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Abstract

Some have argued that word orders which are
more difficult to process should be rarer cross-
linguistically. Our current study fails to repli-
cate the results of Maurits, Navarro, and Per-
fors (2010), who used an entropy-based Uni-
form Information Density (UID) measure to
moderately predict the Greenbergian typology
of transitive word orders. We additionally re-
port an inability of three measures of process-
ing difficulty - entropy-based UID, surprisal-
based UID, and pointwise mutual information
- to correctly predict the correct typological dis-
tribution, using transitive constructions from
20 languages in the Universal Dependencies
project (version 2.5). However, our conclu-
sions are limited by data sparsity.

1 Introduction

Cross-linguistic typologies of word order prefer-
ences have shown a robust pattern for oderings of
subjects, objects, and verbs (see the World Atlas
of Language Structures (WALS) data in Table 3
and Figure 4) (Greenberg, 1963; Hawkins, 2014).
Several hypotheses have been proposed to explain
this pattern, including the Animate First Principle,
Verb-Object Bonding, and the Theme First Prin-
ciple (Tomlin, 1986). However, these are some-
what circular in their reasoning: they are motivated
based on the prevalence of subject-first languages
and languages where the verb and object are ad-
jacent. These principles are then used to explain
the very same word order patterns that motivated
them in the first place. With the goal of achieving a
more robust explanation, some have argued in more
recent work that processing difficulty (broadly con-
strued) is inversely proportional to typological fre-
quency (Hawkins, 2004, 2014; Fedzechkina et al.,
2018). Languages are claimed to evolve from word
orders that are more difficulty to process to orders
that are easier to process. Therefore, a word or-
der that is more difficult to process should be rarer
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cross-linguistically. Within this context, Maurits
et al. (2010) attempted to use the Uniform Infor-
mation Density (UID) hypothesis to explain the
distributional patterns of subject-verb-object con-
structions. Maurits et al. (2010) (henceforth MNP)
constructed simplified sets of events, ranking each
possible ordering of subject, verb, and object by
deviation from UID ideal.

MNP’s results showed a consistent high ranking
for VSO and VOS, and a consistent low ranking
for SOV, contrary to the observed cross-linguistic
frequency. While MNP used an entropy-based UID
measure, there are other measures of processing dif-
ficulty that could be applied to the underlying ques-
tion of whether languages evolve from difficult-
to-process word orders to easy-to-process word
orders. This paper therefore seeks to test the claim
that languages evolve in this way, by comparing the
predicted processing difficulty of the six possible
subject-verb-object word orders. To do this, we use
the following three metrics of processing difficulty,
defined in the following sections: deviation from
a UID ideal based on changes in entropy, devia-
tion from a UID ideal based on surprisal, and total
pointwise mutual information.

To that end, this paper is divided into two major
components. In the first, we attempted to replicate
the entropy-based UID results MNP obtained on
their toyworld and on child-directed corpus data. In
the second, we evaluate the ranking of word orders
produced by each of the three processing difficulty
measures using event datasets derived from corpora
in 20 different languages. !

2 Processing difficulty measures

2.1 Entropy

The UID hypothesis models human language as a
noisy communication channel. A speaker/signer
'All code and data for this project are available

at https://github.com/ucdavis/gonering_
morgan—-conll2020
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should attempt to convey as much information as
possible for a comprehender to reasonably recon-
struct their message, given the possibility for misun-
derstanding, interference, cognitive misrepresenta-
tion, or literal noise in the surrounding environment
(Levy and Jaeger, 2007; Frank and Jaeger, 2008).
Under the UID hypothesis, the optimal solution is
for a speaker/signer to spread the information as
evenly as possible across the component parts of
a message. Theoretically, this increases the likeli-
hood of successful reconstruction by the compre-
hender (Levy and Jaeger, 2007; Frank and Jaeger,
2008). Additionally, because language is modelled
as a noisy channel, there exists some maximum
speed at which a language user can communicate
successfully — termed the channel capacity. The
UID hypothesis therefore further claims that as a
language user approaches this capacity, they will
make linguistic choices that distribute the infor-
mation density of their utterance more uniformly.
This should enable a language user to communicate
both quickly and without errors (Levy and Jaeger,
2007).

