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Abstract

Recurrent Neural Networks (RNNs) have been
shown to capture various aspects of syntax
from raw linguistic input. In most previous ex-
periments, however, learning happens over un-
realistic corpora, which do not reflect the type
and amount of data a child would be exposed
to. This paper remedies this state of affairs
by training a Long Short-Term Memory net-
work (LSTM) over a realistically sized subset
of child-directed input. The behaviour of the
network is analysed over time using a novel
methodology which consists in quantifying the
level of grammatical abstraction in the model’s
generated output (its ‘babbling’), compared to
the language it has been exposed to. We show
that the LSTM indeed abstracts new structures
as learning proceeds.

1 Do RNNs learn grammar?

Artificial Neural Networks, and Long Short-Term
Memory Networks more specifically, have consis-
tently demonstrated great capabilities in the area
of language modeling. In addition to generating
credible surface patterns, they show excellent per-
formances when tested on very specific grammati-
cal abilities (Gulordava et al., 2018; Lakretz et al.,
2019), without requiring any prior bias towards the
syntactic structure of natural languages.

From a theoretical point of view, these results
seem to contradict the well-known argument of the
poverty of the stimulus (Chomksy, 1959; Chomsky,
1968) and raise questions about the continuity hy-
pothesis in language acquisition (Lust, 1999; Crain
and Pietroski, 2001). At the same time, a num-
ber of results give a much more mitigated view of
RNNs’ abstraction capabilities (Marvin and Linzen,
2018; Chowdhury and Zamparelli, 2018). It thus
remains unclear how and to what extent grammati-
cal abilities emerge in artificial language models,
and how this knowledge is encoded in their repre-

sentations – especially when considering notions
such as productivity and compositionality (Baroni,
2020), which are recognised as defining traits of
natural languages.

This paper proposes that the evaluation of RNN
grammars should be widened to include the effect
of the type of input data fed to the network, as
well as the theoretical paradigm used to analyse its
output. We specifically remark that much of the dis-
cussion concerning language modeling remains in-
fluenced by the mainstream generativist approach,
which posits a sharp distinction between syntax
and the lexicon. Our own approach will be to de-
part from this account by testing the grammatical
abilities of an RNN in a usage-based perspective.
Specifically, we ask what kind of structures are ab-
stracted and used productively by the network, and
how the abstraction process takes place over time.

In contrast with previous models: (i) we train a
vanilla char-LSTM on a more realistic variety and
amount of data, focusing on a limited amount of
child-directed language; (ii) we do not rely on ex-
trinsic evaluations or downstream tasks, instead we
introduce a methodology to evaluate how the dis-
tribution of grammatical items, over time, comes
to approximate the one in the input, through a con-
tinuous process and (iii) we tentatively explore the
interaction between meaning representations and
the abstraction abilities of the network, blurring
the distinction between lexicon and syntax, in a
way more akin to Construction Grammar (CxG,
Fillmore, 1988; Goldberg, 1995; Kay and Fillmore,
1999). Our evaluation focuses on the network’s
generated output (its ‘babbling’), asking to what
extent the system simulates the type of grammat-
ical abstraction observed in human children. The
study is conducted on English.

In what follows, we review related work (§ 2),
we then formulate the question of grammar mod-
elling in a broader theoretical framework (§ 3) in-
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volving three parameters: the type of acquisition
mechanism under study, the nature of the input data,
and the representational paradigm adopted for the
analysis. We configure this broad framework with
particular choices of parameters and implement it
in § 4, 5 and 6. We provide two analyses of the dis-
tributional properties of the network’s ‘babbling’,
discussed in § 7.

2 Related Work

A considerable amount of literature has investi-
gated the ability of ANNs to acquire grammar,
and the list we present here is by no means ex-
haustive. The analysis of the syntactic abilities of
LSTMs (Hochreiter and Schmidhuber, 1997) and
ANN-based language models dates back quite a
few years (McClelland, 1992; Lewis and Elman,
2001). Recent contributions have followed a gen-
eral tendency to analyze the inner-workings of net-
works, and the specific type of knowledge they
acquire (Alishahi et al., 2019; Linzen and Baroni,
2020). For instance, Linzen et al. (2016) show
how a network acquires abstract information about
number agreement, albeit in a supervised setting.
The same study is expanded in Gulordava et al.
(2018), which shows how a language modeling task
is enough for a network to predict long-distance
number agreement, both on semantically sound and
nonsensical sentences. The authors conclude that
“LM-trained RNNs can construct abstract grammat-
ical representations”, but their model is trained on
a rather consequent amount of data (90M tokens)
from a rather peculiar distribution (a Wikipedia
snapshot). Similarly, it has been shown that LSTMs
(McCoy et al., 2018; Wilcox et al., 2018) can learn
tricky syntactic rules like the English auxiliary in-
version and filler-gap dependencies, although, in
later work, McCoy et al. (2020) find that only mod-
els with an explicit inductive bias (Shen et al., 2018)
learn to generalize the MOVE-MAIN rule with re-
spect to auxiliary inversion. Marvin and Linzen
(2018) show instead poor performance of RNNs
in grammaticality evaluation, due to their sensitiv-
ity to the specific lexical items encountered during
training, a limitation that, they say, “would not be
expected if its syntactic representations were fully
abstract”. Similarly Chowdhury and Zamparelli
(2018) state that their model “is sensitive to lin-
guistic processing factors and probably ultimately
unable to induce a more abstract notion of gram-
maticality”. Moreover, despite the fact that the

