
Proceedings of the 6th International Workshop on Computational Terminology (COMPUTERM 2020), pages 106–113
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

106

TermEval 2020: Using TSR Filtering Method
to Improve Automatic Term Extraction

Antoni Oliver, Mercè Vàzquez
Universitat Oberta de Catalunya

Barcelona (Spain)
aoliverg, mvazquezga@uoc.edu

Abstract
The identification of terms from domain-specific corpora using computational methods is a highly time-consuming task because terms
have to be validated by specialists. In order to improve term candidate selection, we have developed the Token Slot Recognition (TSR)
method, a filtering strategy based on terminological tokens which is used to rank extracted term candidates from domain-specific
corpora. We have implemented this filtering strategy in TBXTools. In this paper we present the system we have used in the TermEval
2020 shared task on monolingual term extraction. We also present the evaluation results for the system for English, French and Dutch
and for two corpora: corruption and heart failure. For English and French we have used a linguistic methodology based on POS patterns,
and for Dutch we have used a statistical methodology based on n-grams calculation and filtering with stop-words. For all languages,
TSR (Token Slot Recognition) filtering method has been applied. We have obtained competitive results, but there is still room for
improvement of the system.

Keywords: Automatic Terminology Extraction, TSR, Token Slot Recognition

1. Introduction
Automatic Term Extraction (ATE) has been considered
a relevant Natural Language Processing task involving
terminology since the early 1980s, due to its accurate
terminology construction that can improve a wide range
of tasks, such as ontology learning, computer-assisted
translation or information retrieval. However, automatic
term extraction methods implemented up to now usually
involve extracting a large list of term candidates that
has to be manually selected by specialists (Bourigault et
al., 2001; Vivaldi and Rodrı́guez, 2001), a highly time-
consuming activity and a repetitive task that poses the risk
of being unsystematic, and very costly in economic terms
(Loukachevitch, 2012; Conrado et al., 2013; Vasiljevs et
al., 2014).

In order to achieve a more accurate term candidate
selection, we implemented the Token Slot Recognition
(TSR) method, a filtering strategy based on terminolog-
ical tokens used to rank extracted term candidates from
domain-specific corpora. The TSR filtering method has
been implemented in TBXTools, a term extraction tool,
and can be used both with statistical and linguistic term
extraction (Oliver and Vàzquez, 2015).

The main goal of this paper is to determine whether
the TSR filtering method could provide an accurate term
candidate’s selection from the Annotated Corpora for Term
Extraction Research (ACTER) Dataset (Rigouts Terryn et
al., 2019), provided by the organizers of the TermEval 2020
shared task on monolingual term extraction (Rigouts Ter-
ryn et al., 2020). The TSR filtering method is based
on reference terms to provide a precise term candidate
selection.

This paper is structured as follows: in Section 2, the

background of automatic term extraction is described.
In Sections 3 and 4, the TSR filtering method and the
TBXTools are described. In Section 5, the experimental
part is presented. In section 6 the discussion about the
obtained results is presented. The paper is concluded with
some final remarks and ideas for future research.

2. Automatic terminology extraction
Under the generic name of Automatic Terminology Extrac-
tion (ATE) we can find a series of techniques and algo-
rithms for the detection of terms in corpora. ATE programs
provide a list of term candidates, that is, a set of words or
group of words with high probability of being terms. Re-
sults of the ATE programs should be revised by human spe-
cialists. The methods for ATE can be classified in two main
groups: (Pazienza et al., 2005):

• Statistical methods: term extraction is performed
based on statistical properties (Salton et al., 1975) and
usually implies the calculation of n-grams of words
and filtering them with a list of stop-words. Although
the most common and easiest to implement statistical
property is the term candidate frequency, a long set of
statistical measures and other approaches have been
developed for term candidate scoring and ranking (Ev-
ert and Krenn, 2001; Vàzquez and Oliver, 2013; As-
trakhantsev et al., 2015).

• Linguistic methods (Bourigault, 1992): term extrac-
tion is performed based on linguistic properties. Most
of the systems use a set of predefined morphosyntac-
tic patterns (Evans and Zhai, 1996). After term can-
didates are extracted using the patterns, a set of sta-
tistical measures, the simplest of them being the fre-
quency, are also used to rank the candidates (Daille et
al., 1994).

