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Abstract

Academia and industry have developed machine learning and natural language processing mod-
els to detect online hate speech automatically. However, most of these existing methods adopt
a supervised approach that heavily depends on labeled datasets for training. This results in the
methods’ poor detection performance of the hate speech class as the training datasets are highly
imbalanced. In this paper, we propose HateGAN, a deep generative reinforcement learning
model, which addresses the challenge of imbalance class by augmenting the dataset with hateful
tweets. We conduct extensive experiments to augment two commonly-used hate speech detection
datasets with the HateGAN generated tweets. Our experiment results show that HateGAN im-
proves the detection performance of the hate speech class regardless of the classifiers and datasets
used in the detection task. Specifically, we observe an average 5% improvement for the hate class
F1 scores across all state-of-the-art hate speech classifiers. We also conduct case studies to em-
pirically examine the HateGAN generated hate speeches and show that the generated tweets are
diverse, coherent, and relevant to hate speech detection.

1 Introduction

Motivation. The sharp increase in online hate speeches has raised concerns globally (Schmidt and
Wiegand, 2017; Fortuna and Nunes, 2018). The spread of hate speech in social media has not only sowed
discord among individuals or communities online but also resulted in violent hate crimes (Williams,
2019; Relia et al., 2019; Mathew et al., 2019). Therefore, it is a pressing issue to detect and curb hate
speech in online social media. Major social media platforms such as Facebook and Twitter have made
great efforts to combat the spread of hate speech in their platforms (Times, 2019; Bloomberg, 2019).
Researchers have also proposed many traditional and deep learning hate speech classification methods
to detect hate speeches in online social media automatically (Schmidt and Wiegand, 2017; Fortuna and
Nunes, 2018). Most of these existing methods adopt a supervised approach that heavily depends on
labeled datasets for training. This results in the methods’ poor detection performance of the hate speech
class as the training datasets are highly imbalanced (Waseem and Hovy, 2016; Davidson et al., 2017).

A potential solution to address the challenges of imbalance datasets is to perform data augmentation
for the class with fewer training samples. For instance, perturbing replicas of data samples using noise
injection or attribute modification techniques have been successful in other domains such as image and
sound classification tasks (Shorten and Khoshgoftaar, 2019; Tran et al., 2017; Dong et al., 2016; Keren
et al., 2016; Salamon and Bello, 2017). Nevertheless, these techniques are not transferable to text as they
would break the text’s syntax and alter the semantics of the original sentences. There are also very few
works that have explored improving hate speech detection performance using data augmentation, and
their results have shown limited improvement on automatic hate speech detection (Rizos et al., 2019).

Research Objectives. In this paper, we aim to fill the research gaps by proposing HateGAN, a novel
controlled text generation method to generate diverse and relevant short hate speeches to augment exist-
ing social media hate speech datasets. At a high level, HateGAN adopts a reinforcement learning-based

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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generative adversarial network architecture. The generative adversarial network component ensures that
the generated text stays relevant and syntactically close to the original dataset. Inspired by the SeqGAN
model (Yu et al., 2017), the reinforcement learning-based component encourages the generator to gener-
ate text that is more hateful by introducing a reward policy gradient to guide its generation. Specifically,
we include a pre-trained toxicity scorer that scores a given text on six dimensions of toxic content. The
computed scores are used as rewards and feedback signals to guide the generation of hateful text.

Contributions.1 Our main contributions in this work consist of the following.

• We propose a novel deep learning model called HateGAN, which adopts a reinforcement learning-
based generative adversarial network architecture to generate hate speech for data augmentation.

• We conduct extensive experiments to augment two commonly-used hate speech detection datasets.
Our experiment results show that HateGAN improves the detection performance of the hate speech
class regardless of the classifiers and datasets used in the detection task. Specifically, we observe
an average 5% improvement for the hate class F1 scores across all state-of-the-art hate speech
classifiers.

• We conduct empirical analyses on the generated hate speech and show that the generated texts are
diverse, coherent, and relevant to hate speech detection.