model of Gulordava et al. (2018) is tested on four
languages, the most promising results may not be
generalizable to languages showing different sur-
face patterns from English. Ravfogel et al. (2018)
fail to replicate Gulordava et al. (2018)’s results on
Basque, and Davis and van Schijndel (2020), after
testing the network on relative clause attachment
cases in English and Spanish, conjecture that the
associative (non-linguistic) bias of RNNs overlaps
with English syntactic structure but represents an
obstacle to learn attachment rules for Spanish.

Other puzzling results concern the relation of
perplexity to syntactic performance (Warstadt et al.,
2019; Hu et al., 2020): having evaluated their mod-
els on 34 benchmarks, Hu et al. (2020) conclude
with a call for a wider variety of syntactic phenom-
ena to test on. Further studies have shown that
networks carrying explicit inductive bias perform
better than vanilla LSTMs. In a recent paper, Lep-
ori et al. (2020) show that a constituency-based net-
work generalizes more robustly than a dependency-
based one, and that both outperform a more basic
BiLSTM. Lastly, we mention the study carried out
by Kuncoro et al. (2018) who perform their study
using a character-based LSTM – a choice we will
follow in this work.

A very similar scientific discussion, which we
won’t report in depth here, is blooming around
Transformer-based language models (Tran et al.,
2018; Goldberg, 2019; Bacon and Regier, 2019;
Jawahar et al., 2019; Lin et al., 2019), leading to
similar contrasting results.

Finally, a separate line of work focuses on a
more indirect test of the information encoded in
the internal representation, assessing which aspects
of the original syntactic structure can be recon-
structed through diagnostic classifiers (Adi et al.,
2017; Giulianelli et al., 2018; Hewitt and Manning,
2019; Tenney et al., 2019).

In summary, a clear trend has not yet
emerged (Linzen and Baroni, 2020). All the mod-
els we cited, however, seem to idealize syntactic
structure as a separate and more abstract ability
from the knowledge of statistical regularities or
lexical co-occurrences. This perspective may re-
flect a belief in a sharp distinction between the
lexicon and compositional rules. That is, ANNs
are expected to gain abstract grammatical abilities
through compositional generalization, where com-
positionality is understood as the ability to produce
an unbounded number of sentences by means of a
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set of algebraic rules (Baroni, 2020). In contrast
with this approach, usage-based models encourage
us to adopt a different perspective, and to analyze
LSTMs’ grammatical abilities with respect to the
kind of representations (more in §3.3) posited by
theories such as Construction Grammar (CxG, Fill-
more, 1988; Goldberg, 1995; Kay and Fillmore,
1999).

3 Framework

In essence, the question of language acquisition
asks how much language (Λ) can be learned with a
certain level of computational complexity (C) by
being exposed to a certain type of data (I). The
corresponding formalization, a : C × I 7→ Λ,
describes both human and artificial acquisition pro-
cesses, and its components have been central in the
linguistic debate. Below, we will discuss each term
(C, I and Λ) in further detail.

3.1 Computational complexity of the
acquisition mechanism (C)

Our aim is to test how much grammatical struc-
ture can be induced from linguistic input through
a pattern-finding mechanism such as that provided
by ANNs. Therefore, we fix the level of compu-
tational complexity to a vanilla, character-based
LSTM, which we train exploring different sources
of input in a specific range {Ii}, selected based
on their complexity level. We then use the trained
model to generate some amount of text (to bab-
ble), to explore the structure of the produced output
` ∈ Λ, mainly with respect to productivity.