107

Most of the systems may be considered as hybrid, as they
use both approaches in a higher or lesser extent (Earl,
1970). A recent study indicates that the hybrid approaches
are the most relevant, and the strategies that use noun
identification, compound terms and TF-IDF metrics are the
most significant (Valaski and Malucelli, 2015).

In the last few years a semantic and contextual infor-
mation is used to improve term extraction systems. The
first one involves using lexical semantic categories from
an external lexical source of the corpus, such as WordNet
(Miller, 1995). The second one involves extracting the
semantic categories of the words from the same corpus
through contextual elements that refer to the syntactic-
semantic combination of words (Velardi et al., 2001).
Recently, external semantic resources are also used for
building ontologies in the medical domain (Bouslimi et al.,
2016).

As already mentioned, with any of these methods we
are able to detect a set of term candidates, that is, units
with a high chance of being real terms. After the automatic
procedure, manual revision must be performed in order to
select the real terms from the list of term candidates.

3. Token Slot Recognition filtering method
To get a more accurate term candidate selection from
specialized corpora, we implemented the Token Slot
Recognition (TSR) method (Vàzquez and Oliver, 2018), a
filtering strategy which uses terminological units to rank
extracted term candidates from domain-specific corpora.

The algorithm is based on the concept of terminolog-
ical token (a token or word of a term) to filter out term
candidates. Thus, an unigram term is formed by a token
that can be the first token of a term (FT) or the last token
of a term (LT) depending on the language, a bigram term is
formed by FT LT, a trigram term is formed by FT MT LT
(where MT is the middle token of a term), and a tetragram
term is formed by FT MT1 MT2 LT. In general, an n-gram
term is formed by FT MT1 [..] MTn-2 LT. For example:
for English, a unigram term like ”rate” can be considered
an LT unit as it can also be part of a bigram term like
”interest rate”. However, a term like ”interest” can be
considered either an LT unit, such as ”vested interest”, or
an FT, like ”interest rate”.

The algorithm reads the terminological tokens from a
list of already known terms and stores them taking into
account its position in the terminological unit (first, middle,
last). As a list of already known terms a terminological
database for the language and subject can be used. If no
terminological database is available, a first terminology
extraction without TSR filtering can be performed to create
a small set of terms to use for TSR filtering. TSR filtering
can be performed iteratively to enrich the set of already
known terms to use in the next TSR filtering process.
Thus, the TSR method filters term candidates by taking

into account their tokens. To do so, two filtering vari-
ants are designed: strict and flexible filtering. In strict
TSR filtering, a term candidate will be kept only if all
the tokens are present in the corresponding position.
In flexible TSR filtering, a term candidate will be kept
if any of the tokens is present in the corresponding position.

The algorithm performs this filtering process recur-
sively, that is, by enlarging the list of terminological tokens
with the new selected term candidates. In strict mode this
is not possible, because all the validated candidates are
formed with already known terminological tokens. With
flexible filtering it is possible to extract new terminological
units, as the candidates are validated if they have a termi-
nological unit in any position. Furthermore, we designed a
combined TSR filtering variant. In combined TSR filtering,
strict filtering is first used and is then followed by flexible
filtering.

Using flexible and combined TSR filtering variants
the term candidates are processed in each iteration in
descending order of frequency. If a term candidate is not
filtered out, this is stored in the output stack following
that order. Since the process is recursive in these filtering
strategies, the term candidates filtered out in the previous
iteration are processed again in descending order of fre-
quency in the following iterations. The process is repeated
until no new terminological tokens are detected.

4. TBXTools, a term extraction tool
TBXTools (Oliver and Vàzquez, 2015) is a Python class
that provides methods to perform a set of terminology
extraction and management tasks. Using this class,
Python programs performing state-of-the art terminology
extraction tasks can be written with few lines of code. A
completely new version of TBXTools have been developed.
The old version stored most of the data in memory and
this provoked memory problems when working with large
corpora. The new version of TBXTools uses a SQLite
database to store all the data of a given terminology extrac-
tion project, allowing us to work with very big corpora in
standard computers with no memory restrictions. Using
this database we can open again a project, and we can
continue to work in the project.

To use TBXTools a Python3 interpreter1 should be
installed on the computer. As the interpreter is available for
most operating systems, TBXTools can be used in Linux,
Windows and Mac.

