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Abstract

We focus on a recently deployed system built for summarizing academic articles by concept
tagging. The system has shown great coverage and high accuracy of concept identification which
could be contributed by the knowledge acquired from millions of publications. Provided with
the interpretable concepts and knowledge encoded in a pre-trained neural model, we investigate
whether the tagged concepts can be applied to a broader class of applications. We propose
transforming the tagged concepts into sparse vectors as representations of academic documents.
The effectiveness of the representations is analyzed theoretically by a proposed framework. We
also empirically show that the representations can have advantages on academic topic discovery
and paper recommendation. On these applications, we reveal that the knowledge encoded in the
tagging system can be effectively utilized and can help infer additional features from data with
limited information.

1 Introduction

Efficiently exploring knowledge is an active research topic in this era. In this work, we focus on a de-
ployed system (Shen et al., 2018) which is built for summarizing academic publications via explainable
concepts. An example1 of the system output is shown in Figure 1, where the system tags relevant con-
cepts such as “Word2vec” and “Word order” for summarizing the given paper. Notably, the concepts are
called fields-of-study (FoS).

Figure 1: An example of concept (or FoS) tagging.

To ensure concepts covered by various articles can be recognized, the system acquired knowledge from
170 million academic publications via deep learning models. The learned concepts are further organized
by a hierarchical structure. Specifically, the hierarchy is a 6-level tree. The FoS in level 0 are the most

This work is licensed under a Creative Commons Attribution 4.0 International License. License
details: http://creativecommons.org/licenses/by/4.0/.

∗ Work done during internship at Microsoft Research.
1Search result on https://academic.microsoft.com/home
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coarse-grained concepts such as “Computer Science” and “Chemistry”. On the contrary, FoS in level 5
are the most fine-grained concepts such as “Convolutional Deep Belief Networks” and “Phosphatase”. In
the tagging process, the system would normally tag both high-level and low-level FoS for helping users
efficiently and thoroughly understand ideas of the given articles.

The accuracy of tagging has been carefully evaluated by human judge. However, whether the tagged
FoS can be beneficial to broader applications is still unknown. We propose that this problem is worth
studying as the tagging system natively possesses two advantages. The first one is the guaranteed inter-
pretability. It potentially helps models leveraging the identified concepts be more explainable. Secondly,
the tagging system has learned abundant knowledge from millions of academic papers. Ideally, the
learned knowledge can be utilized for solving diverse natural language processing (NLP) problems as
long as academic data are involved. In this work, we reveal that the tagged FoS can be transformed into
sparse and explainable representations. We then theoretically and empirically show that the proposed
representations indeed inherit the two advantages mentioned above.

This paper is organized as follows. In Section 2, we first describe how we obtain sparse representations
via the FoS tagging system with slight modifications. Afterwards, we provide theoretical analyses on the
representations in Section 3 by modeling the tagging system as a framework with a replaceable neural
model. In the analyses, we reveal that the tagging process leveraging concept hierarchy potentially helps
the sparse vectors capture more thorough semantics for measuring document similarities.

In Section 4 and 5, we evaluate representations via two applications related to knowledge exploration
and can benefit from the FoS-based methods. The first one is document clustering for topic discovery.
It could help users quickly classify and identify documents in a massive text corpus. We empirically
show that the proposed representations and similarity measurements can gather documents with common
topics more accurately. We also leverage the interpretability of FoS to explain the generated clusters.

Another application is document ranking for paper recommendation. As the queries for paper search-
ing are usually short, we demonstrate that our tagging system is able to tag abundant FoS on extremely
short documents. Particularly, the tagged FoS could have similar effects to query expansion. We then
show that the FoS sparse representations can constantly help improve ranking performance especially on
searching by short queries.

2 FoS Representations and Similarity

2.1 The FoS Tagging System

In this subsection, we introduce our implementation of the FoS tagging system proposed by Shen et
al. (2018). We follow their methodology with two modifications. The first one is that our system does
not leverage citation or reference information. It could have a negative impact on tagging, however,
the benefit is that the input documents are no longer required to be included in the Microsoft academic
graph (Sinha et al., 2015). The conclusions made in this work can thereby be applied to general NLP
tasks or corpora. The other modification is that we preserve the confidence score of each tagged FoS for
downstream processing. Our implementation is also released2 and can be obtained by making a request.

To build the system, the first step is to obtain dense vector representations of FoS and words. The
list of identified FoS can be accessed via Microsoft academic service3. In total, there are 228K FoS.
We then train the 250-dimensional FoS and word embeddings using skip-gram (Mikolov et al., 2013) on
the academic corpus containing 130 million titles and 80 million abstracts, which are the same settings
proposed by Shen et al. (2018). As a result, we obtain 2 million word embeddings and 228K FoS
embeddings in the same vector space.

