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Abstract

Classical accounts of child language learning
invoke memory limits as a pressure to dis-
cover sparse, language-like representations of
speech, while more recent proposals stress the
importance of prediction for language learn-
ing. In this study, we propose a broad-
coverage unsupervised neural network model
to test memory and prediction as sources of
signal by which children might acquire lan-
guage directly from the perceptual stream. Our
model embodies several likely properties of
real-time human cognition: it is strictly incre-
mental, it encodes speech into hierarchically
organized labeled segments, it allows interac-
tive top-down and bottom-up information flow,
it attempts to model its own sequence of la-
tent representations, and its objective function
only recruits local signals that are plausibly
supported by human working memory capac-
ity. We show that much phonemic structure is
learnable from unlabeled speech on the basis
of these local signals. We further show that re-
membering the past and predicting the future
both contribute to the linguistic content of ac-
quired representations, and that these contribu-
tions are at least partially complementary.

1 Introduction

How children acquire language from the envi-
ronment is one of the fundamental mysteries of
cognitive science. Much theoretical, experimen-
tal, and computational research into this question
has focused on acquiring abstractions over lower-
order symbols, such acquiring morphemes from
phoneme sequences or syntactic structures from
word sequences (Chomsky, 1965; Gold, 1967; El-
man, 1991; Saffran et al., 1996; Albright, 2002;
Klein and Manning, 2004; Goldwater et al., 2009;
Christodoulopoulos et al., 2012, inter alia). Chil-
dren, however, do not get symbolic input; sym-
bolic representations at any level of granularity

constitute abstractions inferred from highly vari-
able, noisy, and information-rich perceptual signals
like audition and vision. This work joins a grow-
ing computational literature exploring the kinds
of architectures and learning objectives that best
support acquisition of linguistic representations di-
rectly from the speech signal without supervision
(Versteegh et al., 2015; Dunbar et al., 2017). Such
models can be used to test questions about lan-
guage acquisition under more realistic assumptions
about the input signal, especially to the extent that
they reflect known constraints on human cognition
(Shain and Elsner, 2019; Beguš, 2020).

This study uses computational modeling to ex-
amine two influential and possibly complementary
ideas about how people learn abstract representa-
tions, including language, from data: learning to
remember, and learning to predict. Both hypothe-
ses have been advocated by prior work in language
acquisition, cognitive neuroscience, and computa-
tional modeling, yet their relative contributions to
language learning are not yet clear. Our model per-
mits precise manipulation of memory and predic-
tion pressures during acquisition, allowing direct
comparison of these hypotheses.

In so doing, we implement several constraints on
real-time language processing that have not been
simultaneously present in prior modeling of this do-
main: (1) we jointly segment and label the speech
signal without supervision; (2) the learning ob-
jective is applied incrementally during real-time
processing using only locally available feedback;
(3) the encoded signal is segmental, sparse, and
hierarchically organized; (4) segments are repre-
sented featurally as patterns of activation, rather
than discrete category symbols; and (5) the system
is optimized by modeling its own state at multiple
timescales, rather than by modeling the data alone.

Results show a systematic improvement along
multiple measures of phoneme induction quality
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from both learning to remember and learning to
predict, suggesting that these two kinds of signals
may play complementary roles during child lan-
guage acquisition. The contributions of this work
are as follows:

• We propose a novel deep neural encoder-
decoder for unsupervised speech processing
that is incremental, segmental, and useful for
testing hypothesized cognitive constraints.

• We show empirically that memory-based and
prediction-based signals contribute separately
to the acquisition of linguistic regularities, si-
multaneously supporting two existing classes
of theories about the learning pressures that
underlie human language acquisition.

2 Background

2.1 Memory, Prediction, and Learning

Many proposals from the language acquisition lit-
erature appeal to memory pressures as a learning
signal (Newport, 1990; Pinker, 1991; Carstairs-
McCarthy, 1994; Rissanen and Ristad, 1994; Bad-
deley et al., 1998; Goldsmith, 2003; Yang, 2005,
inter alia). For example, Baddeley et al. (1998)
invoke constraints on working memory, arguing
that because the speech signal is too rich to support
full retention during real-time language process-
ing (Baddeley and Hitch, 1974), infants are guided
toward phonemic representations, which consti-
tute an efficient encoding of that signal. Mean-
while, classical theories of language acquisition
such as Newport (1990) and Pinker (1991) invoke
constraints on long-term memory, arguing that lin-
guistic regularities constitute compressed descrip-
tions of the learner’s input and that their discovery
reduces the amount of information that must by
idiosyncratically stored. Artificial language learn-
ing patterns in humans (Kersten and Earles, 2001)
and recent computational modeling of the speech
domain (e.g. Lee and Glass, 2012; Lee et al., 2015;
Kamper et al., 2015; Elsner and Shain, 2017; Kam-
per et al., 2017a; Shain and Elsner, 2019) have
supported a contribution from memory constraints
to language learning. This position also aligns with
an extensive computational neuroscience literature
on sparse coding, which holds that biological neu-
rons are tuned for memory-efficient representations
of recent stimuli (Attneave, 1954; Olshausen and
Field, 1996, 2004; Sheridan et al., 2017).

Nonetheless, debate exists about the role of mem-
ory in language learning. For example, Rohde and
Plaut (1999) fail to replicate findings from Elman
(1993) in favor of Newport (1990). In addition,
Perfors (2012) fails to find evidence that memory
bottlenecks encourage discovery of underlying lin-
guistic regularities in adults and argues that such
limitations only support language learning in con-
cert with strong inductive priors. Furthermore, ev-
idence suggests that mental representations dur-
ing language processing preserve acoustic details
over and above symbolic codes (Andruski et al.,
1994; McMurray et al., 2002). Related work has
called into question both the memory efficiency
of human mental representations and the severity
of long-term memory limits. For example, experi-
mental evidence indicates that human mental rep-
resentations contain redundant information, both
of language (Baayen et al., 1997) and of other con-
structs such as logical relations (Piantadosi et al.,
2016). In addition, recent estimates of mental stor-
age requirements indicate that lexical information,
especially semantics, already requires vastly more
storage than e.g. phonemes and syntax, suggesting
little added memory benefit from optimizing the
efficiency with which regularities are stored (Mol-
lica and Piantadosi, 2019). Finally, recent com-
putational evidence linking memory bottlenecks
to success in unsupervised speech processing has
relied on storage of arbitrarily long acoustic se-
quences in their full detail in order to compute
reconstruction losses (Kamper et al., 2015; Elsner
and Shain, 2017). This design is inconsistent with
known constraints on the storage duration (< 1s) of
unanalyzed acoustic traces in human working mem-
ory (Baddeley and Hitch, 1974; Cowan, 1984). It
is thus not yet clear (1) how strongly memory pres-
sures constrain mental representations of speech or
(2) how much they encourage language learning.