A sample script to perform statistical terminology ex-
traction over the corpus corpus.txt, using bigrams and
trigrams, and filtering with stopwords (stop-eng.txt) is
shown below. Term candidates are stored in candidates.txt.

1https://www.python.org/

https://www.python.org/

108

from TBXTools import *
e=TBXTools()
e.create_project("project.sqlite","eng")
e.load_sl_corpus("corpus.txt")
e.ngram_calculation(nmin=2,nmax=3)
e.load_sl_stopwords("stop-eng.txt")
e.statistical_term_extraction()
e.save_term_candidates("candidates.txt")

The use of TBXTools is very easy but some minimal
knowledge of Python is required. In the near future a
graphical user interface providing the main functionalities
will be developed.

TBXTools holds a free licence (GNU GPL) and can
be downloaded from its Sourceforge page2.

5. Experimental part
5.1. Methodology
We have participated in the TermEval 2020 shared task
on monolingual term extraction in order to provide an
accurate term candidate’s selection in three languages
(English, French and Dutch) and two domain-specific
corpora (Corruption and Heart failure) using the ACTER
Dataset.

We report in the sections below the results we have
obtained for the Corruption corpora, a manually created
corpora with the help of the Dutch DGT of the European
Commission; and Heart failure corpora, a manually
collected corpora based on a corpus of titles (Hoste et al.,
2019). Both corpora are part of the ACTER Dataset.

Two different strategies have been used:

• For English and French corpora: linguistic strategy

• For Dutch corpora: statistical strategy

For all the strategies and language pairs a TSR filtering
method has been performed. To use TSR filtering a ref-
erence terminological glossary should be used. The IATE3

database has been used in the experiments. We have down-
loaded the TBX file and used the IATExtract.jar program
provided to get a subset for the subjects LAW and HEALTH
for the three working languages. Then, for each language
we have selected the full form terms with a confidence score
of 3 or higher. In Table 1 the number of terms for each ref-
erence glossary can be observed.

The linguistic strategy has been performed in the following
steps. In Figure 2 the scripts used for each step are shown:

• Corpus tagging has been performed using Freeling
(Padró and Stanilovsky, 2012) through its Python API.

2https://sourceforge.net/projects/
tbxtools/

3https://iate.europa.eu/

Glossary Terms
LAW eng 16,055
LAW fra 15,566
LAW nld 14,860
HEALTH eng 29,463
HEALTH fra 29,051
HEALTH nld 28,825

Table 1: Number of terms in the reference glossaries

228 |#|NN
112 |#|JJ |#|NN
40 |#|JJ #||NNS
36 |#|NN |#|IN |#|NN
32 |#|NN |#|NN

Figure 1: Example of automatically learnt patterns.

• Automatic learning of POS patterns: Using the tagged
corpus and the list of reference terms, a set of POS
patterns are automatically learnt. TBXTools can pro-
vide a list of learnt patterns along with its frequency,
that is, the number of terms that can be detected with
the given POS pattern. In Figure 1 an example of the
learnt patterns is shown. These patterns are manu-
ally revised and some of them are dropped. To de-
cide whether to accept or reject a pattern we take into
account its frequency and the examples of extracted
terms that can be retrieved using TBXTools. In Ta-
ble 2 the number of automatically learnt and accepted
patterns are shown.

• Linguistic terminology extraction and TSR filtering:
the terminology extraction is performed using the
tagged corpus and the accepted POS patterns. An ad-
ditional step of filtering using stop-words and a step
of nested terms detection are performed. For English
a list of 399 stop-words is used and for French a list
of 352 stop-words. As a last step, a combined TSR
filtering using the IATE reference terms is performed.
As a result, a list of term candidates is obtained.

The script for statistical automatic terminology extraction
performed for Dutch can be observed in Figure 3:

• N-gram calculation (with n from 1 to 5) and filtering
wit stop-words.

• Case normalization.

• Nested terms detection.

• Dropping some term candidates using a rejection reg-
ular expressions list. This list usually includes com-
binations of .+ (any character) \w+ (combinations
of word characters, that is [a-zA-Z0-9_], \W+
(combinations of non word characters) and [0-9]+
(numbers). Each element of the regular expression
will be matched against each component of the given
n-gram. For example, the regular expression .+ \W+

https://sourceforge.net/projects/tbxtools/
https://sourceforge.net/projects/tbxtools/

109

would reject any bigram with the second element con-
taining one or more non-word characters.

