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Abstract

Text discourse parsing plays an important role in understanding information flow and argumenta-
tive structure in natural language. Previous research under the Rhetorical Structure Theory (RST)
has mostly focused on inducing and evaluating models from the English treebank. However, the
parsing tasks for other languages such as German, Dutch, and Portuguese are still challenging
due to the shortage of annotated data. In this work, we investigate two approaches to establish a
neural, cross-lingual discourse parser via: (1) utilizing multilingual vector representations; and
(2) adopting segment-level translation of the source content. Experiment results show that both
methods are effective even with limited training data, and achieve state-of-the-art performance
on cross-lingual, document-level discourse parsing on all sub-tasks.

1 Introduction

Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) is one of the most influential theories
of discourse analysis, under which a document is represented by a hierarchical discourse tree. As shown
in Figure 1a, the leaf nodes of an RST tree are text spans named Elementary Discourse Units (EDUs),
and the EDUs are connected by rhetorical relations (e.g., Cause, Contrast) to form larger text spans until
the entire document is included. The rhetorical relations are further categorized to Nucleus (core part)
and Satellite (subordinate part) based on their relative importance. Thus, document-level discourse pars-
ing consists of three sub-tasks: tree construction, nuclearity determination and relation classification.
Moreover, downstream natural language processing tasks can benefit from RST-based structure-aware
document analysis, such as summarization (Liu and Chen, 2019; Xu et al., 2020) and machine compre-
hension (Gao et al., 2020).

By utilizing various linguistic characteristics (e.g., N -gram and lexical features, syntactic and organi-
zational features), statistical approaches have obtained substantial improvement on the English RST-DT
benchmark (Sagae, 2009; Hernault et al., 2010; Joty et al., 2013; Li et al., 2014b; Heilman and Sagae,
2015). Recently, neural networks have been making inroads into discourse analysis frameworks, such
as attention-based hierarchical encoding (Li et al., 2016) and integrating neural-based syntactic features
into a transition-based parser (Yu et al., 2018). Lin et al. (2019) and their follow-up work (Liu et al.,
2019) successfully explored encoder-decoder neural architectures on sentence-level discourse analysis,
with a top-down parsing procedure.

Although discourse parsing has received much research attention and progress, the models are mainly
optimized and evaluated in English. The main challenge is the shortage of annotated data, since manual
annotation under the RST framework is labor-intensive and requires specialized linguistic knowledge.
For instance, the most popular benchmark English RST-DT corpus (Carlson et al., 2002) only contains
385 samples, which is much smaller than those of other natural language processing tasks. The treebank
size of other languages such as German (Stede and Neumann, 2014), Dutch (Redeker et al., 2012) and
Basque (Iruskieta et al., 2013) are even more limited. Such limitations make it difficult to achieve
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Figure 1: (a) An RST discourse tree example. ei, ej:k,N and S denote elementary discourse units, spans,
nucleus and satellite respectively; (b) The original EDU segments in Portuguese; (c) The translated EDU
segments in English.

acceptable performance on these languages required to fully support downstream tasks, and also lead to
poor generalization ability of the computational approaches.

Since the treebanks of different languages share the same underlying linguistic theory, data-driven ap-
proaches can benefit from joint learning on multilingual RST resources (Braud et al., 2017). Therefore,
in this paper, we investigate two methods to build a cross-lingual neural discourse parser: (1) From the
embedding perspective: with the cross-lingual contextualized language models, we can train a parser on
the shared semantic space from multilingual sources without employing a language indicator; (2) From
the text perspective: since each EDU is a semantically-cohesive unit, we can unify the target language
space by EDU-level translation, while preserving the original EDU segmentation and the discourse tree
structures (see Figure 1c). To this end, we adapted and enhanced an end-to-end neural discourse parser,
and investigated the two proposed approaches on 6 different languages. While the RST data for training is
still in a small scale, we achieved the state-of-the-art performance on all fronts, significantly surpassing
previous models, and even approaching the upper bound of human performance. Moreover, we con-
ducted a topic modeling analysis on the collected multilingual treebanks to evaluate the model generality
across various domains.