Memory efficiency is not the only objective that
can be constructed to learn abstractions over data
without supervision. It has also been proposed
that language learning may be driven by optimiz-
ing prediction of future input (Rohde and Plaut,
1999; Johnson et al., 2013; Phillips and Ehrenhofer,
2015; Apfelbaum and McMurray, 2017). This pro-
posal aligns with an extensive neuroscience litera-
ture arguing that predictive coding for future inputs
is a “canonical computation” of the human brain
(Keller and Mrsic-Flogel, 2018) and may better
characterize the tuning of biological neurons than
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sparse coding (Singer et al., 2018), possibly be-
cause prediction affords advantages in critical tasks
(Nijhawan, 1994) and may help organisms filter
noise from the perceptual signal by focusing atten-
tion on features relevant to prediction (Bialek et al.,
2001). Additional support for a role of prediction
in language learning comes from the success of in-
cremental language models in natural language pro-
cessing, which optimize prediction of future words
(Ney et al., 1994; Heafield et al., 2013; Jozefowicz
et al., 2016; Radford et al., 2019). Language mod-
els support dramatic performance improvements
in language processing tasks (Radford et al., 2019)
and have been shown to both (1) acquire linguis-
tic abstractions without direct supervision (Linzen
et al., 2016) and (2) covary with human language
comprehension measures (Frank and Bod, 2011;
Goodkind and Bicknell, 2018; van Schijndel and
Linzen, 2018). Finally, experimental evidence indi-
cates that infants chunk the speech stream at points
of low transition probability, suggesting that predic-
tive signals are exploited to learn word-like units
(Saffran et al., 1996).

We address these questions computationally by
manipulating the presence or absence of memory
and prediction pressures in the joint objective of an
unsupervised incremental speech processing model,
allowing us to quantify the contributions of these
two hypothesized learning signals under realistic
constraints on real-time processing.

2.2 Recurrent, Hierarchical, and Segmental
Speech Processing in Humans

Artificial recurrent neural networks such as
those employed here were initially proposed as
algorithmic-level (Marr, 1982) models of activity
in biological neural networks (Little, 1974; Hop-
field, 1982), and subsequent studies support ubiqui-
tous recurrence in the cortex (Harris and Mrsic-
Flogel, 2013). In addition, influential theories
of biological neural information processing argue
that biological neural circuits integrate informa-
tion at multiple hierarchically-organized timescales
(Kiebel et al., 2008; Hasson et al., 2015; Norman-
Haignere et al., 2020). Further neuroscientific ev-
idence indicates that segmentation of the time di-
mension plays a critical role in human cognition,
both in domain-general event processing (Zacks
et al., 2001; Jensen, 2006, inter alia) and in speech
processing specifically (Sanders and Neville, 2003;
Cunillera et al., 2006, 2009; Kooijman et al., 2013;

Lee and Cho, 2016, inter alia). Segmentation or
“chunking” also plays a central role in several theo-
ries of language comprehension (Sanford and Sturt,
2002; Hale, 2006; Frank and Christiansen, 2018)
and learning (Monaghan and Christiansen, 2010;
McCauley and Christiansen, 2019). Our model
incorporates these notions architecturally, with seg-
ment boundaries implemented by “detector neu-
rons” that govern information flow between neu-
ral populations at larger and smaller timescales
(Masquelier, 2018).

2.3 Modeling the Mental State
Many theories of linguistic structure posit multiple,
hierarchically organized levels of representation
(Chomsky, 1957; Goldsmith, 1976). Such theories
predict the existence of abstractions over abstrac-
tions, latent structures that describe the distribution
of other latent structures. This idea accords with
recent theories of generalized Bayesian learning
in biological agents, in which neural populations
are thought to model the activity of other neural
populations within their Markov blanket (Friston,
2010). The notion of learning through modeling
other elements of the agent’s own mental state has
been exploited in symbolic computational models
of language acquisition (Lee and Glass, 2012; Lee
et al., 2015), but not in the context of artificial neu-
ral zero-resource speech models, which have so far
derived their objective exclusively from the data
(Kamper et al., 2017a; Elsner and Shain, 2017).
Our approach incorporates this idea by optimizing
higher layers to predict the sequence of activations
at lower layers.

2.4 Related Computational Approaches
This work is part of a growing interest in unsu-
pervised representation learning from raw speech,
especially the Zerospeech 2015 (Versteegh et al.,
2015) and 2017 (Dunbar et al., 2017) shared tasks
and participating systems (Badino et al., 2015; Ren-
shaw et al., 2015; Agenbag and Niesler, 2015; Chen
et al., 2015; Baljekar et al., 2015; Räsänen et al.,
2015; Lyzinski et al., 2015; Zeghidour et al., 2016;
Heck et al., 2016; Srivastava and Shrivastava, 2016;
Kamper et al., 2017b; Chen et al., 2017; Yuan
et al., 2017; Heck et al., 2017; Shibata et al., 2017;
Ansari et al., 2017a,b), as well as subsequent deep
neural autoencoders (Van Den Oord et al., 2017;
Chorowski et al., 2019) inspired by the WaveNet
architecture (van den Oord et al., 2016). Much
of this work concerns the discovery of word-like
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units, while our analyses focus on learning at the
phoneme level (see section 4.3).

A symbolic Bayesian framework for joint unsu-
pervised phoneme segmentation and clustering is
proposed by Lee and Glass (2012) and extended
by Lee et al. (2015). Their system infers a Dirich-
let process hidden Markov model to learn a sym-
bolic sequential encoding of the speech stream. A
disadvantage of this approach for the present re-
search question is that the categorically distributed
phone labels lack any notion of featural relatedness,
contrary to widely held assumptions about natural
language phonology (Clements, 1985). In addi-
tion, the learning signal derives from a next-frame
prediction objective, making it difficult to use the
model to factorially manipulate memory and pre-
diction pressures. Another recent framework for
unsupervised phone segmentation identifies bound-
aries at points of high surprisal in a frame-level lan-
guage model (Michel et al., 2017). This approach
does not generate segment encodings and cannot
straightforwardly be used to test claims about the
role of memory in language learning.

3 Model

Like many prior ANN zero-resource speech pro-
cessing models (e.g. Kamper et al., 2015, 2017a;
Elsner and Shain, 2017; Shain and Elsner, 2019),
we employ an encoder-decoder framework. How-
ever, unlike previous approaches, our model de-
codes incrementally and hierarchically, with each
layer decoding its inputs at their own timescale
over a short window backward into the past and/or
forward into the future. The model is thus required
not only to describe the input signal (speech), but
also its own sequence of latent representations (e.g.
phones, words, etc.), much as people are implicitly
thought to do in prior symbolic work on unsuper-
vised language learning (Goldwater et al., 2009;
Lee et al., 2015). Our encoder model closely fol-
lows Chung et al. (2017), and thus the primary tech-
nical contribution of this work lies in the cascaded
incremental decoder and the layerwise incremen-
tal objective described below, both of which are
designed to encourage repurposable segment repre-
sentations based on locally available information.
Although encodings are ultimately the quantity of
interest in unsupervised encoder-decoder models,
prior work has shown that decoder design can be
a major determinant of acquired representations
(McCoy et al., 2018, 2020). The overall design

is schematized in Figure 1. Code is available at
https://github.com/coryshain/dnnseg.

3.1 Encoder

Our encoder closely follows a hierarchical multi-
scale extension (HM-LSTM, Chung et al., 2017)
of long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). The encoder
consists of multiple LSTM layers linked by dis-
crete boundary neurons that govern memory reten-
tion and information flow between layers. When
a boundary neuron fires in layer l, it terminates a
segment. Layer l then ejects its hidden state rep-
resentation to layer l + 1, receives top-down input
from the hidden state of layer l + 1, and resets its
cell state (incremental memory) in order to process
the next segment. The hidden state at a boundary
thus constitutes a label for the segment terminat-
ing at that boundary, which is used to summarize
the content of the segment when communicating
with other layers. When the boundary neuron at
layer l does not fire, layer l + 1 is inert and sim-
ply copies its representation forward. As a result,
higher layers track information at longer timescales
than lower layers, and the segmentation behavior
at l determines the input timescale at l + 1. Each
layer proceeds by segmenting and labeling its input
signal at a timescale learned from data, resulting
in a hierarchical sequence of labeled segments. As
argued in Chung et al. (2017), this design enforces
a trade-off between recurrent information (which
is erased by segmentation) and top-down informa-
tion (which is made available by segmentation).1

Although the linguistic quality of discovered HM-
LSTM segments is not systematically examined
in the original proposal (Chung et al., 2017) and
recent analysis has called it into question (Kádár
et al., 2018), our results indicate that HM-LSTMs
can discover segmental structure from speech, at
least at the phonemic level.