(LSTM, Ii)
a−→ `i (1)

Our choice of model has consequences from a
theoretical point of view. Different stances have
been taken about how much has to be hard-coded
or innate in order for language acquisition to hap-
pen: while formal innatist theories have always
posited the need for a specialized and innate ability,
a dedicated device for language learning (Chom-
sky, 1981, 1995; Hauser et al., 2002), cognitive
theories have argued for a more systemic vision,
showing how general purpose memory and cogni-
tive mechanisms can account for the emergence
of linguistic abilities (Tomasello, 2003; Goldberg,
2006; Christiansen and Chater, 2016; Cornish et al.,
2017; Lewkowicz et al., 2018).

LSTMs, under this perspective, can be seen as
a domain-general attention and memory mecha-

nism, without any explicitly hard-coded grammat-
ical knowledge. They have been applied, with-
out substantial modifications, to a variety of tasks,
ranging from time series prediction to object co-
segmentation, and encompassing grammar learning
as well. On the continuum between specialized de-
vices and general purpose associative mechanisms,
LSTMs place themselves on the latter side, with
their recurrent structure seeming to be crucial in the
linguistic abstraction process (Tran et al., 2018).

3.2 Structure and role of the input (I)

Because of the traditional sharp distinction between
competence and performance, the role of the input
and the linguistic environment has been minimized
by theories in the realm of Universal Grammar
(UG). Usage-based theories, on the other hand,
have granted the input a central role to the end of
explaining why language is structured as it is (Fill-
more, 1988; Kay and Fillmore, 1999; Hoffmann
et al., 2013; Christiansen and Chater, 2016; Gold-
berg, 2019): one of the striking points to make here
is that in the usage-based framework the acquisition
problem is framed as an incremental process. Ac-
quiring language essentially entails learning how
to process the linguistic input in an error-driven
procedure, where full linguistic creativity and pro-
ductivity are acquired gradually by speakers (Ban-
nard et al., 2009), building up on knowledge about
specific items and restricted abstractions.

In this sense, the specific features of the lan-
guage on which ANNs are trained cannot be over-
looked when it comes to describing their acquired
grammatical abilities. Compared to what a child
is exposed to during the most crucial months of
language acquisition, ANNs are trained on an input
that is often unrealistic in size: the LSTM intro-
duced in Gulordava et al. (2018) is for example
exposed to 90M tokens, and sees them multiple
times over training. It is hard to come up with a
precise estimate of the amount of language children
are exposed to during the years of acquisition, as
the variation depends on a huge number of factors
including the socio-economic environment (Bee
et al., 1969) or the societal organization (Cristia
et al., 2019). Hart and Risley (1995), in a semi-
nal work, estimate that, by the age of 3, welfare
children have heard about 10 millions words while
the average working-class child has heard around
30 millions. Finally, the domain of the data also
matters: child-directed language is characterized
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by specific features (Matthews and Bannard, 2010)
that are not present in the most widely used cor-
pora.1

3.3 Shape and features of the generated
language (Λ)

Any analysis of the language Λ generated by a
learner implies the availability of a representation.
Much has been written on the respective benefits
of various representations of linguistic structures:
the exact nature of their shape and content is the
ultimate conundrum of linguistic theory. Of course,
this paper is not the place to review the wide vari-
ations that exists among theories, so we will just
limit ourselves to motivate our choice with respect
to the broader theoretical framework.

Constituency-based representations have been
prevalent in the description of natural language
syntax, becoming primarily associated with deriva-
tional theories. Due to the Fregean view of compo-
sitionality, they have also become the natural build-
ing blocks for meaning composition. Dependency
representations have, on the other hand, re-gained
popularity over constituency representations in the
last decades, showing desirable properties from a
computational perspective (they adapt to a wider ar-
ray of languages, representing ill-formed sentences
results easier and the output is more easily incor-
porated in semantic graphs) while taking a more
functional approach to language description, more
in line with cognition oriented-approaches.

In order to represent the features of ` ∈ Λ, we
choose a representation which makes the least pos-
sible assumptions on the acquisition process and on
the content of the generated language, and is at the
same time flexible and computationally tractable.
We therefore rely on dependency representations,
more specifically the universal dependencies frame-
work (Nivre et al., 2020), from which we extract
subtrees called catenae (Osborne et al., 2012). As
we will see below, the notion of catena is more
flexible than that of constituent, and allows us to
describe a larger set of generalizations.

Generally speaking, CxG approaches seem to
lack a shared representational framework2, relying
on box diagrams or Attribute-Value Matrices to de-
scribe the traits of the fragments they study. The

1Specifically, those that contain data harvested from the
web such as Wikipedia or UKWaC.