2 Methodology

2.1 Neural Discourse Parser

Since the encoder-decoder neural architecture with a top-down parsing procedure proposed in (Lin et al.,
2019) has achieved impressive performance on sentence-level discourse analysis, here we adapted and
enhanced it on the document-level parsing task. The neural model consists of an encoder, a span splitting
decoder, and a nuclearity-relation classifier.
Encoder: The encoder produces EDU-level representations via a hierarchical encoding process. Given
a document containing n tokens, an embedding layer is used to obtain token-level representations
T̃ = {t̃1, ..., t̃n}. Then we obtain EDU-level representations by averaging the token embeddings for
each EDU, and feed them to a Bi-GRU (Cho et al., 2014) component for document-level context-aware
modeling. Moreover, to exploit implicit syntactic information like part-of-speech (POS) and sentential
information (Yu et al., 2018), we incorporate boundary embeddings at both ends of each EDU from T̃
to the context-aware vectors, and obtain the final EDU representation E = {e1, ..., em}, where m is the
total EDU number.
Span Splitting Decoder: The decoder splits spans of EDUs to form the tree structure in a top-down
transition-based procedure. Figure 2 illustrates the parsing steps of the example in Figure 1: the decoder
maintains a Stack, which is initialized by the span of all EDUs e1:m. At each decoding step t, the span
ei:j at the head of stack is parsed into two sub-spans ei:k and ek+1:j (i ≤ k < j), and k is the splitting
position predicted via an attention-based pointer network (Bahdanau et al., 2015; Vinyals et al., 2015).
Afterwards, spans containing more than one EDU are pushed into the stack, then the decoder iteratively
parses the spans until Stack is empty.
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Figure 2: Document-level neural parser. t, e and h denote input tokens, encoded EDU representations,
and decoded hidden states. The Stack is maintained by the decoder to track top-down depth-first span
splitting. With each splitting pointer k, sub-spans ei:k and ek+1:j are fed to a classifier Φ for nuclearity
and relation determination.

Nuclearity-Relation Classifier: At each decoding step, after the span ei:j is split into two sub-spans
ei:k and ek+1:j , a bi-affine classifier (Dozat and Manning, 2017) is adopted to predict their nuclearity
and relation labels. Here we use the joint labels of nuclearity and relation as previous studies (Yu et al.,
2018; Lin et al., 2019). The total loss is specified as the sum of the cross entropy of span splitting and
nuclearity-relation classification. Model implementation details and hyper-parameter configuration are
described in Appendix A.

2.2 Multilingual Parsing
In this section, we introduce two approaches for the multilingual discourse parsing. Since both methods
are model-independent, they can be adopted on various neural architectures, and extended to other low-
resource scenarios.

2.2.1 Utilizing Cross-Lingual Vector Representations
Recently, the large-scale multilingual language models are able to provide universal encoders that project
various inputs to a shared embedding space (Conneau and Lample, 2019), and are proved effective in
natural language processing tasks such as machine comprehension. Therefore, to conduct discourse
parsing on documents from various languages, we first propose to apply a cross-lingual representation
backbone in the embedding layer in Section 2.1. Here, we utilize XLM-RoBERTa (Conneau et al., 2020),
which supports 100 languages, and fine-tune it by joint training with the whole neural parser. Moreover,
since BERT-based backbones usually have positional embedding limitation, to encode lengthy sequences
without truncation for document-level discourse parsing, the sliding window strategy1 is adopted for
better long dependency modeling.

2.2.2 Adopting EDU Segment-Level Translation
Aside from using cross-lingual embedding, one alternative way is to transform multilingual text content
into a monolingual space. While sophisticated neural approaches are able to generate multilingual trans-
lation with high quality and fluency, the commonly adopted sentence-level translation usually makes
changes to the syntactic structure, which affects the original discourse annotation like the number and
order of EDUs. Therefore, we propose to convert multilingual source content via EDU segment-level
translation, as EDU segments are deemed to be semantically cohesive. We feed the documents with
EDU segmentation (split by newlines) to a machine translator (Wu et al., 2016), then use the monolin-
gual samples for training and evaluation. As shown in Figure 1, we observe that the translated material
retains the original split and order at the EDU level, and shares the same English syntactic characteristics
such as the position of discourse connective words (e.g., ‘however’, ‘although’) and relation pronouns
(e.g., ‘that’, ‘which’). Then, we train the neural parser in Section 2.1 on the translated samples with their
original tree structure, nuclearity, and relation annotations.