3.2 Decoder

The decoder consists of two multi-layer attentional
sequence-to-sequence (seq2seq) LSTMs with L
layers each, one backward-directional (memory)
and one forward directional (prediction). The
LSTMs respectively decode the B previous input
segment labels and the F following input segment
labels given an encoder representation at layer l and

1See Appendix A for definition of the encoder and B for
comparison to Chung et al. (2017).

https://github.com/coryshain/dnnseg
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Figure 1: Incremental layerwise encoder-decoder
framework. Shown here with 3 layers and a for-
ward/backward window size of 3. Segment boundaries
are shown in cyan. Gray arrows indicate information
flow through the encoder, as governed by the boundary
decisions. Colored arrows indicate information flow
from encodings to decoder targets in the backward (or-
ange) and forward (green) directions, starting from the
encoded timestep at the center of the figure.

time t. In addition, the predicted sequence from
the layer above serves as attention values to inform
decoding at the current layer, at a timescale deter-
mined by the segmentation patterns of the current
layer and the layer below. The internal behavior of
the decoder is thus tightly coupled with the segmen-
tal behavior of the encoder, providing direct feed-
back into the encoder decisions. In addition, the
label sequence of the decoder at all layers must sup-
port both (1) decoding of the perceptual signal (the
data), since top-down connections allow higher-
level representations to inform lower-level ones,
and (2) decoding of lower-level state sequences.2

3.3 Objective
We employ an incremental layerwise objective that
both reconstructs backward and predicts forward
from time t at layer l over the segment labels from
layer l − 1 at a timescale defined by the segmenta-
tion behavior of layer l−1. Thus only the first layer
decodes at the timescale of the data; higher layers l
decode at the timescale of l−1, and representations
associated with non-boundaries in l−1 are ignored
by the objective. The objective scans incrementally
over the time dimension and imposes a forward
and backward cost at every segment boundary iden-
tified by layer l − 1. As a result, the first layer
(“phonemes”) is responsible for incrementally de-
coding the local past and future realization of the
acoustic stream, the second layer is responsible for
decoding the local past and future realization of the

2See Appendix C for definition of the decoder.

“phoneme” sequence, etc.3

Although it is possible to backpropagate into the
decoding targets (i.e. encoder representations) at
higher layers, thereby encouraging the encoder to
discover more predictable segment sequences, we
found in practice that doing so resulted in a form
of mode collapse where labels became insensitive
to the data and converged to a single value for all
timesteps. For this reason, we stop the gradients
into decoding targets and backpropagate only into
the decoder predictions. Thus, the objective en-
courages encodings at higher layers to change to
better predict structures at lower layers— but does
not alter the representations at those lower layers
to make them more uniform and therefore easier to
predict.

4 Experimental Design

We assess the contribution of memory and predic-
tion pressures to phoneme acquisition by (1) ma-
nipulating these pressures on models exposed to
speech data from two unrelated languages (Xit-
songa and English) and (2) evaluating the effect
of these manipulations on multiple measures of
phoneme induction quality.

4.1 Data

We use the Zerospeech 2015 (Versteegh et al.,
2015) challenge data in English and Xitsonga,
a Bantu language spoken in South Africa. The
Xitsonga data come from the NCHLT corpus
(De Vries et al., 2014) and contain 2h29m07s of
read speech from 24 speakers. The English data
come from the Buckeye Corpus (Pitt et al., 2005)
and contain 4h59m05s of spontaneous speech from
12 speakers. For English, we additionally include
the official development set in training, which con-
tains 1h39m45s of spontaneous speech from 2
speakers, also from the Buckeye Corpus. English
development set performance was used for model
development and tuning, but the development set is
not included in the evaluations presented here. Xit-
songa lacks a development set, so designs selected
on the English development set are applied directly
to Xitsonga for evaluation. Before fitting, we con-
vert the source audio files into a cochleagram-based
spectral representation that approximates the signal
generated by the human auditory system (McDer-
mott and Simoncelli, 2011).4

3See Appendix D for definition of the objective.
4See Appendix F for full preprocessing details.
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4.2 Experimental Manipulations

We seek to assess the contribution of both memory
and prediction pressures to the content of model
representations. To this end, our principal manipu-
lations are the backward (B ∈ {0, 5, 25, 50}) and
forward (F ∈ {0, 1, 5, 10}) window lengths used
by the decoder, which respectively impose a pres-
sure to efficiently remember and accurately pre-
dict. Note that the condition B = 0, F = 0
(no reconstruction or prediction) is not well de-
fined because the objective is 0 at any parameteri-
zation and thus has no gradient, and we therefore
exclude it from consideration in these results. In
addition, we manipulate the number of encoder lay-
ers (L ∈ {2, 3, 4}). This is because it is unclear a
priori which layers of the encoder are expected to
correspond to quantities of interest like phonemes
or words, since the representations are unsuper-
vised and the model could additionally or instead
discover e.g. subphonemic, morphemic, phrasal, in-
tonational, and other kinds of structures. Although
detection of these and other levels of linguistic rep-
resentation is of interest and is the target of future
work, the annotations provided by the Zerospeech
2015 data support phoneme-level and word-level
analyses only, and we concentrate our evaluation
there. Varying the number of layers allows us to
investigate which layers emergently discover more
phoneme-like units, and under what conditions.

4.3 Evaluation

Because our model generates a segmental encod-
ing of the speech signal, we apply two classes of
evaluation in this study: phoneme segmentation
and phoneme-level probing classification. The seg-
mentation evaluation measures the degree of corre-
spondence between the model-generated segment
boundaries and expert-annotated phoneme bound-
aries, using a boundary F-measure which assigns a
true positive for up to one predicted boundary that
falls within some tolerance of each gold boundary,
false positives for all other predicted boundaries,
and false negatives for all gold boundaries that lack
a predicted boundary within the tolerance. Fol-
lowing Lee and Glass (2012), we use a tolerance
of 20ms. The classification evaluation measures
the amount of signal in model-generated encod-
ings as to (1) the true identity of the phoneme
being encoded and (2) the cluster of phonologi-
cal features associated with that phoneme (Hayes,
2011). Following e.g. Shain and Elsner (2019) and

Chrupała et al. (2020), we do so using probing
classifiers. In particular, for each layer of each
model’s encoder, we fit linear classifiers to (1) the
phoneme labels and (2) the phonological feature
labels associated with the gold phoneme segment
corresponding to each phone boundary. We extract
the gold and predicted phoneme encodings at the
human-annotated phoneme boundaries, regardless
of whether the model segmented at that location.
This supports direct comparison of metrics across
models, since the set of evaluated segments is held
constant. Phonological features are extracted at
the same timepoints, following the procedure de-
scribed in Shain and Elsner (2019).5

Although our model is designed to support joint
discovery of multiple layers of representation, we
find empirically that no model appreciably im-
proves at any layer in word boundary F-score over
a baseline that segments only at the ends of voice
activity regions, and qualitative inspection does
not indicate systematic correspondence to an unan-
notated level of representation such as syllables,
morphemes, or intonational units. Despite differ-
ences in segmentation rate, and thereby in word
boundary precision-recall trade-off, models gen-
erally converge on similar (low) word boundary
F-scores, and thus our manipulations are not infor-
mative about word learning. Probe-based classifica-
tion metrics are not well suited to word-level eval-
uation due to the size of the vocabulary. Though
human speech processing involves units between
the phoneme and word level, detailed analysis of
such units is difficult due to the lack of annotation
in the corpus. We believe poor word discovery at
higher layers may be due in part to the fact that non-
initial layers have both a non-stationary objective
(the evolving representations of the layer below)
and slower learning dynamics, perhaps making it
difficult for these layers to “catch up” with moving
targets (Ioffe and Szegedy, 2015). We leave explo-
ration of possible remedies to future research and
focus here only on the phoneme level.