The second step of building the system is to implement the tagging method. The general idea is
to generate vector representations of input documents and measure the similarity between a document
and each FoS vector for finding relevant FoS. As we do not leverage graph information, the document
vectors become averaged word embeddings. Concretely speaking, a FoS is tagged if the cosine similarity

2https://docs.microsoft.com/en-us/academic-services/graph/language-similarity
3https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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between the averaged word and FoS embeddings is higher than a pre-determined threshold. In this work,
we let the threshold be 0.

Regarding the tagging procedure, Shen et al. (2018) proposed not to measure similarity between a doc-
ument and all 228K FoS. Instead, they proposed a strategy leveraging the concept hierarchy introduced
in Section 1 to select 300-400 FoS as the candidates for each document beforehand. The motivation is
to avoid expensive computation based on an observation that an academic article empirically covers no
more than 20 FoS. To implement the strategy, we obtain the hierarchy via Microsoft academic service
as well. With this hierarchy, the proposed strategy is to include all FoS in level 0 and level 1 as the
candidates. For other levels, a FoS is recognized as a candidate only if it exactly appears as a word in the
input document.

2.2 Sparse Representations and Similarity Measurement

With the preserved confidence scores, we regard the tagged FoS as sparse representations of documents.
Namely, the representation of each input document is a 228K-dimensional sparse vector, where the
non-zero terms are the confidence scores of the tagged FoS respectively. Given that the threshold of
confidence scores is 0, the sparse vectors are non-negative. We denote the vanilla sparse representations
by FoS-Sparse.

In a downstream task providing a collection of documents, we found applying inverse document fre-
quency (IDF) weightings can be beneficial sometimes. Specifically, the confidence score in each dimen-
sion of a sparse vector is multiplied by log N

df(i) , where N is the number of documents and df(i) is the
document frequency of the FoS corresponding to the i-th dimension. The document frequency here is
the number of documents tagged with the FoS. We denote this variant of vanilla FoS representations by
FoS-Sparse-IDF.

Given two FoS sparse vectors, we measure the similarity between two documents by cosine similarity.
We note that normalizing the FoS sparse vectors to unit length is essential in this work. As introduced
in Section 2.1, words in the given document happen to be identified FoS are included as the candidates.
Under this strategy, a longer document tends to have more non-negative terms in its sparse representation.
Without length normalization, the similarity measurement would have a bias towards document length
rather than the underlying concepts.

3 Theoretical Analyses of FoS Similarity

3.1 Definitions and Modelling

In Section 3, we provide theoretical analyses for investigating the effectiveness of FoS sparse repre-
sentations. In this subsection, we define symbols and formulate the procedure of obtaining FoS-based
similarity scores as follows.

We denote the number of identified FoS and dimension of FoS dense embeddings as m and n, which
are 228K and 250 in this work. The matrix composed of all FoS dense embeddings is denoted by
X ∈ Rn×m. In order to compute cosine similarity, each column of X is normalized to unit length.

For an input document, as mentioned in Section 2.1, it is represented by averaged word embeddings
in the same vector space as FoS dense embeddings. We denote a document dense embedding by d ∈ Rn.
Similarly, in order to compute cosine similarity, the l2-norm of d is normalized to 1. We can then obtain
the confidence scores between a document and all FoS by XTd ∈ Rm.

To model the hierarchy-based strategy transforming XTd into a sparse vector, we define a function
T (z) called threshold function. T (z) takes an m-dimensional vector as input and sets the i-th dimen-
sional value be 0 if zi is below the threshold or the i-th FoS is not recognized as a candidate. Therefore,
the FoS sparse representation of a input document is f = T (XTd).

Let the FoS sparse representations and averaged word vectors of two arbitrary documents be fa, fb
and da, db. The cosine similarity scores of these two representations are 1

||fa||2||fb||2 · f
T
a fb and dTa db

respectively. In Section 3.2 and 3.3, we analyze the core of FoS-based similarity, fTa fb, and discuss the
possibility of being a more effective measurement method over dTa db.
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3.2 Analysis of FoS Similarity Without Threshold Function

For easier explanation, we tentatively ignore the threshold function T (z) here. Without T (z), fTa fb =
(XTda)

T (XTdb) = dTa (XX
T )db = dTaWdb. One can notice thatW ∈ Rn×n is an empirical covariance

matrix multiplying a constant m − 1 if the mean column of X is a n-dimensional zero vector4. By
ignoring the constant m − 1, the element wij in W is the covariance of i-th and j-th dimensions of the
FoS dense embeddings X .

