland. 2002. Learning
words from sights and sounds: a computational
model. Cognitive Science, 26(1):113-146.

Jean Vroomen and Beatrice De Gelder. 1999. Lex-
ical access of resyllabified words: Evidence from
phoneme monitoring. Memory & Cognition,
27(3):413-421.

301


https://doi.org/10.1207/s15516709cog2601_4
https://doi.org/10.1207/s15516709cog2601_4
https://doi.org/10.1207/s15516709cog2601_4
https://doi.org/10.3758/bf03211537
https://doi.org/10.3758/bf03211537
https://doi.org/10.3758/bf03211537