While it is a priori unclear which layer of the
encoder is expected to encode phonemes (for ex-
ample, the initial layers may encode sub-phonemic
units), we find systematically better phoneme seg-
mentation and classification performance in the
first layer of the network. For simplicity, we there-
fore only present metrics from this layer.

In addition to reporting raw model performance,

5See Appendix E for probe implementation details.
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English Xitsonga
Model Bd Pc Fc Bd Pc Fc

Full 65.3 22.9 49.3 39.3 28.6 53.8
Baseline U 30.4 12.3 42.2 22.1 15.4 46.2
Baseline X 52.4 20.5 47.1 44.8 27.8 53.2

Table 1: F-measures for boundary discovery (Bd),
phoneme classification (Pc), and phonological feature
classification (Fc), using B = 25, F = 1, L = 3.

we report performance improvements from each
model relative to (1) baseline U (untrained), an
architecturally matched model left at random ini-
tialization (Chrupała et al., 2020), and (2) baseline
X (cross-language), the architecturally matched
model trained on the opposite language.6 These
two baselines quantify different contributions of
the acquisition process. Baseline U quantifies ar-
chitectural inductive bias: how well does the ar-
chitecture alone guide linguistic representations,
without learning? Baseline X quantifies modality
inductive bias: how well does general knowledge
of human speech guide linguistic representations,
without exposure to the target language? Improve-
ment against either of these baselines supports lan-
guage learning from experience, over and above
any prior knowledge that might more efficiently be
innately encoded.7

5 Results and Discussion

Boundary and macro-averaged phoneme and fea-
ture classification F-measures from the best-
performing configuration on the English devel-
opment set (B = 25, F = 1, L = 3) are
given in Table 1. English boundary performance
(F = 65.3) approaches previously reported unsu-
pervised phoneme segmentation scores on different
and therefore not directly comparable datasets (Lee
and Glass, 2012; Michel et al., 2017, both around

6For Xitsonga, baseline X is the architecturally matched
English-trained model. For English, baseline X is the architec-
turally matched Xitsonga-trained model.

7We do not evaluate directly against a previous state of
the art because no state of the art exists for unsupervised
phoneme segmentation and classification in the Zerospeech
2015 data. A previous model that performed the same task
(Lee and Glass, 2012) achieved an average boundary F-score
of 76.1 on a different dataset that used a different boundary
annotation standard (automatic forced alignment instead of
human annotation). To our knowledge, the dataset is no longer
publicly available. A recent segmentation-only model (Michel
et al., 2017) achieved a boundary F of 75 on the TIMIT dataset
(Fisher et al., 1986). However, because TIMIT is restricted
to 10 unique utterances of English, we believe Zerospeech
2015, which contains more linguistically diverse speech from
two unrelated languages, is a better dataset for investigating
language acquisition patterns.

Boundary F

E
ng

lis
h

Phoneme F Feature F

X
its

on
ga

Figure 2: Phoneme acquisition scores. F-measures
for boundary detection (left), phoneme classification
(center), and phonological feature classification (right).

F = 75). The overall segmentation performance in
Xitsonga is considerably worse than that of English,
consistent with prior evidence that word segmenta-
tion in the Zerospeech 2015 Xitsonga partition is
harder than English (e.g. Kamper et al., 2017a). By
contrast, classification metrics in Xitsonga are bet-
ter than in English, which is again consistent with
prior findings of stronger unsupervised classifica-
tion performance in Xitsonga (Shain and Elsner,
2019).

The difference in relative performance between
segmentation and classification in the two lan-
guages could be due in part to differences in reg-
ister: the English data is spontaneously produced,
while the Xitsonga data is read speech. Longer
average phoneme duration (100ms vs 70ms) and
cleaner articulations in Xitsonga could plausibly
give rise to this asymmetry, and further investi-
gation is left to future work. The model substan-
tially outperforms the untrained baseline (U) on all
metrics and outperforms the cross-language base-
line (X) on all metrics but boundary F in Xitsonga,
which could be due in part to the larger size of the
English-language training set. Results therefore
indicate that the reconstruction and prediction ob-
jectives have contributed to unsupervised discovery
of phonemic patterns in both languages.

Segmentation and macro-averaged classification
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F-measures by language and experimental condi-
tion are given in Figure 2. Results show a contri-
bution of both memory (B > 0) and prediction
(F > 0), with a similar distribution of relative
performance between the two languages, support-
ing the existence of language-general influences of
prediction and memory on phoneme learning.

As shown in Figure 2, models without memory
pressures (B = 0) find substantially worse bound-
aries than models with memory pressures. There
also appears to be a ceiling effect of backward re-
construction size, with a jump in performance at
B = 25 but no systematic improvement at B = 50.
Importantly, at layer 1, B = 25 covers a 250ms
interval, which falls within even conservative esti-
mates of the storage duration of unanalyzed audi-
tory traces in humans (Cowan, 1984). The B = 25
objective could therefore plausibly be used dur-
ing online speech processing. Prediction pressures
also support discovery of phoneme boundaries, as
shown by the generally worse boundary perfor-
mance of F = 0 vs. F > 0 in both languages.

In addition, Figure 2 shows that memory and pre-
diction both modulate phoneme classification per-
formance, with a roughly convex performance sur-
face around a peak at B = 25, F = 10 for English
and B = 25, F = 5 for Xitsonga. A similar peak
emerges in the feature classification results for En-
glish, along with a local feature classification peak
in Xitsonga for L > 2. A 250ms auditory memory
window thus supports both phoneme segmentation
and classification in our models, with additional
benefits from predicting over short intervals (Singer
et al., 2018). For feature classification, the primary
determinant of performance across languages is the
prediction objective, with performance generally
increasing up to F = 5. There is also an effect of
encoder depth in these results, such that encoders
with more layers (L > 2) tend to perform better
across metrics, despite the fact that all metrics re-
flect performance at the first layer. This result sup-
ports a contribution of multiscale modeling, even
if the segmentation behavior at higher layers does
not clearly correspond to a theory-driven level of
representation (see section 4.3).

Figure 3 reports performance differences by
metric against baseline U (untrained). Training
yields consistent and often substantial improve-
ments across metrics in multiscale (L > 0) en-
coders with both memory (B > 0) and prediction
(F > 0) pressures, but can fail to improve in the
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Figure 3: Effect of learning. Change in F-measure by
metric over baseline U.

absence of these characteristics. Memory and pre-
diction therefore modulate not only absolute perfor-
mance, but also the utility of language experience.