• TSR filtering.

Lang. Subject Learnt Accepted
eng LAW 62 45
fra LAW 76 58
eng HEALTH 41 23
fra HEALTH 88 77

Table 2: Number of learnt and accepted POS patterns.

5.2. Results and evaluation
The number of term candidates obtained for each language
and corpus are shown in Table 3. The evaluation of the
results has been performed using the term list provided
by the organizers of the task. As no detection of named
entities is done in our scripts, the sets of terms including
named entities are used. In Table 4 the number of tokens
of each corpus along with the number of terms are shown.

Corpus eng fra nld
Corruption 1,001 740 358
Heart failure 1,066 900 744

Table 3: Number of term candidates

Corpus lang tokens terms
Corruption eng 45,218 1,174
Corruption fra 50,403 1,217
Corruption nld 47,288 1,295
Heart failure eng 45,665 2,585
Heart failure fra 46,626 2,423
Heart failure nld 47,734 2,257

Table 4: Number of tokens and terms

As the TSR filtering method aims to filter and resort term
candidates with a high likelihood to be terms in the top
positions, for each corpus and language, we show the
evaluation results for subsets of the list of candidates:
the top 100, 200, 500 and 1,000 (when the number of
candidates is higher than 1,000). The last row of the Table
of results shows the overall values.

In Table 6 the evaluation values for the Corruption
corpus for English are shown. As we can observe, best
values of precision are achieved for the top positions: 37%
of precision for the top 100 candidates, whereas we achieve
26.4% for the overall set (position 1001). But values of
recall and F1 show that top candidates results are very low,
because we are getting fewer candidates than the current

number of terms in the corpus. To illustrate this benefits
of using TSR filtering, in Table 5 we offer results of term
candidates extraction without filtering for the corruption
English corpus.

Position Precision Recall F1
100 0.23 0.02 0.036
200 0.205 0.035 0.06
300 0.207 0.053 0.084
400 0.21 0.072 0.107
500 0.21 0.089 0.125
600 0.22 0.112 0.149
700 0.22 0.131 0.164
800 0.212 0.145 0.172
1000 0.2 0.17 0.184
2395 0.151 0.307 0.202

Table 5: Evaluation results: Corruption English with no
TSR filtering

Position Precision Recall F1
100 0.37 0.032 0.058
200 0.36 0.061 0.105
500 0.336 0.143 0.201
1000 0.264 0.225 0.243
1001 0.264 0.225 0.243

Table 6: Evaluation results: Corruption English

Results for the Corruption corpus for French have a similar
behaviour (see Table 7), but we tend to get lower precision
but higher recall for all the evaluation positions. The
overall results for French achieves lower precision but
higher recall, yielding to almost exact F1 value.

Position Precision Recall F1
100 0.28 0.023 0.043
200 0.285 0.047 0.08
500 0.298 0.122 0.174
1000 0.252 0.207 0.227
1633 0.214 0.287 0.245

Table 7: Evaluation results: Corruption French

The situation is different for Corruption corpus in Dutch
(see Table 8), where we achieve worse values both of
precision (11.5%) and recall (3,2%), yielding to a very
low value of F1 (0.05). It may suggest that the statistical
methodology doesn’t work well for this language.

In Tables 9, 10 and 11 we can observe the values for the
Heart failure corpus. These values are the one that have
been compared with other participants in the shared task.
In general, if we compare the results for the Corruption
corpus and the Heart failure corpus we observe a higher

110

Corpus tagging:

from TBXTools import *
extractor=TBXTools() extractor.create project(”ACTER-corruption-ling-eng.sqlite”,”eng”,overwrite=True)
extractor.load sl corpus(”corpus-en.txt”)
extractor.start freeling api(”en”)
extractor.tag freeling api()
extractor.save sl tagged corpus(”corpus-tagged-en.txt”)

Automatic learning of POS patterns

from TBXTools import *
extractor=TBXTools()
extractor.create project(”learnpatterns.sqlite”,”eng”,overwrite=True)
extractor.load sl tagged corpus(”corpus-tagged-en.txt”)
extractor.load evaluation terms(”IATE-LAW-eng.txt”,nmin=1,nmax=5)
extractor.tagged ngram calculation(nmin=1,nmax=5,minfreq=1)
extractor.learn linguistic patterns(”learnt-patterns-eng.txt”,representativity=100)