2an exception should be made for the formalisms derived
from the FrameNet project (https://framenet.icsi.
berkeley.edu/)

Strings A, AB, ABC, ... B, BC, ...E
Catenae A, B, C, D, E, AB, ABCE, ABDE,

ABCDE, ABE, BCE,BDE, BE, CE,
DE, CDE

Constituents A, ABCDE, C, D, CDE

Table 1: Possible structures that can be extracted from
the dependency tree in Figure 2

structures introduced by Osborne (2006) are char-
acterized instead as fundamental meaning-bearing
units (Osborne and Groß, 2012), in line with the
theoretical tenets of CxGs, thus being ideal can-
didates for the lexicon (or ‘Constructicon’) postu-
lated in such theories: catenae have in fact been
applied in the description of construction-like struc-
tures (Osborne and Groß, 2012; Dunn, 2017) and
allow for the representation of non-adjacent struc-
tures while encompassing the notion of constituent
as well (Osborne, 2006, 2018).

A catena is defined as “a word, or a combina-
tion of words which is continuous with respect to
dominance” (Osborne et al., 2012): given a depen-
dency tree, this definition selects a broader set of
elements than the definition of constituent3. Unlike
constituents, catenae can include both contiguous
and non contiguous words. They however capture
something more refined than generic subsets of sen-
tence items, as the elements are grouped depending
on the syntactic links holding in the sentence.

From a graph-theory perspective, catenae form
subtrees (i.e., subsets of nodes and edges that con-
stitute a tree themselves) of the original tree.

Let’s consider for example the structures repre-
sented in Figures 1a, 1b and 1c: the same elements
(nodes A to G) are arranged differently in the struc-
ture of dependency tree, and this leads to a different
number and composition of catenae.

As a concrete example, Figure 2 represents a
dependency tree, and Table 1 the structures that
can be extracted from it: considering the lexical
level, we can extract Mary had lamb, had a lamb,
a little lamb as catenae. As the morpho-syntactic
and syntactic levels are available, however, we can
also extract partially filled structures as Mary had
NOUN, nsubj VERB dobj and so on.

Of interest for our analysis, CxG argues that
grammar items above the lexical level bear mean-
ing themselves, and that this emerges from patterns
of usage. According to Goldberg (2006), for exam-
ple, the meaning of the ditransitive pattern Sbj V

3which can be seen as a subtype of catena as “A catena that
consists of a word plus all the words that that word dominates”

https://framenet.icsi.berkeley.edu/
https://framenet.icsi.berkeley.edu/
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A B C D E F G

ROOT

(a) The case of a flat structure,
where all nodes are linked to the
root: from a tree like this we can
extract 26 − 1 catenae, each one
containing A plus a subset of its
children nodes.

A B C D E F G

ROOT

(b) The case where nodes are
arranged in a full dependency
chain: here the number of cate-
nae corresponds to the number
of substrings that could be ex-
tracted from the linear signal,
that is 20.

A B C D E F G

ROOT

(c) The case of a hierarchical structure, typically
what we would find in linguistic trees, where the
counts are less trivial to make. In particular, for each
node we find that the number of catenae rooted in
that node can be estimated depending on the number
of catenae rooted in his children nodes, and depends
therefore on the specific structure of the tree.

Figure 1

NOUN VERB DET ADJ NOUN
Mary had a little lamb
(A) (B) (C) (D) (E)

ROOT

nsubj

dobj

det
nmod

Figure 2: The dependency representation of the sen-
tence Mary had a little lamb, annotated with morpho-
syntactic and syntactic information.

Obj Obj2, and thus its productivity, emerges from
its strong association with give in child-directed
speech: part of the meaning of give remains at-
tached to the construction. A natural, and promis-
ing (Rambelli et al., 2019), solution to represent the
semantics of catenae is given by Distributional Se-
mantics (Harris, 1954), where each element of the

‘Constructicon’ is implicitly described in terms of
its context of use (Erk, 2012; Lenci, 2018). We will
see in §6 how we can use such distributional repre-
sentations to investigate the level of abstraction of
our network’s babbling.

4 Data and language modelling

4.1 Corpus

Our corpus is composed of three parts, each
presenting different features with respect to lin-
guistic complexity: (1) Child-directed utter-
ances of the publicly available North American
and United Kingdom portions of the CHILDES
database (MacWhinney, 2000); (2) movie and TV
series subtitles from the OpenSubtitle corpus (Li-
son and Tiedemann, 2016), filtered by content-
rating label (G for movies and TV-Y, TV-Y7,
TV-G for TV series), available from The Movie
Database4; (3) a 2019 snapshot of Simple En-

4https://www.themoviedb.org/

glish Wikipedia5, an English-language edition of
Wikipedia written in basic English.