Figure 4 reports performance differences by met-
ric against baseline X (cross-language). English
segmentation is substantially helped by experience
with (i.e. training on) English, especially under
strong memory pressures. However, Xitsonga seg-
mentation is generally worse for the Xitsonga-
trained model than the English-trained one. This
might be due to the fact that the English training set
is larger, and/or to low overall levels of segmenta-
tion performance in Xitsonga. While we leave fur-
ther investigation of this exception to future work,
the classification metrics still show a clear benefit
of in-domain training in both languages, but only
in the presence of prediction pressures.

The baseline X results bear on the degree to
which speech processing patterns can plausibly be
innately specified. Although the set of phonologi-
cal categories and features are classically regarded
as universal (Chomsky and Halle, 1968; Clements,
1985), it is well known that the “same” phonolog-
ical abstraction (e.g. voicing) can be phonetically
cached out in different ways depending on the lan-
guage (e.g. Gordon and Ladefoged, 2001; Gordon
et al., 2002). Our results suggest that, at least be-
tween Xitsonga and English, this variation is both
(1) constrained enough to permit recognition of
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Figure 4: Effect of language. Change in F-measure by
metric over baseline X.

non-trivial patterns from speech in other languages
on the basis of general, possibly innate processing
biases, and (2) substantial enough to give rise to
a benefit of direct experience with the target lan-
guage, even for language-general constructs like
phoneme categories and phonological features.

We use linear regression on the combined met-
rics to quantitatively evaluate the contribution of
both memory and prediction pressures to phoneme
acquisition. Results show significant positive con-
tributions to acquisition from memory pressures
(p = 0.006), prediction pressures (p < 0.001), and
multiscale encoding (p < 0.001).8

The boundary precision/recall trade-off illumi-
nates the mechanisms by which memory and pre-
diction pressures affect learning (Figure 5). With-
out memory pressures (B = 0), segmentation rates
are high, resulting in high recall and low preci-
sion. Introducing memory pressures (B > 0)
slows the segmentation rate, resulting in a more
balanced P/R trade-off. Without prediction pres-
sures (F = 0), segmentation rates are generally
low, resulting in higher precision and lower recall.
Introducing prediction pressures (F > 0) increases
the segmentation rate, again resulting in a more bal-
anced trade-off. To understand this pattern, recall
that a boundary in our model represents both a cost

8See Appendix G for details.

English
P R

Xitsonga
P R

Figure 5: Boundary P/R trade-off. Boundary preci-
sion (left) and recall (right) by experimental configura-
tion in Xitsonga and English.

(flushing the memory cell) and a benefit (inject-
ing top-down feedback). The cost of forgetting is
plausibly greater for reconstruction than prediction,
since only the current layer has had direct access
to the sequence of reconstruction targets. By con-
trast, the benefit of top-down feedback is plausibly
greater for prediction than reconstruction, since the
prediction can condition on contextual represen-
tations at multiple timescales. In our segmental
model of speech processing, the objectives there-
fore induce countervailing biases that boost signal
for phonological constructs, supporting their joint
influence on phoneme acquisition from speech.

6 Conclusion

We proposed an unsupervised deep neural model of
speech processing that is incremental, segmental,
and optimized by local feedback. We manipulated
the model’s objective function in order to inves-
tigate prior hypotheses about the role in human
language acquisition of memory constraints on the
one hand and predictive processing on the other.
Results support a role for both memory and predic-
tion pressures for acquiring phonemes from speech.
Both objectives inform the model’s segmentation
behavior and the content of its segment encodings.
In addition, results suggest that these two mecha-
nisms coordinate to support phoneme discovery by
introducing countervailing pressures toward reten-
tion of previously encountered signals (memory)
and consultation of top-down signals (prediction).
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Chrupała, and Afra Alishahi. 2018. Revisiting
the Hierarchical Multiscale LSTM. In Proceed-
ings of the 27th International Conference on
Computational Linguistics, pages 3215–3227.

Herman Kamper, Micha Elsner, Aren Jansen, and
Sharon Goldwater. 2015. Unsupervised neural net-
work based feature extraction using weak top-down
constraints. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2015 IEEE International Confer-
ence on, pages 5818–5822. IEEE.

Herman Kamper, Aren Jansen, and Sharon Goldwa-
ter. 2017a. A segmental framework for fully-
unsupervised large-vocabulary speech recognition.
Computer Speech & Language, 46:154–174.

Herman Kamper, Karen Livescu, and Sharon Gold-
water. 2017b. An embedded segmental k-means
model for unsupervised segmentation and clustering
of speech. In Automatic Speech Recognition and Un-
derstanding Workshop (ASRU), 2017 IEEE, pages
719–726. IEEE.

Georg B Keller and Thomas D Mrsic-Flogel. 2018.
Predictive Processing: A Canonical Cortical Com-
putation. Neuron, 100(2):424–435.

Alan W Kersten and Julie L Earles. 2001. Less re-
ally is more for adults learning a miniature artifi-
cial language. Journal of Memory and Language,
44(2):250–273.

Stefan J Kiebel, Jean Daunizeau, and Karl J Friston.
2008. A hierarchy of time-scales and the brain.
PLoS Comput Biol, 4(11):e1000209.

Diederik P Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6.

Dan Klein and Christopher D. Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
Annual Meeting on Association for Computational
Linguistics, volume 1, pages 478–485.

Valesca Kooijman, Caroline Junge, Elizabeth K John-
son, Peter Hagoort, and Anne Cutler. 2013. Predic-
tive brain signals of linguistic development. Fron-
tiers in psychology, 4:25.

Byeongwook Lee and Kwang-Hyun Cho. 2016. Brain-
inspired speech segmentation for automatic speech
recognition using the speech envelope as a temporal
reference. Scientific reports, 6:37647.

Chia-ying Lee and James Glass. 2012. A Nonparamet-
ric {Bayesian} Approach to Acoustic Model Dis-
covery. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics,
pages 40–49.

https://doi.org/10.1207/s15516709cog0000{_}64
https://doi.org/10.1207/s15516709cog0000{_}64
https://www.coursera.org/course/neuralnets
https://www.coursera.org/course/neuralnets
https://doi.org/https://doi.org/10.1016/j.csl.2017.04.008
https://doi.org/https://doi.org/10.1016/j.csl.2017.04.008
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016


207

Chia-ying Lee, Timothy J O’Donnell, and James
Glass. 2015. Unsupervised Lexicon Discovery from
Acoustic Input. In Transactions of the Associa-
tion for Computational Linguistics, volume 3, pages
389–403.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

William A Little. 1974. The existence of persistent
states in the brain. Mathematical biosciences, 19(1-
2):101–120.

Vince Lyzinski, Gregory Sell, and Aren Jansen. 2015.
An evaluation of graph clustering methods for unsu-
pervised term discovery. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

David Marr. 1982. Vision: A Computational Investiga-
tion into the Human Representation and Processing
of Visual Information. W.H. Freeman and Company.

Timothée Masquelier. 2018. STDP allows close-to-
optimal spatiotemporal spike pattern detection by
single coincidence detector neurons. Neuroscience,
389:133–140.

Stewart M McCauley and Morten H Christiansen.
2019. Language learning as language use: A
cross-linguistic model of child language develop-
ment. Psychological review, 126(1):1.

R Thomas McCoy, Robert Frank, and Tal Linzen. 2018.
Revisiting the poverty of the stimulus: Hierarchical
generalization without a hierarchical bias in recur-
rent neural networks. In Proceedings of the 40th
Annual Conference of the Cognitive Science Society,
pages 2093–2098.

R Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? Sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Compu-
tational Linguistics, 8:125–140.