“Information” can be conceptualized as the
amount of uncertainty that is reduced by a message,
calculated using entropy. If we model words in
an incoming language stream as random variables
which identify a random event, we can calculate
how much each word reduces the uncertainty (en-
tropy) about what event is being described. We can
thereby quantify how much information each word
contains. For the purposes of investigating tran-
sitive word order preferences, we adopt here the
same simplified model as MNP. Each event is com-
posed of an agent?, a, drawn randomly from a set
of possible agents, A; a verb, v, drawn randomly
from a set of possible verbs, V'; and a patient, p,
drawn randomly from a set of possible patients,
P. We then define an event, (a,v,p), as a vari-
able drawn randomly from a set of possible events,
(A, V, P). We can then assume a particular event
is discussed with probability P(a,v,p). Because
we represent an event using just these three compo-
nents, the words of an utterance based on such an
event can be artificially permuted to derive all six
possible word orders.

In this model, we assume that the comprehender
always begins with the maximum uncertainty about

%In part because semantic and grammatical roles are con-
flated in our event sets, as well as to avoid some issues with
notation, we refer to subjects in our model as agents and ob-
jects as patients.

what will be discussed:
Hy=— Z P(aa Uap> lOgZ(P(av va))
a,v,p e AV,P

After all words are communicated (and sometimes
before), the entropy will always be zero. This signi-
fies that the comprehender has uniquely identified
the event discussed out of all the other potential
events. In between, each word provides an amount
of information to decrease the comprehender’s un-
certainty about the event being discussed. The in-
formation provided by a word, then, is the change
in uncertainty, calculated as the difference in en-
tropy before and after the word was communicated:
for word 1, Iz = Hz'fl — Hz

Given the simplified three word utterance mod-
elled here, an utterance that achieves the UID ideal
would have exactly é of the total entropy, Hy, pro-
vided by each word. How far a particular utterance
deviates from this ideal is therefore dependent on
how much information each word provides above
or below this % mark. Figure 1 illustrates the de-
viation from this entropy-based UID ideal for two
events taken from MNP’s toyworld, (Eve,ate,rice)
and (Eve,ate,bread) (see Table 1), in SOV and VOS
order. By summing the individual deviations of
each word, we can arrive at an overall deviation
score for a particular utterance. Multiplying the
current deviation sum by % rescales the maximum
deviation value to 1, deriving a final equation:

3n| L 1

by =3 ; Hy 3
A weighted average of the deviation scores for each
utterance in a word order, using the probability of
the event as the weight, creates an overall score for
that word order. This metric allows us to systemati-
cally compare how close each of the six possible
orderings of subjects, verbs, and objects approach
the ideal of uniform information density. This is
the deviation metric that MNP used, and which we
adopt here as well.

2.2 Surprisal

Surprisal is defined as the negative log of a prob-
ability (i.e. S(z) = —log(P(x))) and has been
posited as a good model of incremental language
processing, particularly in capturing difficulty of
processing a sentence (Hale, 2001; Levy, 2011).
Surprisal is closely related to entropy and is com-
patible with the UID hypothesis as well. In this
case the UID hypothesis would state that the total
surprisal of an event should be distributed equally
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Figure 1. The deviation of the higher-probability event (Eve,ate,rice) (dotted black lines) and the lower-probability
event (Eve,ate,bread) (solid black lines) from the UID ideal (dashed purple lines), using entropy to quantify the
amount of information per word. Example utterances and probabilities were taken from the MNP toyworld.

across the words of an utterance. As such, sur-
prisal provides a measure that is sensitive to the
probabilities of each word of an utterance, and the
probability of the utterance as a whole, whereas
the MNP entropy-based measure was not. More
specifically, the surprisal of an event is given by
S(event) = —log, P(event), and the surprisal
of the individual words that make up an utter-
ance is the negative log probability of that word,
given the history of words previously encountered
(i.e. S(word) = —logy P(word|history)).

We define here a surprisal-based deviation from
UID ideal, analogous to the entropy-based devia-
tion proposed by MNP:

3
3 Swor i ]-
D(Sutt)_4§:‘ di
i=1

Sevent g

Again, a weighted average of the deviation scores
for each utterance in a word order, using the proba-
bility of the event as the weight, creates an overall
score for that word order. Figure 2 illustrates the de-
viation from this surprisal-based UID ideal for two
events (see Table 1) in SOV and VOS order. Fig. 2
also underscores that despite passing similarities
in the underlying equations, these two processing
difficulty measures may indeed lead to ultimately
different results.