Compared with dTa db, the quadratic form dTaWdb covers cross-dimensional similarities. Specifically,
dTaWdb =

∑n
i=1

∑n
j=1wijda,idb,j =

∑
i=j wijda,idb,j+

∑
i 6=j wijda,idb,j . The term

∑
i=j wijda,idb,j is

dTa db with dimensional weightings. The additional term
∑

i 6=j wijda,idb,j could be regarded as measuring
similarity of da and db in distinct dimensions. As da,idb,j are weighted by the corresponding covariance,
the product value of two less correlated dimensions would then have smaller impact on the final similarity
score dTaWdb.

3.3 Analysis of FoS Similarity With Threshold Function

We first introduce a lemma and a theorem for discussing the effect of including the threshold function
T (z).

Lemma 1. Given a document a, there exists a function Ta such that fa = T (XTda) = Ta(XT )da.

Proof. The value in the i-th dimension of the vector T (XTda) is either 0 or xTi da, where xi is the
i-th column of X . The i-th value in T (XTda) is 0 if and only if xTi da is lower than the threshold or the
corresponding FoS is not selected as a candidate. To construct Ta, we first obtain a temporary vector
Ya = T (XTda) and let Ta be a function sparsifying XT by setting xi be a zero vector if the i-th value
in Ya is 0. Namely, we obtain the 0 values of fa by 0Tda. Let the sparsified XT be XT

a , we then have
XT

a da = Ta(XT )da = T (XTda).

Theorem 1. Given two documents a and b, there exists a function T̂ such that fTa fb =
T (XTda)

TT (XTdb) = dTa T̂ (X,XT )db = dTa Ŵabdb, where the matrix Ŵab is symmetric.

Proof. By Lemma 1, fTa fb = dTa Ta(X)Tb(XT )db. We can then construct a function Tab
such that dTa Ta(X)Tb(XT )db = dTa Tab(X)Tab(XT )db. By definition and derivation in Lemma 1,
fTa fb =

∑m
i=1 x

T
a,ida · xTb,idb, where xTa,i and xTb,i are the i-th row of XT

a and XT
b respectively. It can be

seen that if either xTa,i or xTb,i is a zero vector, the term xTa,ida · xTb,idb will be 0. It implies that in this sit-
uation, setting both xTa,i and xTb,i be zero vectors will not change fTa fb. By following the idea of proving
Lemma 1, we then construct a matrix XT

ab which is a sparsified XT . The construction is done by setting
the i-th row of XT be zero vector if either the i-th value of Ta(XT )da or Tb(XT )db is 0. Therefore, we
can have dTa Ta(X)Tb(XT )db = dTaXabX

T
abdb = dTa Tab(X)Tab(XT )db = dTa T̂ (X,XT )db = dTa Ŵabdb.

By Theorem 1, it can be seen that fTa fb with T (z) still measures cross-dimensional similarity while
some covariance information is discarded. The discarded information can be formulated by dTaWdb −
dTa Ŵabdb = dTa (W − Ŵab)db =

∑n
i=1

∑n
j=1(wij − ŵij)da,idb,j . Let vij = wij − ŵij . Since the

weighting vij is decided by less relevant FoS, it may inaccurately estimate the similarity. We also find
that vij is usually much higher than ŵij , making the term vijda,idb,j non-negligible in dTaWdb. Indeed,
as mentioned in Section 2.1 that usually only a small number of FoS are relevant to an academic article,
there would be around 228K less relevant FoS contributing to vij . In summary, the matrix W could help
capture more comprehensive semantics while it simultaneously comes with strong noise. Therefore, the
existence of a filtering method such as T (z) would be important. For further verification, empirical
studies are provided in Section 5.4.

4It is approximately true in our system. The mean and standard deviation of the vector values are 3.7× 10−4 and 5× 10−4.
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4 Academic Document Clustering

4.1 Task and Dataset

In this Section, we evaluate the effectiveness of representations via academic document clustering. The
documents for clustering are required to be composed of some collections with distinct topics respec-
tively. An example would be publications collected from different research fields. We then assume that
if representations are sufficiently effective, the predefined topics can be discovered unsupervisedly. If
using FoS-based methods, we show an additional advantage which is the ability of summarizing a clus-
ter by high-level concepts. Together with the generated clusters, it could help users quickly identify and
understand articles from a massive corpora. We demonstrate this feature in Section 4.3 by showing the
dominant level 1 (L1) FoS in each cluster.