Linguistic terminology extraction and TSR filtering:

from TBXTools import *
extractor=TBXTools()
extractor.create project(”linguistic-tsr.sqlite”,”eng”,overwrite=True)
extractor.load sl tagged corpus(”corpus-tagged-en.txt”)
extractor.load linguistic patterns(”clean-patterns-eng.txt”)
extractor.tagged ngram calculation(nmin=1,nmax=5,minfreq=2)
extractor.load sl stopwords(”stop-eng.txt”)
extractor.linguistic term extraction(minfreq=2)
extractor.nest normalization(verbose=False)
extractor.tsr(”IATE-LAW-eng.txt”,type=”combined”,max iterations=100)
extractor.save term candidates(”candidates-linguistic-tsr-eng.txt”,minfreq=2,show measure=True)

Figure 2: Steps and scripts for linguistic terminology extraction

from TBXTools import *
extractor=TBXTools() extractor.create project(”statistical-tsr-nld.sqlite”,”nld”,overwrite=True)
extractor.load sl corpus(”corpus-nl.txt”)
extractor.ngram calculation(nmin=1,nmax=5,minfreq=2)
extractor.load sl stopwords(”stop-nld.txt”)
extractor.load sl exclusion regexps(”regexps.txt”)
extractor.statistical term extraction(minfreq=2)
extractor.case normalization(verbose=True)
extractor.nest normalization(verbose=True)
extractor.regexp exclusion()
extractor.tsr(”IATE-HEALTH-nld.txt”,type=”combined”,max iterations=100)
extractor.save term candidates(”candidates-tsr-nld.txt”,minfreq=2,show measure=True)

Figure 3: Script for statistical terminology extraction

precision value for Heart failure (for example 34.3% vs.
26.4% for English), but lower values of recall (for example
14.2% vs. 22.5% for English).

As regards Heart failure corpus the best values of

precision are obtained for French, but the best values
for recall are obtained for English. The values of F1 for
English and French are again almost identical.

With regard to Heart failure corpus the worse results

111

Position Precision Recall F1
100 0.08 0.006 0.011
200 0.15 0.023 0.04
300 0.12 0.028 0.045
358 0.115 0.032 0.05

Table 8: Evaluation results: Corruption Dutch

are obtained again for Dutch, but results are much better
than results obtained from Corruption corpus (29% vs.
11.5% of precision and 9.6% vs. 3.2% of recall).

Position Precision Recall F1
100 0.35 0.014 0.026
200 0.435 0.034 0.062
500 0.43 0.083 0.139
1000 0.347 0.134 0.194
1066 0.343 0.142 0.2

Table 9: Evaluation results: Heart failure English

Position Precision Recall F1
100 0.37 0.015 0.029
200 0.375 0.031 0.057
500 0.384 0.079 0.131

900 0.363 0.135 0.197

Table 10: Evaluation results: Heart failure French

Position Precision Recall F1
100 0.44 0.019 0.037
200 0.385 0.034 0.063
500 0.352 0.078 0.128
744 0.29 0.096 0.144

Table 11: Evaluation results: Heart failure Dutch

The difference in the results between languages can be
explained by the different strategies used. For English
and French corpora we have used linguistic terminology
extraction obtaining better results. Results for English and
French are comparable, and the differences between them
can be produced by different factors: the precision of the
tagger for each language, the number of POS tags in the
tagset for each language, French having a higher number of
tags. This fact can make the revision of the automatically
learnt patterns more difficult.

The different results obtained for the two corpora,
Corruption and Heart failure, can be due to several factors.
Although the size of the corpora for every subject and
every language is almost equal, the number of different

terms in Heart failure is higher. For example, for English
the Corruption corpus has 45,218 tokens and 1,174 terms,
whereas the Heart failure corpus has almost the same
number of tokens (45,665) but more than twice number
of terms (2,585). The IATE reference terms used for the
Token Slot Recognition filtering for Heart failure is almost
twice the number of terms used for Corruption (see Table
1).