2.3 The information locality hypothesis

So far we have discussed the information struc-
ture of utterances within the framework of a single
theory, UID. The UID hypothesis is not without
critique though. Specifically, UID ignores findings
from traditional linguistics about how the informa-
tion structure of utterances is specifically nonuni-
form, e.g. new information and contrastive focus
(Rizzi, 1997; Choudhury, 2015). Information local-

ity on the other hand, offered as an explanation for
a range of syntactic phenomena, claims that words
with high mutual information are placed as close as
possible to each other in order to ease processing
for a comprehender (Futrell, 2019; Futrell et al.,
2019; Gibson et al., 2019).

In the context of the current paper, information
locality would predict that the components of a
transitive utterance should be placed such that the
pointwise mutual information of adjacent words is
maximized:
pmiyee = pmi(wordy, words) + pmi(words, words)

P(wordz, words)
2 P(words)P(words)

o P(word,, words)
= %62 P(word:) P(words)

+ log

Note that because of this formulation, this mea-
sure does not distinguish between mirror word or-
ders (i.e. SOV has the same overall PMI value as
VOS). One method, which we adopt here, of con-
verting these PMI values into a metric that can be
compared across event sets is to z-score the point-
wise mutual information values. We can use this
standardized PMI score to rank word orders from
greatest total PMI score to lowest. Figure 3 illus-
trates the total pointwise mutual information for
two events (see Table 1) in SOV/VOS, SVO/OVS,
and VSO/OSYV orders.

3 Attempted replication of MNP
3.1 Background

MNP used three different methods to construct sets
of events and event probabilities: they constructed
an artificial set of events as a “toyworld,” they ex-
tracted transitive utterances from corpora, and fi-
nally they asked participants to rank the likelihood
of certain events occurring. We focus here on the
first two methods they used. Their corpora-derived
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Figure 2. The deviation of the higher-probability event (Eve,ate,rice) (dashed blue lines) and the lower-probability
event (Eve,ate,bread) (solid blue lines) from the UID ideal (dotted and dot-dashed purple lines), using surprisal to

quantify the amount of information per word.

SOV/VOS

(Eve,ate,bread)
P(event) = 0.01

(Eve,ate,rice)
P(event) = 0.09

SVO/OVS

VSO/0OSV

Amount of mutual information between two words
Figure 3. The pointwise mutual information of the events (Eve,ate,bread) and (Eve,ate,rice). Each circle represents
the information content of the labeled word, measured as —logs(P(word)), and the orange-shaded intersections
represent the pointwise mutual information between two adjacent labeled words.

event sets were constructed by extracting transi-
tive utterances from the Brown corpus of English
child-directed speech from the CHILDES database.
From the Brown corpus, MNP extracted transitive
events from adult utterances in the transcripts re-
lated to just one child (of the three in the Brown
corpus), “Adam.” They discarded events involv-
ing pronouns that could refer to a broad range of
agents or patients (e.g. “it” and “this”), resulting in
a total of 544 transitive utterances. Each unique
utterance was defined as an event, and these events
were assigned a probability based on the frequency
that an utterance involving the event was observed
in the corpus. MNP’s results showed a consistent
low ranking for SOV and consistent high rankings
for both VSO and VOS, in contrast to their actual
distributions (see Table 2).

3.2 Methods

We tested the entropy-based measure on the orig-
inal toyworld events from MNP and a dataset
of event probabilities generated by extracting
transitive utterances from the Brown corpus of
child-directed speech (Brown, 1973; MacWhinney,
2000). We created two separate, exact implementa-
tions of the entropy-based UID algorithm described

by MNP, one in the Java programming language
and the other in R. In recreating the MNP toyworld,
we used the exact probability distributions speci-
fied in their supplementary materials, except for
two events with clear typographical errors. We
then input these event probabilities into both the
Java and R algorithm implementations, to derive
weighted mean entropy-based UID deviation scores
for each of the six possible word orders. The word
orders were finally ranked from least deviation to
greatest.