1In our experiment, the input sequence length after sub-word tokenization can be larger than 2048. In order to exploit global
contextual information, the window size is set as 500, and the stride size is 200.
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Language Tree Bank Sample Num. Relation Num. Material Domain
English (En-DT) English RST-DT (Carlson et al., 2002) 385 56 Wall Street Journal articles

CST-News (Cardoso et al., 2011) 140 31 News articles
Brazilian Summ-it (Collovini et al., 2007) 50 29 Science articles
Portuguese (Pt-DT) Rhetalho (Pardo and Seno, 2005) 40 23 Articles in computer science

CorpusTCC (Pardo and Nunes, 2004) 100 31 Articles in computer science and news

Spanish (Es-DT) Spanish RST-DT (Da Cunha et al., 2011) 267 29
Text written by specialists on different topics
(e.g. astrophysics, economy, law, linguistics)

German (De-DT) MAZ Corpus (Stede and Neumann, 2014) 175 30 German newspaper commentaries
Dutch (Nl-DT) Dutch RST-DT (Redeker et al., 2012) 80 31 Encyclopedias, letters, and news

Basque (Eu-DT) Basque RST-DT (Iruskieta et al., 2013) 88 31
Abstracts from three specialized domains
(medicine, terminology and science)

Table 1: The collected RST discourse treebanks from 6 languages.

En-DT Pt-DT Es-DT De-DT Nl-DT Eu-DT
Models Sp Nu Rel Sp Nu Rel Sp Nu Rel Sp Nu Rel Sp Nu Rel Sp Nu Rel

MACRO F1 SCORE
Human* 88.7 77.7 65.8 - 78.0 66.0 86.0 82.5 76.8 - - - 83.0 77.0 70.0 81.7 - 61.5
MFS* 58.2 33.4 22.1 57.3 33.9 23.2 82.0 51.5 17.7 61.3 37.8 13.2 57.9 35.5 22.0 63.2 34.9 18.8
Li et al. (2014a) 85.0 70.8 58.6 - - - - - - - - - - - - - - -
Braud et al.(2017) 85.1 73.1 61.4 81.9 65.1 49.8 88.8 68.0 50.4 79.6 53.6 34.1 69.2 43.4 28.3 76.7 50.5 29.5
Cross-Lingual Representation
EN-Training 88.1 77.3 64.7 84.9 68.6 54.7 85.2 58.1 36.8 82.0 53.5 34.5 82.3 57.7 39.4 82.4 56.5 34.7
Multi-Training 88.9 77.5 65.7 87.2 72.9 60.8 88.3 75.3 60.5 84.1 62.8 45.9 86.4 64.6 49.5 85.9 67.3 51.9
Segment-Level Translation
EN-Training 88.3 77.8 64.9 85.1 69.2 55.0 85.9 58.6 37.0 80.7 53.3 34.1 82.6 58.0 39.7 82.6 58.3 36.2
Multi-Training 89.2 78.7 67.1 87.9 73.8 61.7 89.4 75.8 61.2 82.7 59.5 42.4 85.0 63.4 48.2 85.7 67.8 49.6

MICRO F1 SCORE
Yu et al. (2018) 85.5 73.1 60.2 - - - - - - - - - - - - - - -
Iruskieta (2019) 80.9 65.5 52.1 79.7 62.8 47.8 85.4 65.0 45.8 - - - - - - - - -
Cross-Lingual Representation
EN-Training 87.2 73.7 62.3 84.4 68.1 53.9 79.5 55.6 36.0 81.7 53.1 33.8 80.5 55.6 38.5 81.7 55.3 33.6
Multi-Training 87.5 74.7 63.0 86.3 71.7 60.0 86.2 71.1 54.4 83.6 62.2 45.1 85.9 64.5 49.4 85.1 65.8 47.7
Segment-Level Translation
EN-Training 87.4 74.6 62.8 84.9 68.0 54.2 82.6 56.3 35.1 79.5 52.7 34.0 81.5 57.0 39.1 81.2 57.3 35.5
Multi-Training 87.8 75.4 63.5 86.5 72.0 60.3 87.9 71.4 56.1 82.3 58.9 41.0 84.6 62.7 47.2 84.4 65.5 47.3

Table 2: Evaluation scores on multilingual RST treebanks. * denotes results from (Braud et al., 2017).
Sp, Nu and Rel denote span splitting, nuclearity and relation determination respectively.