2 Related Work

Automatic detection of hate speech has received considerable attention from data mining, information re-
trieval, and natural language processing (NLP) research communities. Interest in this field has increased
with the proliferation of social media and social platforms (Fortuna and Nunes, 2018; Schmidt and Wie-
gand, 2017). Traditional models (Chen et al., 2012; Waseem and Hovy, 2016; Waseem, 2016; Nobata et
al., 2016; Chatzakou et al., 2017; Davidson et al., 2017) and deep learning models (Djuric et al., 2015;
Mehdad and Tetreault, 2016; Gambäck and Sikdar, 2017; Badjatiya et al., 2017; Park and Fung, 2017;
Gröndahl et al., 2018; Zhang et al., 2018; Arango et al., 2019; Founta et al., 2019) have been developed
to detect hate speech in social media. Most of these existing methods adopt a supervised approach that
heavily depends on labeled datasets for training, which is a challenge as existing hate speech datasets
are highly imbalanced. For example, Waseem and Hovy (2016) collected a Twitter dataset and manually
annotated the sexism and racism tweets. Davidson et al. (2017) performed similar annotation on a larger
Twitter corpus, where the researchers differentiated offensive from hate tweets. However, both datasets
are highly imbalanced; only about 30% of the tweets in (Waseem and Hovy, 2016) are labeled as sexism
or racism, and less than 12% of the tweets in (Davidson et al., 2017) are labeled as hateful.

Data augmentation methods have been explored to address the imbalance datasets challenge in super-
vised classification tasks. For example, noise injection or attribute modification techniques were com-
monly applied to generate synthetic data for image and sound classification tasks (Shorten and Khosh-
goftaar, 2019; Tran et al., 2017; Dong et al., 2016; Keren et al., 2016; Salamon and Bello, 2017).
Nevertheless, it is challenging to apply such techniques on text due to the categorical nature of words
and the sequential nature of text. In recent years, generative adversarial network models such as SeqGAN
(Yu et al., 2017) and LeakGAN (Guo et al., 2018) have been proposed to generate text. However, these
approaches suffer from high training variance and mode collapse. Controlled text generation techniques
were also explored to perform data augmentation (Malandrakis et al., 2019). For instance, Variational
Autoencoder (VAE) was applied in text generation (Bowman et al., 2016). The VAE models consist
of an encoder that maps each sample to a latent representation and a decoder that generates samples
from the latent space and a variational attribute (Kingma and Welling, 2013). The variational attribute is
able to add diversity to the generated output sequences. The Conditional VAE (CVAE) (Kingma et al.,
2014) was proposed to incorporate stochastic latent variables to improve the generation of diverse and
relevant text. In this paper, we propose HateGAN, which a novel a reinforcement learning-based gen-
erative adversarial network to generate short hate speeches. Specifically, the policy gradient component

1Code:https://gitlab.com/bottle shop/safe/hategan
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in HateGAN guides the text generation process, which creates diverse and relevant short hate speeches.
The generated hate speeches are subsequently used for data augmentation to improve automatic hate
speech detection.

There are very few works that explored data augmentation in hate speech detection. In a recent work,
Rizos et al. (2019) explored three kinds of data augmentation for hate speech detection. The researchers
had explored (1) substituting the words in text, (2) swapping the word positions, and (3) the neural gen-
eration method using Recurrent Neural Network (RNN) (Sutskever et al., 2011). Each of these methods
has its limitations. For instance, word substitution is challenging for hate speech generation as certain
words may inherently contain hateful or offensive semantics. Furthermore, new lexicons may be cre-
ated in the fast-evolving social media, adding challenges to find reasonable semantically similar words
for substitution. It is also challenging to swap words position while maintaining the coherence of the
sentences. Lastly, the neural generation method used in the study was generic and rudimentary. In this
paper, we also adopt a neural generation approach to augment data for hate speech detection. However,
unlike the neural generation method in (Rizos et al., 2019), our proposed HateGAN model is specifically
designed to generate high quality and diverse short hate speeches.