In attempting to replicate MNP’s results on child-
directed speech data, we decided to use all utter-
ances from all transcripts in the Brown corpus
(Brown, 1973; MacWhinney, 2000). This was mo-
tivated by a desire to lessen the potential impact
of data sparsity. We also did not exclude utter-
ances with broad-referent pronouns (such as “it” or
“what”), as MNP did, so as not to exclude highly
probable, naturalistic speech. In total, 30,166 tran-
sitive utterances were automatically extracted us-
ing an algorithm we created for that purpose, with
14,381 unique utterance types. In comparison,
MNP used just 544 utterance tokens. We then as-
signed each transitive utterance a probability based
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Eat Drink
Apple Bread Cake Rice Coffee Cola Juice Water
Alice 0.05 0.00 0.03 0.02 0.07 0.03 0.00 0.00
Bob 0.02 0.00 0.04 0.04 0.02 0.04 0.02 0.02
Eve 0.00 0.01 0.00 0.09 0.03 0.01 0.00 0.06
Mallory 0.04 0.04 0.01 0.01 0.00 0.01 0.09 0.00
Trent 0.02 0.00 0.01 0.07 0.02 0.03 0.03 0.02

Table 1. MNP’s toyworld. Each cell represents the joint probability P(a,v,p) of an event.

on the proportion of times it occurred in the cor-
pus, similarly to MNP. Then, we input these event
probabilities into the Java algorithm implementa-
tion to derive weighted mean entropy-based UID
deviation scores for each of the six of the possible
word orders. The word orders were finally ranked
from least deviation to greatest.

3.3 Results

Both the Java and R implementations of the MNP
entropy-based UID model failed to replicate their
toyworld results. However, both of these imple-
mentations did produce the exact same ranking and
the exact same numerical results (Table 2). Hav-
ing used their exact event probabilities and an ex-
act recreation of their algorithm (as best we un-
derstand it), we expected to get the exact same
rankings as they did. We note though that they
did not release their numerical results for us to
compare to. We further failed to replicate MNP’s
ranking from the “Adam” transcripts-derived data
using our full Brown-derived data (Table 2). The
difference between our Brown corpus based rank-
ings and MNP’s “Adam” transcripts based rankings
seems larger than the differences between the two
toyworld rankings. Although the Brown-derived
dataset we used was larger than MNP’s, we still
expected substantial overlap in the word order rank-
ings.

3.4 Discussion

Despite failing to replicate MNP’s results exactly,
as expected, we are inclined to trust our results.
Both of our separate implementations of their
model — in two different programming languages —
produced exactly identical numerical and rank or-
der results. This is also backed by our further fail-
ure to replicate MNP’s results using child-derived
speech. Although we did not expect perfect align-
ment of results, our ranking appears, qualitatively,
to be quite different from that reported by MNP
(Table 2). Taken together, these results call into
question all of the rankings reported by MNP. Ad-

ditionally, our results cast doubt on MNP’s main
conclusion that processing difficulty, as conceptual-
ized by the Uniform Information Density hypothe-
sis, is likely to have played a role in the evolution of
subject-verb-obejct word order preferences across
the world’s languages.

4 Universal Dependencies languages

4.1 Methods

Having evaluated just one processing difficulty
measure on data from a single language, we next
sought to test all three measures on event proba-
bilities derived from corpus data from a wide va-
riety of languages. For this task, the Universal
Dependencies (UD) project (version 2.5) was cho-
sen (Zeman et al., 2019). The claim that languages
evolve from orders that are difficult to process to
orders that are easier to process assumes that cer-
tain word orders are inherently easier or more dif-
ficult to process. The dominant word order of a
language from which we derive event data should
therefore not matter. Nevertheless, to try to reduce
this potential confound, we chose 20 languages
from the UD project, from as many different dom-
inant word orders as possible, based on two pri-
mary criteria: (1) genetic diversity, and (2) a large
dataset in the UD treebanks. The languages we
chose consisted of six SVO-dominant languages
(English, Mandarin, Mbya Guarani, Indonesian,
Vietnamese, and Wolof), five SOV-dominant lan-
guages (Basque, Hindi, Japanese, Korean, and
Turkish), five VSO-dominant languages (Breton,
Irish, Scottish Gaelic, Tagalog, and Welsh), and
four languages considered to have no single domi-
nant subject-verb-object word order (Dutch, Ger-
man, Hungarian, and Warlpiri) according to WALS
(Dryer, Matthew S., 2013). Transitive construc-
tions were thus extracted from all treebanks that
included the underlying text and the CoNLL-U
parse annotation. Lemma-level information from
the CoNLL-U annotation, instead of word-level
information, was extracted whenever possible. In
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MNP’s  toyworld | Our toyworld MNP’s rankings from | Our Brown corpus
rankings replication rankings | the “Adam” transcripts | rankings