3 Experimental Results and Analyses

In this section, we describe data collection and present the experimental setting, results and analyses of
the proposed methods.

3.1 Data and Pre-processing
We constructed a multilingual dataset by collecting treebanks from 6 languages: English (En-DT),
Brazilian Portuguese (Pt-DT), Spanish (Es-DT), German (De-DT), Dutch (Nl-DT), and Basque (Eu-
DT), and their details are shown in Table 1. Since the annotated formats are slightly different among
treebanks, we conducted data pre-processing as in (Braud et al., 2017) to uniform them. All samples
were transformed into binary trees, and units that were not linked to others within the tree were removed.
Following (Lin et al., 2019), we reorganized the discourse relations to 18 categories, and attached the
nuclearity labels Nucleus-Satellite (NS), Satellite-Nucleus (SN) and Nucleus-Nucleus (NN) to the relation
labels. For each language, we randomly selected 38 samples for evaluation. The total training set and
test set are 1.1k and 228. For encoding input, we applied the pre-trained sub-word tokenizer of XLM-
RoBERTa (Conneau et al., 2020). We adjusted random seeds to obtain multiple results for each language
and used the average as reported scores.

3.2 Evaluation Result
The experimental results are shown in Table 2. Since macro-averaged and micro-averaged F1 scores
are reported in different previous works, we conducted extensive comparisons using these two criteria.
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Figure 3: Analysis with topic modeling and feature visualization. Topic keywords are extracted with the
LDA algorithm, and the scatter plot is illustrated by applying t-SNE.

The results demonstrate that (1) models which are only trained on the English treebank (EN-Training)
can achieve competitive span splitting performance on the multilingual test sets; (2) the two proposed
approaches with multilingual training (Multi-Training) surpass the baselines with a significant margin
at all fronts: the span splitting prediction on all languages are approaching human performance, and
nuclearity and relation determination are improved substantially compared to previously reported cross-
lingual parsers (Braud et al., 2017); (3) Interestingly, the model with cross-lingual representation per-
forms slightly better on the treebanks with fewer samples (e.g., De-DT, Nl-DT, and Eu-DT), and the
model with segment-level translation obtains the best result in English.

3.3 Topic Modeling Analysis
To further assess the generality of our parsers from the domain perspective, we conducted a topic mod-
eling analysis on the translated samples from multilingual treebanks. LDA (the topic number was set as
5) and t-SNE were used for topic modeling and feature visualization, respectively. As shown in Figure
3, the treebanks show a trend to cluster in different topics (marked in circles). For instance, the English
treebank (En-DT) mainly focuses on the financial news domain (in blue). Compared to the Portuguese
treebank (Pt-DT), the Spanish one (Es-DT) is more distinct to the En-DT, which is consistent with the
performance gap between them under EN-Training (see Table 2). Therefore, by adding Spanish (Es-
DT) and Portuguese (Pt-DT) data, topic coverage for the Multi-Training model expands to scientific and
terminology articles, and thus becomes more generalizable to other domains.

4 Conclusion

In this paper, we investigated two approaches for cross-lingual neural discourse parsing. Experimental
results show that both utilizing cross-lingual representation and adopting segment-level translation con-
tribute to obtaining state-of-the-art performance on various treebanks. Moreover, monolingual models
can also benefit from cross-lingual training by introducing data from more domains. For future work, we
consider conducting domain adaption via few-shot learning to make our approach more generalizable.
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A Model Description and Hyper-parameter Configuration