3 Adversarial Generative-Based Model

Figure 1 illustrates the overall architecture of our proposal HateGAN model. It follows a similar process
of reinforcement learning-based sequence generation proposed in (Yu et al., 2017). The discriminator
is trained to guide the generator to synthesize tweets that are indistinguishable from the real tweets.
The “realisticness” of the synthesized tweets is measured and output as realistic scores. As our goal is to
improve the performance of hate speech detection by data augmentation, we aim to generate more hateful
tweets. Therefore, we pre-trained a toxicity scorer that quantifies the hatefulness of the synthesized
tweets as hate scores. The realistic scores and hate scores are subsequently used as rewards to guide
and update the parameters in the generator for more realistic hateful tweets generation. To overcome the
problem of differentiation in sequence generation, a policy gradient is used to train the HateGAN model.

Generator

Discriminator

Pre-Trained
Toxicity Scorer

Policy Gradient

Synthesized 
Tweets

Real
Tweets

Hate Score
Reward

Realistic Score
Reward

Update Paramters

Figure 1: Architecture of the HateGAN model.

3.1 Pre-Training Toxicity Scorer

The toxicity scorer plays a vital role in the HateGAN model as it outputs a hate score reward to guide the
generator to produce more hateful tweets. Specifically, the toxicity scorer is pre-trained as a multi-label
classification model, as shown in Figure 2. The model consists of a word embedding layer, LSTM, and
fully connected layer. For word embeddings, we trained a Word2Vec model over tweets in scratched
from 17 March 2020 to 28 April 2020 related to the COVID-19 pandemic. The LSTM layer is made up
of two stacked LSTM. Max and average pooling operations are applied to all hidden states of the second
LSTM. The two vectors are connected to a fully connected layer to generate the final vector for multi-
label classification. Binary cross-entropy is used as the loss function. We pre-trained the classification
model using the Toxic Comment Classification Challenge dataset from Kaggle2. The dataset contains

2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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Figure 2: Toxicity scorer pre-trained as a multi-label classification model
about 160,000 comments, and each comment is labeled in six polarities: toxicity, obscene, threat, insult,
identity attack, and sexual explicit.

Although the toxicity scorer is able to score a given text on the six polarities (i.e., labels in the classi-
fication model), not all the polarities are relevant in guiding the generation of hateful tweets. ElSherief
et al. (2018) exploited the toxicity and attack on commenter models provided by the Perspective API3

to evaluate and annotate the hatefulness in text. The underlying intuition is that hate speech, by the defi-
nition of (Cambridge, ), hate speech should both contain hate or violent expression and target groups or
individuals. We adopt a similar approach where we consider a given text’s toxicity and identity attack
polarities scores learned by our toxicity scorer. The two scores will be used as hate score rewards to
encourage the generator to synthesize more hateful tweets.

3.2 Sequence Generative Model with Policy Gradient
Our HateGAN model adopts an Adversarial-based learning framework where a Generator and a Dis-
criminator are trained iteratively for tweet generation. The intuition is that the generator aims to gener-
ate synthetic data that the discriminator cannot distinguish from real data. However, it is challenging to
generate sequence data, such as natural language sentences. For sequence generation, the model gives
discrete output, making it hard for gradients to backpropagate. Every token also matters in generat-
ing a sequence, and it is meaningless to feed only partially generated sequences to the discriminator.
The HateGAN model adopted the sequence generation framework proposed in (Yu et al., 2017), where
reinforcement learning and Monte Carlo (MC) search to address the above challenges.

Specifically, we define the sequence generation problem as follows: the generator Gα is required to
give an output W = (w1, w2, · · · , wn), where n is the length of the sequence and α denotes parameters
in the generator. When generating for the t-th word, we can regard it as selecting an action from the action
space V given the previous state w1, w2, · · · , wt−1. The action space V is the vocabulary. After action
selection, our scoring module will provide an action reward regarding two aspects: the realisticness and
hateful attributes of the generation. Given a synthesized sequence from generator, the scoring module
will provide a reward as Y ∈ Rn, elements of which corresponds rewards for each position of the
sequence. As discussed earlier, it is ineffective to feed an incomplete sentence into the scoring module.
Therefore, when computing reward at time step t, we regard w1, · · · , wt−1 as state and use Monte Carlo
search to finish the rest of generation. The expected reward from a sentence is the action-value for
selecting wt, and it is computed as follow:

r(state = (w1, · · · , wt−1), action = wt) =
1

N

N∑
i=1

(S(xi)) (1)

Where S to denote our scoring module, N is the number of MC search and xi is the i-th MC result based
on the current state: w1, w2, · · · , wt−1. The average rewards from these N sentences will be utilized
as the reward for the action reward at time step t. We also noted that for the final word prediction, the
MC search is not applied. Instead, we feed the whole generated sentence directly to the scoring module.