VSO VOS, 0.206 VSO, 0.38 SVO, 0.427

VOS VSO, 0.288 SVO, 0.41 SOV, 0.439

SVO SVO, 0.291 VOS, 0.48 VSO, 0.585

OVS SOV, 0.500 SOV. 0.64 VOS, 0.588

SOV OVS =08V, 0.530 OSV, 0.78 OVS =08V, 0.684
oSV OVvs, 0.79

Table 2. Side-by-side comparison of MNP’s results and our attempted replication.

addition to the words of each utterance, we also
automatically determined the word order of each
construction extracted.

Each extracted event was assigned a probabil-
ity based on the frequency it was observed in the
UD treebanks for a given language. Despite the
large size of many of the underlying treebanks, this
method proved to create a very sparse model. This
led to underestimating the probabilities of events
that occurred rarely in the corpora while overes-
timating the probabilities of events that occurred
more frequently. This also influences the amount of
information each word provides: if an event occurs
rarely, the words that make up an utterance corre-
sponding to it will better disambiguate the event
than those words otherwise would. Across our
subset of languages, more than 46% of utterances
tested in each language were deterministically pre-
dicted by the first two words alone. Due to this,
we eliminated events where any one of the words
only occurred once in a language’s corpus. This im-
proved the problem of sparsity somewhat, dropping
the proportion of deterministically predictable ut-
terances from a minimum of 46% to 8%. However,
some languages still had 100% of utterances being
deterministically predicted by the first two words,
with a mean across the subset of 72%. The conse-
quences of this will be discussed in more detail in
section 4.4.

The weighted mean entropy-based and surprisal-
based UID scores for each word order in each lan-
guage of our subset were aggregated, then averaged
over languages to derive an overall deviation score
for each word order. In doing so, we made the
assumption that a subject is as predictive of a verb
in one language as in every other; that a verb is as
predictive of an object in one language as in every
other; etc. In order to compare pointwise mutual in-
formation scores across languages, raw PMI scores
for every utterance were z-scored within each lan-
guage. This is necessary because different sized
event sets in each language would lead to different

magnitudes of raw PMI scores. A weighted mean
for each word order within each language was then
taken. The means for each word order were finally
averaged across languages.

4.2 Results

As shown in Table 3, the entropy-based and
surprisal-based UID measures both generated the
same ordinal rankings for word orders, though their
deviation scores differed. These results differ par-
tially from the observed distribution of transitive
word orders. To test whether means for each word
order were significantly different from each other
or not, a one-way ANOVA with unequal variance
was performed for each processing difficulty mea-
sure. Word orders did not show significant differ-
ences in means for either the entropy-based or the
surprisal-based UID measures, (F(5,53) =1.40,p =
0.239 and F(5,53) = 1.91, p = 0.108, respectively).

Our mutual information measure likewise failed
to produce a ranking of word orders that resembles
the actual cross-linguistic distribution (Table 3). A
one-way ANOVA with unequal variance indicated
a significant effect of word order for this measure
(F(5,53) =3.65, p = 0.00649). Post hoc two-tailed
Welch’s t-tests indicated that SOV/VOS orders had
a significantly greater mean PMI value than either
VSO/OSV (#(34) = 2.54, p = 0.0157) or SVO/OVS
(#(37) =2.98, p = 0.00508) at the 95% confidence
level. However, there was no significant differ-
ence in mean PMI values between VSO/OSV and
SVO/OVS (#37) = 0.700, p = 0.488).