6. Discussion
The experimental results confirm that the combined TSR
filtering method we have implemented to identify terms
from Corruption and Heart failure domain-specific corpora
is productive in terms of precision than recall for all three
languages. As for Corruption domain the best results
are obtained for English and as for Heart failure the
best results are obtained for French. To apply the TSR
filtering strategy we have use IATE glossaries for law
and health. These glossaries are domain-specific, but
for broader domains than the corpora. Results obtained
could be enhanced using more specific reference glossaries.

The low results obtained for Dutch may be explained
by the statistical methodology used. We decided to
use statistical terminology extraction because the tagger
we use, Freeling, is not available for Dutch. In further
experiments we plan to use any available Dutch tagger, as
for example TreeTagger4 (Schmid, 1994) or Frog5 (Bosch
et al., 2007). We will adapt the output of these taggers to
the TBXTools format for tagged corpora and perform a
linguistic terminology extraction.

7. Conclusions and future work
In the TermEval 2020 shared task on monolingual term
extraction we have implemented the combined TSR
filtering method using TBXTools in order to extract the
highest number of terms from Corruption and Heart failure
corpora from the ACTER Dataset. This methodology
uses tokens from already known terms, in this case from
IATE glossaries, to search term candidates containing
some tokens related to the subject of the corpora. The
process is iterative and the list of terminological tokens
can be enriched in each iteration, allowing the discovery of
completely new terms.

The results obtained from the shared task can con-
firm that the combined TSR filtering method is suitable for
term candidates extraction in any domain-specific corpora.
Moreover, the TSR filtering method results would have
been better if the reference terms had been more closely
associated with the subject corpora.

4https://www.cis.uni-muenchen.de/˜schmid/
tools/TreeTagger/

5https://languagemachines.github.io/frog/

https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
https://languagemachines.github.io/frog/

112

As a future work, we plan to test the TSR filtering
method with larger corpora and in other languages and
domains.

8. References
Astrakhantsev, N. A., Fedorenko, D. G., and Turdakov,

D. Y. (2015). Methods for automatic term recognition
in domain-specific text collections: A survey. Program-
ming and Computer Software, 41(6):336–349.

Bosch, A. v. d., Busser, B., Canisius, S., and Daelemans,
W. (2007). An efficient memory-based morphosyntac-
tic tagger and parser for dutch. LOT Occasional Series,
7:191–206.

Bourigault, D., Jacquemin, C., and L’Homme, M.-C.
(2001). Introduction. In Recent Advances in Compu-
tational Terminology, page iix–xviii, Amsterdam, The
Netherlands. John Benjamins.

Bourigault, D. (1992). Surface grammatical analysis for
the extraction of terminological noun phrases. In Pro-
ceedings of the 14th Conference on Computational Lin-
guistics - Volume 3, COLING ’92, pages 977–981,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Bouslimi, R., Akaichi, J., Gaith Ayadi, M., and Hedhli,
H. (2016). A medical collaboration network for medical
image analysis. In Network Modeling Analysis in Health
Informatics and Bioinformatics, 5, pages 1–11.

Conrado, M. S., Pardo, T., and Rezende, S. O. (2013).
Exploration of a rich feature set for automatic term ex-
traction. In Advances in Artificial Intelligence and Its
Applications, Lecture Notes in Computer Science, page
342–354, Berlin, Heidelberg. Springer.

Daille, B., Gaussier, E., and Langé, J.-M. (1994). Towards
automatic extraction of monolingual and bilingual termi-
nology. In Proceedings of the 15th Conference on Com-
putational Linguistics - Volume 1, COLING ’94, pages
515–521, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Earl, L. L. (1970). Experiments in automatic extract-
ing and indexing. Information Storage and Retrieval,
6(4):313 – 330.

Evans, D. A. and Zhai, C. (1996). Noun-phrase analysis
in unrestricted text for information retrieval. In Proceed-
ings of the 34th Annual Meeting on Association for Com-
putational Linguistics, ACL ’96, pages 17–24, Strouds-
burg, PA, USA. Association for Computational Linguis-
tics.

Evert, S. and Krenn, B. (2001). Methods for the qualita-
tive evaluation of lexical association measures. In Pro-
ceedings of the 39th Annual Meeting on Association for
Computational Linguistics, page 188–195. AWERProce-
dia Information Technology Computer.