A.1 Details of Encoder-Decoder
Given a document containing n tokens T = {t1, t2, ..., tn}, the embedding layer (a pre-trained lan-
guage model) produces token-level embeddings T̃ = {t̃1, ..., t̃n}, the EDU-level representations C =
{c1, ..., cm} are calculated by averaging the respective token-level embeddings. Then, a multi-layer
Bi-GRU is employed to generate the context-aware EDU-level representations V = {v1, ..., vm} by se-
quentially modeling the dependency among C, and each vi is the concatenated vector of the the forward
and the backward hidden states: vi = [

→
vi;
←
vi]. Afterwards, the final EDU representations are produced via

incorporating boundary embeddings at the beginning and end of each EDU from T̃ to the context-aware
EDU vector vi:

ei = We([vi; t̃i start; t̃i end]) + be (1)

where ; denotes the concatenation operation. We and be are the trainable parameter matrix and bias.
We employ a unidirectional GRU layer for the span splitting decoder, and its hidden state h0 is initial-

ized by the last hidden states of the encoder. At each decoding step, the hidden state ht is produced by the
GRU with the previous hidden state ht−1 and the input span representation ei:k, where ei:k is calculated
from taking the average of the respective EDU representations (i.e. mean(ei, ..., ek) for ei:k). Then, the
pointer network (Vinyals et al., 2015) is used to predict the splitting position according to the computed
attention scores on encoded EDU representations, which is a softmax distribution over the input span.

st,u = σ(ht, eu) for u = i...j (2)

at = softmax(st) =
exp(st,u)∑j
u=i exp(st,u)

(3)

where σ(x, y) is the dot product used as attention scoring function.

A.2 Details of Nuclearity-Relation Classifier
After decoder splits span ei:j into left sub-span ei:k and right sub-span ek+1:j , the classifier first projects
el and er to latent features ẽl and ẽr by a linear layer with Exponential Linear Unit (ELU), where el and
er are the average of respective EDU representations in ei:k and ek+1:j :

ẽl = ELU(eTl U1); ẽr = ELU(eTr U2) (4)

Then a bi-affine layer with softmax activation maps the features to nuclearity-relation labels:

Pθ(y|X) = softmax(ẽTl Wl + ẽTl Wlrẽr + ẽTrWr + b) (5)

where Wl ∈ Rd×R; Wr ∈ Rd×R and Wlr ∈ Rd×d×R are the weights and bias b ∈ RR.

A.3 Training Loss
The parser’s objective contains two parts: building the discourse tree structure and predicting the nu-
clearity and discourse relation labels. Therefore, the total loss is the sum of structure loss Ls and label
prediction loss Ll, where Ls is the cross entropy loss upon attention probabilities of the pointer network
and Ll is the cross entropy loss of the nuclearity-relation classification.

Ls(θs) = −
T∑
t=1

logPθs(yt|y1, ..., yt−1, X) (6)

Ll(θl) = −
M∑
m=1

R∑
r=1

logPθl(ym = r|X) (7)

where θs and θl are the parameters of the pointer network and classifier respectively, T is the total number
of spans, and y1, ..., yt−1 denote the sub-trees that have been generated in the previous steps. M is the
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number of spans that need to be split, and R is the number of nuclearity-relation labels.
The total loss with L2-regularization is:

Ltotal(θ∗) = Ls(θs) + Ll(θl) + λ||θ∗||22 (8)

where λ is the regularization strength and θ∗ refers to all learning parameters of the model.

A.4 Hyper-parameter Configuration
The neural model was implemented in PyTorch (Paszke et al., 2019). We used ‘xlm-roberta-base’ imple-
mented in (Wolf et al., 2019) and fine-tuned the last 4 layers during training. In order to exploit global
contextual information, the window size was set as 500 and the stride size was 200. Documents were to-
kenized via the sub-word scheme as in (Conneau and Lample, 2019). We trained the model for 30 epochs
and selected the best checkpoints on a validation set for evaluation. Adam optimization algorithm was
used with batch size of 3, weight decay of 5e-5, and learning rate of 1e-4. Dropout rate was set as 0.5
during training. The embedding dimension and hidden size were 768 and 384. The trainable parameter
size was 67M, where 31M parameters were from fine-tuning the language model. All experiments were
run on a Tesla V100 GPU with 16GB memory.