Under the hypothesis we test, our three mea-
sures of processing difficulty should produce a dis-
tribution of highest-ranked word orders that, when
aggregated, roughly matches the observed typolog-
ical distribution. Figure 4 shows the proportion
of word orders that were ranked highest by each
processing difficulty measure across our subset of
20 languages from the UD project.
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Surprisal-based UID

Pointwise mutual information

WALS Entropy-based UID
SOV (47.6%) VSO0, 0.583 (0.163)
SVO (41.1%) VOS, 0.590 (0.172)
VSO (8.0%) SVO, 0.628 (0.183)
VOS (2.1%) SOV, 0.648 (0.179)
OVS (0.9%) OVS, 0.694 (0.205)
OSYV (0.3%) 0OSYV, 0.699 (0.197)

VSO0, 0.604 (0.141)
VOS, 0.612 (0.146)
SVO, 0.652 (0.153)
SOV, 0.674 (0.147)
OVS, 0.716 (0.175)
OSV, 0.720 (0.169)

SOV = VOS, -0.00677 (0.229)
VSO =08V, -0.166 (0.160)
SVO = OVS, -0.204 (0.187)

Table 3. Rankings of word orders generated by our three processing difficulty measures, compared to the observed
distribution of word orders as catalogued by WALS. Mean values are indicated after the word order with standard

deviations in parentheses.
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Figure 4. The proportion of word orders predicted across the 20 languages of our UD subset, by the entropy-based
UID measure (black), the surprisal-based UID measure (blue), and the pointwise mutual information measure
(orange), compared to the observed proportion of word orders catalogued by WALS (cyan).

4.3 Discussion

The rankings from our UID-based measures, and
their overprediction of VSO and VOS orders,
would suggest that verb-initial languages should be
most frequent, contrary to the actual typological
distribution. The rankings of our mutual informa-
tion measure, and its overprediction of VOS word
order, would suggest an abundance of languages
with dominant SOV and VOS word orders and a
dearth of languages with any other order. Although
the prediction about SOV does accord with its ty-
pological frequency, these results do not accord
with the observed frequencies of the other word
orders. This is most notable in regards to SVO and
VOS orders, which are greatly underpredicted and
overpredicted, respectively. A limitation of the mu-
tual information measure we used though, is that
mirror word orders are indistinguishable. There
may be other ways to define such a measure that
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would distinguish between mirror orders in future
work. That said, the underprediction of SVO orders
presents a serious challenge to the hypotheses we
tested.

Overall, our raw data would suggest tendency
for languages to evolve to be verb-initial. Evidence
in favor of this is rather weak or nonexistent though
(Givn, 1979; Li, 2014). Only one measure ranked
SOV highly, which is both the most typologically
frequent order and has been argued to be a target
order for language evolution. Strong evidence that
languages evolve towards SVO order contradict
the results from all of our three measures (Givn,
1979; Li, 2014; Maurits and Griffiths, 2014). How-
ever, our results do agree with Maurits and Griffiths
(2014)’s suggestion that processing difficulty is not
the primary motivator of language change.

Given that ANOVA tests indicated no significant
difference between the means of the six word or-



ders in the entropy-based and surprisal-based UID
measures, our data further suggest that UID ei-
ther plays no role in language evolution of transi-
tive constructions, or that it exerts equal pressure
toward every possible ordering. This conclusion
is weakly supported by the ANOVA and t-tests
conducted on the PMI results. These PMI results
would suggest a strong pressure for languages to
evolve towards SOV or VOS order. While we can’t
rule out the possibility that other, stronger, forces
act to push language evolution in specific direc-
tions, there does not appear to be evidence for lan-
guages evolving in such ways.

4.4 Limitations

As mentioned previously, these event data were
very sparse, even after removing utterances where
any word occurred just once in the corpus. Be-
cause of the semantic of some verbs, we would
expect a non-zero percentage of utterances where
the first two words deterministically predict the
third. Nevertheless, the levels obtained in some lan-
guages though were unacceptably high. This dis-
proportionately affected SOV and OSV utterances
more (80.5% of utterances) compared to VOS and
OVS (70.1% of utterances), and compared to VSO
and SVO (67.4% of utterances). Both the entropy-
based and surprisal-based UID deviation scores
are likely to be higher for these utterances, poten-
tially depressing the rankings of SOV, OSV, VOS,
and OVS compared to VSO and SVO. Conversely,
the PMI values for these utterances may be in-
flated. This is a considerable limitation, and as
such, our conclusions should be considered tenta-
tive. This problem even affected the largest corpora
we used, but could be addressed in future work us-
ing a smoothing algorithm.