3https://www.perspectiveapi.com/
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Table 1: Statistic information about datasets in experiments

Dataset #tweets Classes (#tweets)
WZ-LS 13,202 hate (3,435), non-hate (9,767)

DT 24,783 hate (1,430), offensive (19,190), neither (4,163)
FOUNTA 89,990 normal (53,011), abusive (19,232), spam (13,840), hate (3,907)
HateLingo 11,763 hate (11,763)

Finally, we can obtain a reward vector for sequence: Y ∈ Rn. Thus, for training, the goal is to maximize
the expected reward by optimizing parameters in the generator. Specifically, we define the loss as the
negative expected reward:

Loss(α) = −
n∑
t=1

E[w1:t−1]∼Gα [Ewt∼Gα [r(wt)]]

≈ −
n∑
t=1

∑
wt∈V

[Gα(wt|w1:t−1)
1

N

N∑
i=1

S(xti)]

(2)

where, S is the scoring module, xti is the i-th search result by Monte Carlo given generated t tokens.
Similar to (Yu et al., 2017), we apply policy gradient to optimize the loss in Equation 2.

The realistic and hate score rewards in our model are realized by incorporating a discriminator and
toxicity scorer, respectively. The discriminator is a binary classifier trained to evaluate the realisticness
of the generated sentence. Parameters in the discriminator are optimized in order to distinguish from the
generated tweets from the real ones. The more likely a tweet is perceived to be real, the discriminator will
assign a score closer to the max score of 1. The parameter optimization in the discriminator is computed
as follows:

V (Gα, Dβ) = Ex∼Pdata [log(Dβ(x))] + Ex∼PGα [log(1−Dβ(x))] (3)

D∗β = argmax
β

V (Gα, Dβ) (4)

where Gα and Dβ denotes the generator and discriminator respectively, x is the tokens of sentences
sending to the discriminator, β corresponds to the parameters in the discriminator. As the toxicity scorer
is pre-trained, its parameters are fixed during the training of HateGAN model. As highlighted in earlier
section, we only consider the synthesized text’s toxicity and identity attack polarities scores for comput-
ing the hate score reward. The final combined reward is calculated as follows:

r(x) = Discriminator(x) + σToxcityScorer(x) (5)

where r is a numeric value, x is the input sentence, and σ is a hyper-parameter, which balances the
contribution from realisticness and hateful attributes for the reward.

4 Experiment

In this section, we describe the experiments conducted to evaluate the effectiveness of HateGAN in aug-
menting publicly available hate speech datasets and improving the performance of existing hate speech
detection models. Specifically, we evaluate the HateGAN’s ability to improve the hate speech detection
classification performance by augmenting the datasets used in training the classifiers. We also perform
analysis to understand the HateGAN’s effects on hate speech detection performance by varying the
amount of data augmentation. Finally, we demonstrate the quality of HateGAN’s generated hateful
tweets via case studies.
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4.1 Datasets

Four publicly available datasets are used in our study: WZ-LS (Waseem and Hovy, 2016), DT (Davidson
et al., 2017), FOUNTA (Founta et al., 2018), and HateLingo (ElSherief et al., 2018). The datasets are
utilized for two main purposes: (1) training the generator in HateGAN model, and (2) training the
classifiers for the hate speech classification task. Training the HateGAN model with a large dataset
helps improve the diversity in text generation. Furthermore, having more observations on hateful tweets
may also improve the quality of the generated hate tweets. Therefore, we combine the four datasets
to train the HateGAN model. Ideally, we could also train the classifier and evaluate the hate speech
classification task on the four datasets. However, HateLingo only contains single class tweets (i.e., hate
tweets), and recent studies (Awal et al., 2020) have shown significant annotation inconsistency in the
FOUNTA dataset. Thus, we focus our evaluation on the WZ-LS and DT datasets. Table 1 shows the
distribution of four publicly available datasets used in our study.