Josh H McDermott and Eero P Simoncelli. 2011.
Sound texture perception via statistics of the audi-
tory periphery: evidence from sound synthesis. Neu-
ron, 71(5):926–940.

Bob McMurray, Michael K Tanenhaus, and Richard N
Aslin. 2002. Gradient effects of within-category
phonetic variation on lexical access. Cognition,
86(2):B33–B42.

Paul Mermelstein. 1976. Distance measures for speech
recognition, psychological and instrumental. Pat-
tern recognition and artificial intelligence, 116:374–
388.

Paul Michel, Okko Rasanen, Roland Thiollière, and
Emmanuel Dupoux. 2017. Blind Phoneme Segmen-
tation With Temporal Prediction Errors. In Pro-
ceedings of ACL 2017, Student Research Workshop,
pages 62–68.

Francis Mollica and Steven T Piantadosi. 2019. Hu-
mans store about 1.5 megabytes of information dur-
ing language acquisition. Royal Society open sci-
ence, 6(3):181393.

Padraic Monaghan and Morten H Christiansen. 2010.
Words in puddles of sound: Modelling psycholin-
guistic effects in speech segmentation. Journal of
child language, 37(3):545–564.

Elissa Newport. 1990. Maturational constraints on lan-
guage learning. Cognitive Science, 14:11–28.

Hermann Ney, Ute Essen, and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochas-
tic language modelling. Computer Speech and Lan-
guage, 8(1):1–38.

R Nijhawan. 1994. Motion extrapolation in catching.
Nature, 370(6487):256.

Sam V Norman-Haignere, Laura K Long, Orrin Devin-
sky, Werner Doyle, Ifeoma Irobunda, Edward Mer-
ricks, Neil A Feldstein, Guy M V McKhann, Cather-
ine Schevon, Adeen Flinker, and Nima Mesgarani.
2020. Hierarchical integration across multiple
timescales in human auditory cortex. bioRxiv.

Bruno A Olshausen and David J Field. 1996. Emer-
gence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature,
381(6583):607.

Bruno A Olshausen and David J Field. 2004. Sparse
coding of sensory inputs. Current opinion in neuro-
biology, 14(4):481–487.
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A Encoder Definition

Given encoder inputs xe
t ∈ RD0 for 0 < t ≤ T ,

an encoder with L layers is a recurrent neural net-
work that computes itsDl-dimensional hidden state
h

e(l)
t ∈ RDl at timestep t and layer l from the hid-

den state below h
e(l−1)
t (bottom-up connection),

the previous hidden state h
e(l)
t−1 (recurrent connec-

tion), and the previous hidden state above h
e(l+1)
t−1 ,

where the layer zeroth state he(0)
t ∈ RD0 is the data

xe
t . The hidden state h

e(l)
t serves as a label at layer

l and timestep t. Information flow between these
layers is governed by a discrete boundary neuron
z
(l)
t ∈ {0, 1} at each layer. Let t(l)

′
be the location

of the most recent segment boundary preceding
time t in layer l:

t(l)
′ def
= τ |

[
(z(l)τ = 1) ∧(
z
(l)
τ ′ = 0, ∀τ ′ ∈ {τ + 1, . . . , t− 1}

)]
(A1)

∀τ ∈ {1, . . . , t− 1}

Let f f(l)(a, b) be a filter function dropping labels
of l at non-boundaries between timepoints a and b:

f f(l)(a, b)
def
= he(l)

τ |
(
z(l)τ = 1

)
,

∀τ ∈ {a, . . . , b} (A2)

A segment S(l)
t at layer l and timestep t is defined

as:
S
(l)
t

def
= f f(l−1)(t(l)

′
+ 1, t) (A3)

In other words, the segment S(l)
t consists of the

sequence of segment labels from layer l − 1 at
boundaries from l − 1 that intervene since the last
segment boundary at l.

The bottom-up, recurrent, and top-down inputs
are respectively linearly transformed into vectors
in sb(l), sr(l), st(l) ∈ R4Dl+1 using weight matrices
Wj

i mapping from layer i to layer j, and masked
using the boundary decisions z:

s
b(l)
t

def
= z

(l−1)
t Wl

l−1h
e(l−1)
t (A4)

s
r(l)
t

def
= Wl

l

h
e(l)
t

h
e(l)
t

′

n
(l)
t

 (A5)

s
t(l)
t

def
= z

(l)
t−1W

l
l+1h

e(l+1)
t (A6)

where h
e(l)
t

′
records the label at the preceding seg-

ment boundary h
e(l)
t(l)
′ and n

(l)
t is the number of

timesteps since the preceding segment boundary at
l. We pass this additional information into the recur-
rent connection to relieve pressure on the cell state
to encode it. These vectors are summed together
with a bias b(l) to create a vector of preactivations
s(l), normalized by the boundary decisions so that
the weights on active connections sum to 1:

s
(l)
t

def
=

sb(l) + sr(l) + st(l) + b(l)

1 + z
(l−1)
t + z

(l)
t−1

(A7)

In this way, information is only passed upward and
downward at boundaries, and the boundaries thus
govern information flow between adjacent layers.

The vector s(l)t is split into state preactivations
u
(l)
t ∈ R4Dl and scalar boundary preactivation
v
(l)
t ∈ R. Discrete boundary z(l)t is computed from
v
(l)
t stochastically during training:

z
train(l)
t ∼ Bernoulli

(
sigmoid(v(l)t )

)
(A8)

and deterministically during evaluation:

z
eval(l)
t =

{
1 v

(l)
t > 0

0 otherwise
(A9)

We additionally require that z(0)t = 1 (the input
always “segments”) and z(L)t = 0 (the top layer
never segments). To enforce hierarchical segmen-
tation behavior, we mask the boundaries by the
boundaries at the layer below:

z
(l)
t ← z

(l)
t z

(l−1)
t (A10)

Gradients through these discrete decisions are ap-
proximated using straight-through estimation (Hin-
ton, 2012; Bengio et al., 2013; Courbariaux et al.,
2016; Chung et al., 2017; Shain and Elsner, 2019;
Eloff et al., 2019).

The forget gates f
e(l)
t , input gates i

e(l)
t , output

gates oe(l)
t , and cell proposal ge(l)

t are computed as
follows:

f
e(l)
t

def
= sigmoid

(
u
(l)
t [1:Dl]

)
(A11)

i
e(l)
t

def
= sigmoid

(
u
(l)
t [Dl+1:2Dl]

)
(A12)

o
e(l)
t

def
= sigmoid

(
u
(l)
t [2Dl+1:3Dl]

)
(A13)

g
e(l)
t

def
= tanh

(
u
(l)
t [3Dl+1:4Dl]

)
(A14)
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The cell state ce(l)
t is a weighted sum of three terms:

a flush operation c
f(l)
t that erases the cell memory, a

standard LSTM update cu(l), and a copy operation
cc(l) that copies the preceding cell state forward:

c
f(l)
t

def
= i

e(l)
t � g

(el)
t (A15)

c
u(l)
t

def
= f

e(l)
t � c

e(l)
t−1 + i

e(l)
t � g

e(l)
t (A16)

c
c(l)
t

def
= c

e(l)
t−1 (A17)

These terms are weighted by the boundary deci-
sion such that a flush occurs when the preceding
timestep finds a boundary, an update otherwise oc-
curs when the layer below finds a boundary, and a
copy occurs when neither layer finds a boundary:

c
e(l)
t

def
= z

(l)
t−1c

f(l)
t +(

1− z(l)t−1
)
z
(l−1)
t c

u(l)
t + (A18)(

1− z(l)t−1
)(

1− z(l−1)t

)
c

c(l)
t

The hidden state h
e(l)
t is computed as:

h
e(l)
t

def
= tanh

(
c

e(l)
t

)
(A19)