These different corpora vary in size: for our ex-
periments we randomly (with uniform probability)
extract sentences from each source so that the total
number of tokens approximates 3 millions (10%
are kept for validation and 10% for testing).

4.2 Language models

For each of the considered corpora, we train a
character-based LSTM on the tokenized, raw text.
To do so, we slightly modify the PyTorch imple-
mentation of a vanilla LSTM.6, adapting it to a
character-based setting. We run a Bayesian opti-
mization process (Nogueira, 2014–) to select the
best hyperparameters for the corpus (values can
be found in the supplementary material). We then
produce a model every 5 epochs of training (for a
total of 7 models for CHILDES, 9 models for Open
Subtitles and 7 models for simple Wikipedia), as to
be able to produce snapshots of the network’s abil-
ities at different stages during training. For each of
the saved models, we sample7 utterances until we
reach the size of the input (the ‘babbling’ stage).
An example of babbling is reported in Table 2.

4.3 Extracting catenae

As introduced in § 3, the outcome of the acquisition
process is a language sample `i, that we want to
compare to the input language Ii or to other lan-
guage samples `j produced at different stages of
acquisition. For the next steps, both the input text

5https://simple.wikipedia.org/
6https://github.com/pytorch/examples/

tree/master/word_language_model
7The sampling happens as follows: a random initial letter

is picked, with a probability depending on the distribution of
letters at the beginning of sentences in the input data, then
letters are sampled with a greedy algorithm until an end of
sentence marker is reached or the length surpasses the average
sentence length of the input plus 2 standard deviations.

https://www.themoviedb.org/
https://simple.wikipedia.org/
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
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CHILDES opensubtitles simplewiki

input
you tinker tot
let ’s see if I can make this turn here
that ’s Jim ’s business

this is no way to treat a lion !
re-entry into earth ’s atmosphere in
37 minutes .
are you worried i ’m going to try
and stop you ?

She is the rector of the National Au-
tonomous University of Honduras (
UNAH ) since 2009 .

best
model

she ’s a fire
if I put it down for a snack
oh I love you

some of horases are here down .
just lost it all .
i said we ’ve ... lucky .

She is a former municipality in the
center of an arrondissement in the
southwest of France .

Table 2: Examples from input text and babbling produced by the best model, for each corpus. Sentences have been
sampled according to the distribution of sentence lengths in the data.

(the corpus) and the network’s babbling are linguis-
tically processed and annotated up to the syntactic
level with the UDPipe toolkit (Straka and Straková,
2017) (a schema of the full processing pipeline is
presented in Figure 3). Since our aim is to monitor
the syntactic behaviour of the network throughout
learning, we extract catenae from the input cor-
pus and from each babbling stage. To do so, we
perform a recursive depth-first visit of dependency
trees (pseudocode is provided in the supplementary
material). That is, if the node A is a leaf, then the
only possible catena is the one containing A itself;
otherwise, all catenae rooted in A are formed by A
plus a (eventually empty) combination of catenae
rooted in its children nodes.

With this procedure, we extract catenae from
sentences (with length between 1 and 25). For ef-
ficiency reasons, we exclude catenae longer than
5 elements. Many structures are generated, not
all of which are relevant: since we see catenae as
pieces of the lexicon, frequency is not the only rel-
evant parameter and elements should be positively
associated in order to be recorded as objects. We
therefore weigh the produced structures with a mul-
tivariate version of Mutual Information (MI), based
on Van de Cruys (2011):

MI(x1, ..., xn) = f(x1, ..., xn) log2
p(x1, ..., xn)∏n

i=1 p(xi)
(2)

where p(x1, ..., xm) = f(x1,...,xm)∑
(y1,...,ym) f(y1,...,ym) .

Table 3 shows some of the structures with high-
est and lowest MI: from a qualitative perspective,
it is evident that the measure is able to isolate lin-
guistically relevant patterns, such as the basic in-
transitive and transitive structures (@nsubj @root
and @nsubj VERB @obj).