4.2 Baselines

To demonstrate the robustness of HateGAN model, we augment the HateGAN generated tweets to im-
prove the performance of three commonly-used deep learning classifiers in hate speech detection: LSTM
(Badjatiya et al., 2017; Agrawal and Awekar, 2018; Gröndahl et al., 2018), CNN, (Badjatiya et al., 2017;
Agrawal and Awekar, 2018; Gambäck and Sikdar, 2017) and CNN-LSTM (Zhang et al., 2018; Rizos
et al., 2019; Cao et al., 2020). We also include the CNN-LSTM-GenAug and CNN-LSTM-TreshAug
models proposed by Rizos et al. (2019) as baselines for the DT datasets as the authors have reported
their data augmentation results. The CNN-LSTM-GenAug trains a sequence generation model where
an LSTM model is trained to predict the next word based on previous states of the LSTM. We can re-
gard it as the first stage of our generative model, which does not have the process of adversarial training
and reinforcement learning. The CNN-LSTM-ThreshAug is a substitution-based augmentation method
where top-k most similar words are used to replace each word in the original sequence. There is a
third method (i.e., CNN-LSTM-PosAug) proposed in (Rizos et al., 2019), which utilized swapping of
word positions in a sentence to perform augmentation. However, we argue that this approach greatly
disturbs the grammar of the sentence, and it is detrimental to the fluency of the generated sentence. As
such, we did not include the word position swapping method as a baseline. Sampling strategies such as
upsampling and downsampling are common ways to improve classification performance in imbalanced
datasets (Krawczyk, 2016). The goal of these sampling strategies is to sample the data such that the
observations of various classes are balanced during training. Thus, we will also compare the HateGAN
data augmentation method with the two common sampling strategies.

4.3 Implementation Details

For all deep learning baseline models, the weights of word embeddings are initialized using Glove em-
beddings (Pennington et al., 2014), the dimension of which is 300. For the toxic comment detection
model, we applied the word2vec embeddings trained over a large corpus of tweets, which also have the
dimension of 300. To avoid overfitting, 20% and 50% dropouts are applied to embedding layers and
fully connected layers. The length of sentences for generation is set as 20. The number of hidden states
of LSTM is 200. CNN has 150 filters for the size of filters ranging from 1 to 3, respectively. For our
HateGAN model, we pre-trained the generator and discriminator in advance to make the reinforcement
learning converge more easily. ADAM (Kingma and Ba, 2014) optimizer is exploited with a learning
rate of 0.0001 to train both the HateGAN and baseline models.

4.4 Experiment Results

Table 2 shows the performance on hate speech detection of baselines before and after adding tweets
generated by HateGAN model to WZ-LS and DT dataset. Five-fold cross-validations are performed in
all experiments, and the average results are reported. Specifically, we evaluate the models’ performance
by computing the micro averaging F1, which is the preferred averaging evaluation for datasets with class
imbalance. As we are interested in models’ ability to detect hate speech, we also reported the precision,
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Table 2: Performance of baselines before and after data augmentation on WZ-LS and DT datasets. (*)
denotes results reported in its original paper.