Another criticism of this work could be that the
use of events and event probabilities is an inade-
quate model of human language. Although we con-
cede that this model fails to capture the infinitely
productive nature of language, it is still a suitable, if
imperfect approximate model of speech. The bene-
fit of using a corpus to generate model events is the
potential to capture naturalistic speech. There is
also evidence that people draw on their knowledge
of events when comprehending sentences, suggest-
ing that information about events is an important
aspect of language use (Nieuwland, 2015; Tieu
etal., 2019).

5 General discussion

With regard to the original MNP paper, we identify
three main claims: (1) that object-initial languages
have the least uniform information structure; (2)
that SVO and VSO have the most uniform infor-
mation structures; and (3) that UID influenced the
distribution of word orders beyond what would
be expected by chance. The raw orders from our
MNP replication attempts and the entropy-based
and surprisal-based UID rankings from our subset
of UD languages supports the first point, in that
OVS and OSV were consistently placed as the last
orders in all rankings. However, the statistical tests
we conducted on our UD-derived entropy-based
and surprisal-based UID scores suggest there was
no difference between the deviation scores of all
six word orders. Our pointwise mutual information
results are similarly murky on this question, with
both our rankings and statistical tests indicating
object-initial word orders performing worse than
object-medial orders, but with no distinction possi-
ble between SVO and OVS or between VSO and
OSV.

On the second claim of MNP, our raw UD de-
rived entropy-based and surprisal-based UID or-
derings support the claim that VSO order results
in the most uniform distribution of information,
while again our statistical tests fail to support this.
SVO, on the other hand, consistently performed
worse in our raw rankings than in MNP’s, sug-
gesting that SVO does not have one of the most
uniform information structures — and again, our
statistical tests suggesting that SVO is no more or
less uniform in its information structure than any
other order. Meanwhile, our PMI results contradict
MNP’s claim with regard to both VSO and SVO.
For both of these first claims, the discrepancies be-
tween what the raw rankings suggest and what the
statistical tests indicate could be due to not testing
enough languages, or due to the other limitations
outlined in section 4.4.

On claim three of MNP, the data presented here
suggest that uniform processing difficulty may not
have played a large role in the evolution of transi-
tive constructions. This follows other lines of evi-
dence that suggest word order evolution is lineage
specific (Dunn et al., 2011; Maurits and Griffiths,
2014). Evidence also points to language evolution
being subject to a number of complex, interacting
factors, including the number of speakers (Lupyan
and Dale, 2010; Raviv et al., 2019) and geography
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(Norris, 1998; Lupyan and Dale, 2010). Noisy-
channel surprisal models further strongly predict
SVO word order, as it reliably encodes which noun
is the subject and which is the object (Gibson et al.,
2019). This suggests that the pressure for a lan-
guage to transition to SVO order is based in faithful
transmission of an utterance rather than in easing
processing costs. This pressure for faithful com-
munication may itself be influenced by the factors
mentioned earlier.

The contribution of language contact cannot be
ignored either, and researchers have long been
aware of areal distributions in typological patterns.
A growing idea is that bilinguals are the cause of
these areal effects, by inducing language change
in one or both of their language communities (see
e.g. Fernndez et al., 2017; Kootstra and ahin, 2018).
Examining the language processing and mental rep-
resentations of bilinguals will be a fruitful area of
research to shed more light on this issue. Indeed,
some studies are already showing that an L2 can
exert influence on a bilingual’s L1 (Carando, 2015;
Higby, 2016; de Oliveira et al., 2017).

Finally, it is pertinent we point out that many
languages with typologically infrequent word or-
ders are spoken by minoritized peoples, oftentimes
ethnically or racially. Arguments that these lan-
guages are difficult to process can reinforce assimi-
lationist narratives that such languages are inferior
and their speakers should speak supposedly supe-
rior dominant languages instead. Given that many
settler-colonial powers have instituted programs
to this effect, and continue to, with justifications
based on the supposed deficiencies or inferiorities
of minoritized languages, this warning is not hyper-
bole (DeGraff, 2005; Baloy, 2011; Zentella, 2014;
Campbell, 2016; Rosa and Flores, 2017; Flores,
2020). Additionally, such explanations can white-
wash the potential role of imperialism and colo-
nialism in causing a dearth of non-SVO/SOV lan-
guages. There is value in examining the commu-
nicative and cognitive pressures that shape human
language, but we must be diligent in how we frame
our research questions and findings so as not to
uphold oppressive language ideologies.
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