It is important to remark that the linguistic anno-
tation process (except for the tokenization step) and
the catenae extraction processes are completely in-
dependent from the language modeling performed

catena frequency mi
largest mi
@nsubj @root 294.59K 633.93K
DET NOUN 189.97K 552.32K
VERB @obj 190.72K 520.82K
PRON VERB 271.44K 503.17K

@nsubj AUX @root 129.60K 478.86K
smallest mi
PRON @nsubj 17.50K -35.54K

@root @nsubj 27.61K -34.89K
@nsubj PRON 11.63K -30.47K
VERB @nsubj 12.79K -26.82K
AUX PRON 15.75K -26.67K

Table 3: Examples of catenae extracted from
CHILDES. Largest and smallest mutual information
are reported, in top and bottom tier of the table respec-
tively. Part of Speech are prefixed by “ ” and syntactic
relations are prefixed by “@”

by the LSTM, which is only fed with raw text and is
therefore completely agnostic about the linguistic
categories superimposed by the parser.

5 What do ANNs approximate?

Our first analysis demonstrates that the language
generated by the LSTM reproduces the distribu-
tion of the input, and that this happens well beyond
the lexical level: in other words, the network has
acquired statistical regularities at the level of gram-
matical patterns, and is able to use them produc-
tively to generate novel language fragments that
adhere to the same distribution as the input.

Fig. 4 shows the extent of this approximation for
various pairs: (i) (`ci , `

c
j) ∈ `c1...k (language frag-

ments output by a particular stage of babbling, for
each corpus c), (ii) (`ci , I

c), `ci ∈ `c1...k (fragments
output by a particular stage of babbling, compared
to those extracted from the respective input c),
(iii) (Ici , Icj ), (BM ci , BM cj ), (Ici , BM cj ) (frag-
ments extracted from the input or the best babbling
stage, compared among different corpora ci, cj). It
emerges from the plot that correlations are very
high within each corpus (on average, 0.935 for
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Figure 3: The figure depicts the processing pipeline
used for the experiments: raw text from corpora serves
as input to the LSTM, that in turn produces raw text
at different training stages (i.e., the babbling). Both
the corpus and the babbling texts are then processed
with a NLP pipeline in order to build treebanks, from
which catenae are then extracted. These extracted struc-
tures form the constructicons, which are compared in
the experiments described in Section 5 (dashed line).
The structures in each constructicon are then repre-
sented in a Distributional Semantic Model, through
co-occurrences extracted from the respective treebanks.
The distributional semantic models are then used for
the experiments in § 6 (dashed line).

CHILDES, 0.929 for OpenSubtitles and 0.917 for
Simple Wikipedia). In particular, the correlations
between the best models (BM ) and the respec-
tive input series (I) show values that are among
the highest, demonstrating that the network ac-
quires structures and reproduces them with a dis-
tribution that almost perfectly matches the input.
On the other hand, it is clear that different cor-
pora show different distributions, as correlations
between pairs of input series I and best models
show much lower values8. Overall, CHILDES
scores the best correlation values, probably due
to the specific features of child-directed speech,
specifically its repetitiousness Clark (2009). Open-
Subtitles interestingly shows intermediate proper-
ties, sharing quite a lot of catenae with CHILDES,9

while Simple Wikipedia shows a completely differ-
ent distribution.

6 Meaning and abstraction

Our second analysis relies on the idea that we can
state that the network has learned some grammar
once it is able to use an acquired pattern in a pro-

8The complete set of correlation values is reported in sup-
plementary material

9The Jaccard index between CHILDES and OpenSubtitles
remains above 0.5, even when considering the top 1M cate-
nae, while the same index computed between CHILDES and
Simple Wikipedia drops to around 0.13.

Figure 4: Correlation values (Spearman ρ) over top
10K catenae for each corpus (OpenSubtitles in green
on the left of the plot, CHILDES in red in the top right
and Simple Wikipedia in yellow at the bottom) com-
pared to the respective babbling (at intermediate stages
of learning) and the best models (BM). The thickness
of the connections is inversely proportional to correla-
tion.

ductive and creative way. Following the basic hy-
pothesis of CxG, stated in § 3.3, we expect this
generalization ability to evolve during training and
the distributional properties of patterns to be in re-
lation with the grammatical abilities of the network
at various stages of learning.

Let’s consider the structures cat1 : the dog and
cat2 : DET NOUN. For the purpose of our analy-
sis, we will consider (cat1, cat2) to be a minimal
pair, as the dog can be considered a lexicalized
instance of the more abstract construction DET
NOUN. Using a distributional analysis, we can cap-
ture how the contexts of cat1 and cat2 vary, and
how this variation is associated with generalization.
If their cosine similarity decreases during training,
it means that their contexts become more and more
dissimilar: the network produces DET NOUN in
new contexts which do not perfectly overlap with
those of the dog, indicating that the network’s bab-
bling is becoming more productive (a graphical rep-
resentation is given in Figure 5). In this case, we
theorize that cat2 has been recognised as a partially
independent pattern from cat1. If, on the contrary,
their cosine similarity increases, we might deduce
that the network has recognized cat2 as partly un-
necessary: it is correcting an overgeneralization.