Model Micro-F1 Hate-Prec Hate-Rec Hate-F1
WZ-LS Dataset

LSTM 77.3 66.0 46.6 48.2
LSTM-Upsampling 76.8 58.2 63.4 56.2

LSTM-Dowmsampling 38.9 44.4 70.8 39.0
LSTM+HateGAN 78.3 68.0 48.6 51.4

CNN 76.7 65.4 47.8 48.2
CNN-Upsampling 77.0 57.8 60.8 56.2

CNN-Downsampling 39.5 43.0 73.8 39.6
CNN+HateGAN 78.4 68.0 49.2 52.4

CNN-LSTM 77.2 64.8 49.2 49.0
CNN-LSTM-Upsampling 76.9 59.6 62.0 56.0

CNN-LSTM-Downsampling 38.3 42.6 72.5 39.8
CNN-LSTM+HateGAN 78.2 65.2 52.2 53.2

DT Dataset
LSTM 89.2 50.6 27.4 34.8

LSTM-Upsampling 88.0 34.2 52.4 41.0
LSTM-Downsampling 81.8 48.8 67.4 56.2

LSTM+HateGAN 89.6 53.2 28.6 37.0
CNN 89.0 53.6 28.4 35.2

CNN-Upsampling 88.5 36.4 48.4 40.8
CNN-Downsampling 82.9 48.4 72.8 58.0

CNN+HateGAN 89.5 50.8 33.2 39.2
CNN-LSTM 88.7 51.6 18.6 25.2

CNN-LSTM-Upsampling 87.4 32.2 52.4 38.8
CNN-LSTM-Downsampling 82.6 49.2 70.0 56.7

CNN-LSTM-GenAug* - - 17.0 -
CNN-LSTM-ThreshAug* - - 23.0 -
CNN-LSTM+HateGAN 89.4 50.4 31.4 37.2

recall, and F1 for the hate class. From Table 2, we observed that the models trained with augmented
tweets from HateGAN model are able to outperform the baselines in Micro-F1 in both WZ-LS and
DT datasets. In particular, we observe an average 5% improvement in Hate-F1 across all hate speech
detection models. This suggests that the data augmentation provided by HateGAN model is robust to
improve hate speech detection performance regardless of the base classifier.

Comparing with the sampling strategies, we observed that the Micro-F1 of the sampling strategies are
lower than the original baseline performance. A possible reason for this observation is that balancing
the dataset in training results in poorer performance of predicting the dominating class in test stage. We
also observe a higher Hate-Recall for the hate class and a much lower Hate-Precision from the sampling
strategies, suggesting that the classifier might be trained with biases to predict more tweets as hateful.
We further examine the effects of HateGAN on the performance in each class by reporting the confusion
matrices in Figure 5. We observed that the HateGAN data augmentation brings remarkable improve-
ments on the performance of hate class with little sacrifice on the performance of other classes. For
instance, after data augmenting the DT dataset, we observe an increase of 12.8% in correctly predicted
hate class tweets while suffering a small decrease of 1.0% in correctly predicted offensive class tweets.

Hate speech detection in the DT dataset is perceived to be more challenging than the WZ-LS dataset
as the DT dataset requires multi-class classification. Furthermore, the tweets from the offensive class
are known to be similar to those in the hate class. However, the data augmentation from HateGAN
is able to improve hate speech detection performance in both WZ-LS and DT datasets. This suggests
the hateful tweets generated by HateGAN are diverse and generic enough to augment the different hate
speech datasets. More interesting, we also observe that the CNN-LSTM+HateGAN has outperformed
the two data augmentation methods proposed in (Rizos et al., 2019), i.e., CNN-LSTM-GenAug and
CNN-LSTM-ThreshAug. As the authors did not share the codes for the data augmentation methods, we
reported the results shown in the original paper. As observed in Table 2, CNN-LSTM+HateGAN is able
to outperform the two data augmentation methods in Hate-Recall. Notably, the CNN-LSTM+HateGAN
improvement over the CNN-LSTM-GenAug model suggests that the HateGAN model is able to generate
better quality hateful tweets that can improve hate speech detection.
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Figure 3: Confusion matrices of CNN-LSTM and CNN-LSTM+HateGAN on WZ-LS (Top) and DT
(Bottom) datasets.
4.4.1 Varying Amount of Augmented Tweets

Datasets for hate speech detection are mostly imbalanced. The offensive tweets in DT are about 13
times more than hate ones, while non-hate tweets in WZ-LS are three times more than hate tweets. We
postulate that a more balanced dataset will improve the performance of hate speech detection. To explore
the relationship between percentages of hate tweets and the performance of hate speech detection, we
visualize the Hate-Precision and Hate-F1 scores of the CNN-LSTM+HateGAN model with different
percentages of hate tweets augmented in the training dataset in Figure 4. From the figure, we observe
an increase for Hate-Precision from the beginning, and a decline follows when we augment more hate
tweets. By adding more hate tweets, models are trained over more diversified hateful content, making it
easier to detect hate speech. However, as the dataset becomes more balanced, the Hate-Precision drops.
A possible reason could be that the classifier tends to predict a given tweet as hateful with increased data
augmentation, resulting in lower Hate-Precision scores.