The previous segment encoding h
e(l)
t

′
is updated

following a boundary and copied forward other-
wise:

h
e(l)
t

′ def
= z

(l)
t−1h

e(l)
t−1 +

(
1− z(l)t−1

)
h

e(l)
t−1
′

(A20)

The current segment length n
(l)
t is reset to 0 if

z
(l)
t−1 = 1, incremented if z(l−1)t = 1, and copied

forward otherwise:

n
(l)
t

def
=
(
1− z(l)t−1

)
n
(l)
t−1 + z

(l−1)
t (A21)

B Comparison of Encoder Model to
Chung et al. (2017)

Although our encoder model closely follows the
definition in Chung et al. (2017), it differs in the
following ways:

• The recurrent connection includes both the
previous segment label and the current seg-
ment length in addition to the previous hid-
den state. We found this to be helpful during
model development, and we hypothesize that
this is because doing so removes the need for
this information to be encoded by the model.

• We implement the case-wise reasoning of the
segmentation decisions using multiplicative
masking rather than logical selection. This
is intended to boost signal into the boundary
decisions.

• We enforce hierarchical segmentation behav-
ior by multiplicatively masking the segmenta-
tion decision at layer l with the segmentation
decision at layer l − 1, thus preventing higher
layers from segmenting where lower layers do
not.

• We compute boundaries during training via
Bernoulli sampling rather than rounding. We
found this to substantially improve perfor-
mance on the development set, and we hypoth-
esize that sampling may improve the straight-
through gradient estimates by ensuring that
the segmentation decision is unbiased with
respect to the underlying segmentation proba-
bility.

• We renormalize the preactivations s(l)t by the
incoming boundary decisions (eq. A7). We
found this to be helpful during model develop-
ment, and we hypothesize that this is because
it avoids fluctuation in the scale of preactiva-
tions as a function of the boundaries.

• We do not apply the Chung et al. (2017) tech-
nique of slope annealing, i.e. gradually in-
creasing the steepness of the sigmoid activa-
tion function to reduce bias in the straight-
through estimator. We did not find an appre-
ciable benefit from slope annealing during de-
velopment, and it had a tendency to produce
training instability. Eliminating it also reduces
experimenter degrees of freedom by removing
design decisions about the annealing function.

C Decoder Definition

The decoder consists of two attentional seq2seq
LSTMs with L layers each, one backward-
directional (memory) and one forward directional
(prediction). Given a backward window size B and
a forward window size F , each backward decoder
layer generates reconstructions YB(l)

t ∈ RB×Dl−1

and each forward decoder layer generates predic-
tions Y

F(l)
t ∈ RF×Dl−1 , corresponding respec-

tively to the B preceding and F following segment
labels of layer l − 1 at time t. The initial decoder
hidden and cell states — h

dB(l)
t,0 and c

dB(l)
t,0 for the
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backward decoder and h
dF(l)
t,0 and c

dF(l)
t,0 for the for-

ward decoder — are generated using multilayer
feedforward transforms fhB(l), f cB(l), fhF(l), and
f cF(l):

h
dB(l)
t,0

def
= fhB(l)

(
h

e(l)
t

)
(A22)

c
dB(l)
t,0

def
= f cB(l)

(
h

e(l)
t

)
(A23)

h
dF(l)
t,0

def
= fhF(l)

(
h

e(l)
t

)
(A24)

c
dF(l)
t,0

def
= f cF(l)

(
h

e(l)
t

)
(A25)

Decoder states are doubly time indexed by t, i,
where t indexes the encoder timestamp (i.e. the
input timestep at which decoding begins) and i in-
dexes the decoder timestamp (i.e. progress through
the B or F decoder frames). Given decoder
states hdB(l)

t,i , hdF(l)
t,i , predictions YB(l)

t [i], Y
F(l)
t [i] ∈

RDl−1 are generated using multilayer feedforward
transforms fyB(l), fyF(l):

Y
B(l)
t [i]

def
= fyB(l)

(
h

dB(l)
t,i

)
(A26)

Y
F(l)
t [i]

def
= fyF(l)

(
h

dF(l)
t,i

)
(A27)

The decoder takes as input a periodic positional
encoding ei, generated following Vaswani et al.
(2017). Non-final layers additionally take as an
attention values the predictions from the layer
above, i.e. YB(l+1)

t (for backward reconstruction)
and Y

F(l+1)
t (for forward prediction) and com-

pute a weighted sum of these values over time
with attention weight vectors aB(l)

t,i ∈ (0, 1)B and

a
F(l)
t,i ∈ (0, 1)F to generate context vectors w

B(l)
t,i

and w
F(l)
t,i :

w
B(l)
t,i

def
= Y

B(l+1)
t

>
a

B(l)
t,i (A28)

w
F(l)
t,i

def
= Y

F(l+1)
t

>
a

F(l)
t,i (A29)

Attention weights aB(l) and aF(l) are computed us-
ing Gaussian kernel k(i;µ, σ2):

k(i;µ, σ2)
def
= exp

(
(i− µ)2

σ2

)
(A30)

Kernel k is applied to decoder time, with con-
centration σB(l), σF(l) = 0.25 and with location
µ

B(l)
t,i µ

F(l)
t,i ∈ R+ computed by transforming the pre-

vious decoder state using a feedforward transform

fqB(l), fqF(l) and adding the result to the previous
attention location:

µ
B(l)
t,i

def
= abs

(
fqB(l)

(
h

dB(l)
t,i−1

))
+ µ

B(l)
t,i−1 (A31)

µ
F(l)
t,i

def
= abs

(
fqF(l)

(
h

dF(l)
t,i−1

))
+ µ

F(l)
t,i−1 (A32)

where µB(l)
t,0 = 1. Unit-normalized attention vec-

tors are computed from timestamp vectors tB def
=

(1, . . . , B)> and tF def
= (1, . . . , F )> as:

a
B(l)
t,i

def
=

k
(
tB;σB(l), µ

B(l)
t,i

)
∑B

j=1 k
(
tB
[j];σ

B(l), µ
B(l)
t,j

) (A33)

a
F(l)
t,i

def
=

k
(
tF;σF(l), µ

F(l)
t,i

)
∑B

j=1 k
(
tF
[j];σ

F(l), µ
F(l)
t,j

) (A34)

The attention weights are thus constrained to march
monotonically in time from t into the decoded past
or future predicted segment labels from the layer
above. Using fixed concentration 0.25 yields an
effective kernel width [−2σ, 2σ] of one timestep,
ensuring that the bulk of the attention kernel either
falls on a single segment label or straddles two con-
secutive segment labels and preventing the decoder
from spreading its attention over many higher-level
segments. This design encourages one-to-many
temporal alignment between decoded segment la-
bels and decoded inputs, while allowing the de-
coder to determine how long to attend to a predicted
segment label before moving on to the next one.
At the final (top) layer, no top-down predictions
are available, so the context vectors are omitted (or,
equivalently, set to 0).