We restrict this analysis to the CHILDES corpus.
We build distributional vector spaces for the input
and each stage of babbling using the DISSECT
toolkit (Dinu et al., 2013). We consider catenae
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Figure 5: Let us assume that the input presents var-
ious lexicalized instances of the pattern DET NOUN
(e.g. the dog, the cat, a giraffe). Our hypothesis is
that the network will only be able to capture its more
stereotypical instances (i.e., the dog), and the distribu-
tions of the dog and DET NOUN will thus almost per-
fectly overlap in the first stages of babbling (the length
of vectors in the figure is just for exemplification). At
later stages, the language produced by the network will
show greater traits of productivity: the distribution of
DET NOUN might show that its cosine distance to the
dog has increased as it is now instantiated by two dif-
ferent lexicalized patterns (the dog and the cat) that are
produced in dissimilar contexts.

composed by 2 or 3 elements as targets/contexts,
and define co-occurrence as the presence of two
catenae in the same sentence. Co-occurrences are
weighted with PPMI and the space reduced to 300
dimensions with SVD. We then extract minimal
pairs (cat1, cat2) of catenae from the input text,
where cat1 is an instance of cat2. For each pair, we
compute their cosine similarity in all distributional
spaces, and the difference in cosine between the
last and first babbling (see Table 4).

We then compute average distributional shifts
and cosine similarities, grouping all pairs by cat1
and cat2 values (for instance, we average all pairs
that show abstractions of cat1 : a minute, as well
as pairs that show instantiations of cat2 : DET
NOUN). Some averages are shown in Table 5.

We finally split catenae in three bins based on
average distributional shift and investigate the in-
fluence of input similarity over the abstraction be-
haviour of a construction. Our hypothesis is that
catenae that underwent the highest shifts during
training were those showing intermediate levels of
similarities in the input distributional space. Indeed,
pairs with very high input similarities are unlikely
to exhibit abstraction: according to constructionist
intuition, their distributional similarity means that
the catena that is part of the Constructicon is the
least abstract one, and there is no need for the more
abstract category. Low similarity pairs, on the other
hand, may simply contain unrelated catenae.

To test our hypothesis, we perform a Kruskall-

Figure 6: Distribution of average cosine similarities for
the three groups of cat2, showing low, intermediate and
high average shifts respectively.

Wallis one-way analysis of variance test, that turn
out to be significant for groupings made on both
cat1 and cat2 lists.10 The result is confirmed by
Dunn’s posthoc test. We show results for the test
performed on the cat2 list in Table 6 and Figure 6.

7 Discussion and future work

Usage-based computational accounts have already
shown to be able to explain puzzling phenomena
in acquisition (Freudenthal et al., 2015; McCauley
and Christiansen, 2019) or to induce syntactic rules
in an unsupervised manner (Solan et al., 2005),
making use of surface properties of the language
signal like transitional probabilities or basic distri-
butional analysis. However, despite being rooted in
the psychological literature and yielding fundamen-
tal psycholinguistic results, the models presented
in such investigations are often not comparable to
studies involving neural language models, as the
former are usually less flexible and less scalable to
large amounts of data than the latter.

In this paper, we have reviewed relevant work
concerning the assessment of grammatical abilities
in neural language models and noted the lack of
variety in both the input data fed to ANNs (I) and
the theoretical framework used in analysing the
output language (Λ). In line with the existing usage-
based computational accounts, we have introduced
a methodology to evaluate the level of productivity
of an LSTM trained on limited, child-directed data,
using inspirations from constructionist approaches.

We have been able to show that neural networks
approximate the distribution of constructions at a
quite refined level when trained over a bare 3M

10p = 6.988142426844016e-28 for cat1 and p =
7.420868598608134e-32 for cat2



173

cat1 cat2 input BM 5 10 15 20 25 30 35 distributional shift
a minute a NOUN 0.28 0.32 0.71 0.51 0.44 0.39 0.38 0.37 0.34 0.37
a minute a @root 0.13 0.19 0.49 0.37 0.26 0.20 0.21 0.22 0.20 0.30
you VERB it PRON @root @expl 0.10 0.19 0.46 0.28 0.25 0.25 0.19 0.17 0.21 0.25
you VERB you you VERB @iobj 0.28 0.40 0.68 0.56 0.47 0.49 0.39 0.42 0.43 0.25
we can VERB PRON can @root 0.51 0.54 0.79 0.74 0.59 0.54 0.55 0.61 0.57 0.22
go VERB @obj VERB @conj @obj 0.64 0.72 0.56 0.74 0.70 0.74 0.72 0.72 0.72 -0.16
AUX hungry @cop @conj 0.68 0.52 0.36 0.39 0.44 0.45 0.47 0.42 0.59 -0.24