Hoste, V., Vanopstal, K., Rigouts Terryn, A., and Lefever,
E. (2019). The trade-off between quantity and quality.
comparing a large web corpus and a small focused cor-
pus for medical terminology extraction. In Across Lan-
guages and Cultures, pages 197–211.

Loukachevitch, N. V. (2012). Automatic term recognition
needs multiple evidence. In Proceedings of the 8th Inter-
national Conference on Language Resources and Evalu-
ation (LREC 2012), page 2401–2407.

Miller, G. A. (1995). Wordnet: a lexical database for en-
glish. In Communications of the ACM, 38, page 39–41.

Oliver, A. and Vàzquez, M. (2015). Tbxtools: a free, fast
and flexible tool for automatic terminology extraction.
In Proceedings of the International Conference Recent
Advances in Natural Language Processing, pages 473–
479.

Oliver, A. and Vàzquez, M. (2015). TBXTools: A free,
fast and flexible tool for automatic terminology extrac-
tion. In Proceedings of Recent Advances in Natural Lan-
guage Processing (RANLP-2015), pages 473–479.

Padró, L. and Stanilovsky, E. (2012). Freeling 3.0: To-
wards wider multilinguality. In Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC
2012), Istanbul, Turkey, May. ELRA.

Pazienza, M. T., Pennacchiotti, M., and Zanzotto, F. M.
(2005). Terminology extraction: an analysis of linguistic
and statistical approaches. In Knowledge mining, pages
255–279. Springer.

Rigouts Terryn, A., Hoste, V., and Lefever, E. (2019). No
uncertain terms: A dataset for monolingual and multilin-
gual automatic term extraction from comparable corpora.
Language Resources and Evaluation.

Rigouts Terryn, A., Drouin, P., Hoste, V., and Lefever, E.
(2020). Termeval 2020: Shared task on automatic term
extraction using the annotated corpora for term extrac-
tion research (acter) dataset. In Proceedings of Compu-
tational Terminology CompuTerm 2020, COMPUTERM
2020, pages 1–4, Paris, France. European Language Re-
sources Association.

Salton, G., Yang, C.-S., and Yu, C. T. (1975). A theory of
term importance in automatic text analysis. Journal of
the American society for Information Science, 26(1):33–
44.

Schmid, H. (1994). Probabilistic part-of-speech tagging
using decision trees. In Proceedings of International
Conference on New Methods in Language Processing,
Manchester, UK.

Valaski, J., R. S. and Malucelli, A. (2015). Approaches and
strategies to extract relevant terms: How are they being
applied? In Proceedings of the International Conference
on Artificial Intelligence (ICAI 2015), page 478–484,
San Diego, USA. The Steering Committee of the World
Congress in Computer Science, Computer Engineering
and Applied Computing (WorldComp).

Vasiljevs, A., Pinnis, M., and Gornostay, T. (2014). Ser-
vice model for semi-automatic generation of multilin-
gual terminology resources. In Proceedings of the Ter-
minology and Knowledge Engineering Conference, page
67–76.

Velardi, P., Missikoff, M., and Basili, R. (2001). Iden-
tification of relevant terms to support the construction
of domain ontologies. In Proceedings of the Workshop
on Human Language Technology and Knowledge Man-
agement, pages 1–8, Morristown, USA. Association for

113

Computational Linguistics.
Vivaldi, J. and Rodrı́guez, H. (2001). Improving term ex-

traction by combining different techniques. In Terminol-
ogy. International Journal of Theoretical and Applied Is-
sues in Specialized Communication, page 31–48, Ams-
terdam, The Netherlands. John Benjamins.

Vàzquez, M. and Oliver, A. (2013). Improving term can-
didate validation using ranking metrics. In Proceedings
of the 3rd World Conference on Information Technology
(WCIT-2012), page 1348–1359. AWERProcedia Infor-
mation Technology Computer.

Vàzquez, M. and Oliver, A. (2018). Improving term can-
didates selection using terminological tokens. In Termi-
nology. International Journal of Theoretical and Applied
Issues in Specialized Communication, pages 122–147,
Amsterdam, The Netherlands. John Benjamins.

	Introduction
	Automatic terminology extraction
	Token Slot Recognition filtering method
	TBXTools, a term extraction tool
	Experimental part
	Methodology
	Results and evaluation

	Discussion
	Conclusions and future work
	References