4.5 Case Studies

In this section, we showcase case studies on the hateful tweets generated by the HateGAN model. Specif-
ically, for each generated tweets, we find and compare it with its most similar tweets in the real-world
hate speech datasets. The objective is to empirically examine the diversity, coherence, and relevance of
the hateful tweets generated by the HateGAN model. To find the corresponding similar tweets in the
real-world datasets, we first compute the generated tweets and real-world tweets latent representations
using weighted word embeddings. Subsequently, for a given generated tweet, we calculate the cosine
similarity between the generated tweet and each tweet in the real-world dataset. Finally, we pair and
report the most similar real tweets with the generated tweet.

Table 3 shows the examples of HateGAN generated tweets and their corresponding most similar real
tweets in WZ-LS and DT datasets. From the examples, we observe that the generated hateful tweets are
not only offensive expressions but also contain hate targets. For instance, the first two tweets contain
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Figure 4: Performance of hate speech detection in various amount of data augmentation.

Table 3: Example of HateGAN generated tweets and their corresponding most similar real tweets in
WZ-LS and DT datasets.

Generated Tweets Most Similar Real Tweets True Label
you did a statement every night fag*ot
you got fag*ot

[WZ-LS] RT @Nickodemon1: @YesY-
oureSexist Shutup if I was sexist I
wouldn’t be a fag*ot about it, my mums
a girl for fu*k sake

hate

do not call me ugly because you fuc*ing
fag*ot

[WZ-LS] RT @Nickodemon1: @YesY-
oureSexist Shutup if I was sexist I
wouldn’t be a fag*ot about it, my mums
a girl for fu*k sake

hate

is it a crime we know the true americans
are isis just fuc*ing id*ots

[WZ-LS] @TVBchelor @NewJerzey-
Boy what about the feminazi and the isis
member

hate

fu*k off fag*ot as* down [DT] @patrickstpierre You’re a fu*king
fag*ot

hate

rt pass a female comedian you ugly as*
b*tch

[DT] RT @Savage Glam: Idk if @IG-
GYAZALEA is really a man, but she
surely is a trash rapper

normal

you all h*es so d*mn nig*as [DT] RT @LessonswithKate: you got
h*es, I got nig*as

offensive

.

sexism remarks, while the third tweet is targeted at the Americans. Another interesting observation is
that our generated tweets are quite different from the most similar real tweets found in the WZ-LS and
DT datasets. This suggests that HateGAN is able to generate diverse hateful tweets that are unseen
in real-world datasets. However, our last example also supports existing studies, which indicated that
it is hard to differentiate offensive tweets from hateful ones (Davidson et al., 2017). In summary, the
examples in our case studies show that HateGAN can generate tweets that are diverse, coherent, and
relevant to hate speech detection.

5 Conclusion

In this paper, we proposed hateGAN, a deep generative reinforcement learning model, which addressed
the challenge of imbalance class by augmenting the dataset with hateful tweets. We conducted exten-
sive experiments to augment two commonly-used hate speech detection datasets with the HateGAN
generated tweets. Our experiment results showed that HateGAN improves the detection performance
of the hate speech class regardless of the classifiers and datasets used in the detection task. Specifi-
cally, we observe an average 5% improvement for the hate class F1 scores across all state-of-the-art hate
speech classifiers. We also conducted case studies to empirically examine the HateGAN generated hate
speeches and shown that the generated tweets are diverse, coherent, and relevant to hate speech detec-
tion. For future work, we aim to explore better methods for generating hateful tweets. For instance,
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we will explore other generation models, such as variational auto-encoder, for data augmentation. We
will also consider other relevant attributes such as sentiment polarities and topic information, for hate
tweets generation. Finally, We will also explore other evaluation methods to measure the quality of the
generated hateful content.
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