can get can @advcl 0.55 0.54 0.24 0.36 0.45 0.48 0.43 0.39 0.52 -0.28

Table 4: Pairs of catenae (cat1, cat2), their cosine similarity in the space obtained from CHILDES, in the space
obtained from the best model (BM) and in all the intermediate models. The last column shows the difference
between cosine similarity at epoch 5 and cosine similarity at epoch 35.

cat1 shift cosine cat2 shift cosine
@nsubj @root so 0.18 0.43 more @root 0.2 0.21
@nsubj only
@root

0.18 0.41 AUX know @obj 0.19 0.66

what @root @obj 0.18 0.39 @advmod tell 0.17 0.64
what @advmod
VERB

0.16 0.19 @aux know @obj 0.16 0.71

only @root 0.16 0.38 @advmod can
VERB

0.15 0.76

more @root 0.16 0.23 know @obj 0.15 0.62
@root it @xcomp 0.15 0.61 a NOUN 0.13 0.52
@det minute 0.15 0.25 might @root 0.13 0.70
PRON only

@root
0.15 0.53 PRON @root n’t 0.12 0.53

VERB DET
minute

0.15 0.33 @root that VERB 0.12 0.65

PRON @root so 0.14 0.54 VERB ’ll
@ccomp

0.12 0.71

DET minute 0.134 0.33 VERB me @obl 0.12 0.76

Table 5: Catenae with highest average shifts.

negative none positive
negative - 6.83e-06 4.57e-05
none 0.000 - 4.15e-29
positive 0.000 4.15e-29 -

Table 6: Dunn posthoc test on the three groups of c2,
showing low (< −0.05), intermediate (−0.05 < x <
0.05) and high (< 0.05) average shifts respectively.

words from the CHILDES corpus, reproducing
the distribution of grammatical patterns even when
they are not fully lexicalized. The analysis in § 5 in-
dicates that the linguistic variety of OpenSubtitles
is a potentially relevant benchmark to further inves-
tigate language acquisition, due to its similarity to
the CHILDES data. In contrast, Simple Wikipedia
has proved to be dissimilar to child-directed speech.
This large difference should be taken into consid-
eration when it comes to evaluating the grammat-
ical abilities on the network: many of the studies
cited in § 2 use models trained on Wikipedia or
similar varieties, which may complicate the acqui-
sition of generic grammatical phenomena heavily
present in child-directed language. The analysis
in § 6 further illustrated how we can follow paths
of abstraction by putting our grammar formalism
in a vector space. Additional investigations are of
course needed to confirm our results. In particu-
lar, we would like to target the behavior of some

specific sets of structures.

Most importantly, the introduced methodology,
despite being preliminary, presents a number of
features that make our study fit in the usage-based
theoretical framework while also using neural net-
works as language modeling tools, more specif-
ically: (i) it posits no sharp distinction between
lexicon and grammar: fully lexicalized, partially
filled and purely syntactic patterns are all part of
our constructicon and can play a similar role in
production. Different items can therefore be rep-
resented compared, irrespective of their lexical na-
ture; (ii) it makes no assumption about the stability
of the constructicon: what is relevant for productiv-
ity at the earliest stages of learning might become
superfluous later on; (iii) all items are seen as form-
meaning pairs (i.e., constructions by definition, as
in Goldberg, 2006): a novel way of modeling con-
structional meaning is therefore introduced and
represents a promising path for future studies; (iv)
distributional semantics is used both as a powerful
quantitative tool and as a usage-based cognitive
hypothesis, which leads us to specific assumptions
about the cognitive format and origin of semantic
representations (Lenci, 2008), and seems in line
with the view of constructions as “invitations to
form categories” (Goldberg, 2019).

Finally, we must account for potential biases in-
troduced by applying dependency parsing to both
input data and neural babbling: while this step
is necessary to extract catenae, it introduces a
non-negligible amount of noise, as the available
pipelines are typically trained on different varieties
than the ones considered in this study. In particular,
the parser is somehow projecting its own categories,
which have been acquired in a different setting and
probably on a different variety, on our data. This
currently limits the transferability of our results.
Besides looking for ways to circumvent this issue,
further work includes a comparison of our results
with a wider choice of models.
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