The inputs to the decoder xdB(l)
t,i , xdF(l)

t,i are con-
structed as the vertical concatenation of e, w, and
the previously generated decoder output, and a stan-
dard LSTM state update is applied:

x
dB(l)
t,i

def
=

 ei

w
B(l)
t,i

Y
B(l)
t [i−1]

 (A35)

x
dF(l)
t,i

def
=

 ei

w
F(l)
t,i

Y
F(l)
t [i−1]

 (A36)

h
dB(l)
t,i , c

dB(l)
t,i

def
= LSTM

(
x

dB(l)
t,i ,h

dB(l)
t,i−1

)
, i > 0

(A37)

h
dF(l)
t,i , c

dF(l)
t,i

def
= LSTM

(
x

dF(l)
t,i ,h

dF(l)
t,i−1

)
, i > 0

(A38)
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The decoder is only applied to elements of
f f(l)(1, T ) (i.e. only to frames where layer l seg-
ments) and only decodes the last B elements of
f f(l−1)(1, t) and the first F elements of f f(l−1)(t+
1, T ); that is, it decodes only the B preceding
segment labels and F following segment labels
from layer l− 1, ignoring labels at non-boundaries.
Therefore, like encoding, decoding is also multi-
scale, taking place at the timescale of the encoder
representations.

D Objective

Each decoder layer contributes two terms to the
objective, a forward objective and a backward ob-
jective. Layer 1 decodes the data and uses a squared
error loss:

fL(1)(x, y)
def
= ||x− y||22 (A39)

Layers 2, . . . , L decode the representations from
the layer below, which are tanh-activated and thus
constrained to the interval (−1, 1). Encoder fea-
tures h

e(l)
t are deterministically cast into bitwise

feature probabilities p
e(l)
t and decoded using sig-

moid cross-entropy loss:

p
e(l)
t

def
= (h

e(l)
t + 1)/2 (A40)

fL(l)(x, y)
def
= sigmoid-xent(x, y), 1 < l ≤ L

(A41)

Let T (l)′ denote the number of segment boundaries
in layer l. Let ZB(l)

t,i,d, ZF(l)
t,i,d, ẐB(l)

t,i,d, and Ẑ
F(l)
t,i,d respec-

tively denote the backward and forward targets and
model predictions at encoder time t, decoder time
i, and dimension d, defined as follows:

Z
B(l)
t,i,d

def
= rev

(
f f(l−1)(1, t)

)
[i,d]

(A42)

Z
F(l)
t,i,d

def
= f f(l−1)(t+ 1, T )[i,d] (A43)

Ẑ
B(l)
t,i,d

def
= Y

B(l)
t [i,d] (A44)

Ẑ
F(l)
t,i,d

def
= Y

F(l)
t [i,d] (A45)

The backward and forward loss components LB(l)

and LF(l) are computed as:

LB(l) def
=

∑T (l)′

t=1

∑B
i=1

∑Dl−1

d=1 fL(l)
(
Z

B(l)
t,i,d, Ẑ

B(l)
t,i,d

)
T (l)′BDl−1

(A46)

LF(l) def
=

∑T (l)′

t=1

∑F
i=1

∑Dl−1

d=1 fL(l)
(
Z

F(l)
t,i,d, Ẑ

F(l)
t,i,d

)
T (l)′FDl−1

(A47)

The overall loss L is:

L def
=

L∑
l=1

LB(l) + LF(l) (A48)

E Implementation Details

We apply the following implementation decisions
in this study:

• Dl = 128 for 1 ≤ l ≤ L

• One hidden layer of 128 units for all feedfor-
ward transforms

• Positional encoding dimensionality of 128

• Exponential linear unit (elu) activations for
all internal feedforward layers (Clevert et al.,
2015)

• Glorot uniform initialization for bottom-up,
top-down, and feedforward encoder and de-
coder weight matrices (Glorot and Bengio,
2010)

• Orthogonal initialization for recurrent weight
matrices (Saxe et al., 2013)

• Adam optimizer (Kingma and Ba, 2014) with
learning rate 0.001, a minibatch size of 8, and
default TensorFlow parameters.

• Probing classifier implementation

– Logistic regression using
scikit-learn (Pedregosa et al.,
2011)

– Phoneme prediction is multinomial, fea-
ture prediction is binary

– Minority feature class is always coded as
positive

– 2-fold cross-validation
– L2 λ = 1

– 100 LBFGS iterations (Zhu et al., 1997)
per fold

F Data Preprocessing

We convert the audio recordings into sequences of
50-dimensional cochleagrams (Brown and Cooke,
1994; McDermott and Simoncelli, 2011), each rep-
resenting 10ms of audio data. Although this differs
from the standard automatic speech recognition
pipeline based on Mel frequency cepstral coeffi-
cients (Mermelstein, 1976), it is motivated for our
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study because the model is unsupervised. Since we
wish to test theories about cognition by extracting
features from the acoustic stream without supervi-
sion, it is critical not only that the speech represen-
tation contain features that support identification of
linguistic units, but that the representation empha-
size those features in a plausibly similar manner
to that of the human auditory system. Cochlea-
grams support this goal by incorporating more re-
cent insights about human auditory perception (Mc-
Dermott and Simoncelli, 2011). Our implemen-
tation uses the pycochleagram library https:

//github.com/mcdermottLab/pycochleagram.
We L2 normalize the cochleagrams in order to

encourage the decoder to focus on the spectral
power envelope rather than absolute variation in
loudness, since the former plausibly contains more
linguistic signal. This procedure is supported by
evidence of loudness constancy in human auditory
perception, suggesting that similar kinds of normal-
ization may take place in the brain (Zahorik and
Wightman, 2001). We additionally z-transform the
normalized cochleagrams over time within each au-
dio file, since this proved beneficial during model
development.

The source audio files contain many non-speech
regions that are not of direct relevance for this study.
We use the voice activity detection (VAD) inter-
vals provided with the Zerospeech 2015 challenge
data to remove these regions as a preprocess, and
we force boundaries at the ends of VAD intervals.
This greatly speeds training by removing irrelevant
data, and it aligns with neuroscientific evidence
of a prelinguistic capacity to detect human voices
(Belin et al., 2000; Fecteau et al., 2005; Blasi et al.,
2011; Pernet et al., 2015).

G Regression Model Design and Results

We use linear regression to test the relationship be-
tween performance and memory pressures, predic-
tion pressures, and multiscale encoding. To do so,
we combine raw boundary, phoneme classification,
and feature classification metrics, along with deltas
in these metrics over baselines U and X, into a sin-
gle vector of performance statistics, each of which
measures one aspect of the contribution of these di-
mensions to phoneme learning in our unsupervised
models. To improve normality of performance met-
rics which are bounded on the interval [0, 1], as
well as comparability of performance across met-
rics, we first (1) cast the metrics onto the interval

Predictor β t p
Intercept -1.22 -7.73 3.89e-14***
Memory 0.247 2.75 0.006**

Prediction 0.959 9.86 2.0e-16***
Multiscale 0.305 4.10 4.58e-5***

Comparison=Full 0.037 0.453 0.651
Comparison=BaselineX -0.064 -0.709 0.479

Metric=Phoneme 0.021 0.240 0.810
Metric=Feature 0.022 0.250 0.803

Table A1: Linear regression results

[−1, 1], (2) apply Fisher’s Z transformation (i.e.
arctanh), and (3) Z-score the transformed vectors
within each metric type.

We use binary coding for our predictors of
interest: presence/absence of memory pressures
(B > 0), presence/absence of prediction pressures
(F > 0), and presence/absence of multiscale seg-
mental encoding (L > 2). We also include cat-
egorical controls for comparison type (full, full
- baseline U, full - baseline X) and metric type
(boundary, phoneme, feature). Results, shown in
Table A1, support a contribution of all three critical
variables to phoneme acquisition.
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