The dataset for the clustering task is Cora (McCallum et al., 2000). It is a citation graph with 30,635
nodes where each node is a published paper with titles and abstracts. We concatenate the title and
abstract, and let it be a document for each node. In addition to text data, the nodes are also labeled
with hierarchical topics up to 3 levels such as /Artificial Intelligence/Machine Learning/Reinforcement
Learning/. In our experiments, we specifically take the top level topics as the labels. In total, there are 10
different labels which are “Operating Systems”, “Networking”, “Hardware and Architecture”, “Artificial
Intelligence”, “Databases”, “Information Retrieval”, “Encryption and Compression”, “Programming”,
“Human Computer Interaction”, and “Data Structures, Algorithms and Theory”.

4.2 Experimental Settings

Given that there are 10 categories of labeled topics, we generate 10 document clusters by the following
methods and see which one is the most consistent with the ground truth.

Latent Dirichlet Allocation (LDA): It is the well-known method for discovering and inferencing
hidden topics from a document set. We adopt gensim implementation (Řehůřek and Sojka, 2010)
for experiments. To estimate the performance more accurately, we repeat the training and testing
processes 30 times with different random seeds, and average the performance scores as the experiment
results.

MAG skip-gram: The document representations are obtained by averaging the 250-dimensional
word vectors introduced in Section 2.1. The dense document embeddings are denoted by MAG-SG.
To find clusters, we apply k-means clustering.

Bag-of-words (BoW) with TF-IDF: The documents are represented by unit-length sparse vectors
where the value in each dimension is the corresponding term frequency multiplying inverse document
frequency. Note that the stop words are removed in the experiments. The sparse vectors are then
clustered by k-means clustering.

FoS-based methods: The documents are represented by the proposed FoS sparse representations,
FoS-Sparse and FoS-Sparse-IDF. The sparse vectors are normalized to unit lengths and clustered by
k-means clustering.

4.3 Clustering Results

We first examine how many FoS are tagged to a Cora document by our system. By experiments, in aver-
age there are 14.89 tagged FoS for a document. The number is consistent with the empirical observation
by Shen et al. (2018) that a scientific article usually covers no more than 20 concepts. We also compare
the number with averaged vocabulary size of a Cora document, which is 62.43. Note that the stop words
are removed beforehand. Therefore, we could firstly observe that FoS are more spatially efficient than
BoW as a representation method.

Regarding the clustering performance, we conduct common clustering metrics including Adjusted
Rand index (ARI), Normalized Mutual Information (NMI), Homogeneity (Rosenberg and Hirschberg,
2007) and Completeness (Rosenberg and Hirschberg, 2007) for evaluations. The results are shown in
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ARI NMI Homogeneity Completeness
LDA 0.107 0.156 0.155 0.158

MAG-SG 0.060 0.108 0.112 0.104
BoW 0.080 0.191 0.191 0.192

FoS-Sparse 0.110 0.193 0.210 0.178
FoS-Sparse-IDF 0.145 0.219 0.234 0.205

Table 1: Performance of document clustering. ARI and NMI are abbreviations of Adjusted Rand index
and Normalized Mutual Information respectively.

cluster 1 cluster 2 cluster 3 cluster 4
Distributed Computing Computer Network Parallel Computing Artificial Intelligence

Embedded System Distributed Computing Computer Hardware Pattern Recognition
Operating System Computer Architecture Computer Engineering Machine Learning

cluster 5 cluster 6 cluster 7 cluster 8
Information Retrieval Information Retrieval Arithmetic Software Engineering

Database NLP Computer Network Parallel Computing
Programming Language World Wide Web Computer Security PL

cluster 9 cluster 10
Multimedia Pure Mathematics

HCI Discrete Mathematics
CGI Combinatorics

Table 2: The 3 most frequently tagged L1 FoS in the clusters generated by FoS-IDF. PL, HCI and CGI are
abbreviations of Programming Language, Human Computer Interaction and Computer Graphics Images
respectively.

Table 1. From the table, we can see that the FoS-based methods can result in the most consistent clusters
with the ground truth. Also, the performance gaps between MAG skip-gram and FoS-based methods
could support the argument in Section 3 that the cross-dimensional similarities could be implicitly cap-
tured and be beneficial.

For the two FoS-based methods, it can be seen that the IDF weightings are helpful. A possible reason
could be that there exist FoS similar to stop words. For example, a FoS called “algorithm” is constantly
tagged to documents in Cora. It is reasonable as the documents in Cora are all computer science papers.
However, for example, the “algorithm” FoS may not be helpful for distinguishing whether the input
document belongs to “Databases” or “Information Retrieval”. In this case, decreasing the impact of
“algorithm” could help concentrate on other potentially more important FoS.

We finally demonstrate the ability of FoS in summarizing document clusters. For each cluster gen-
erated by FoS-Sparse-IDF, we extract 3 L1 FoS which are most frequently tagged to documents in the
cluster. The extracted L1 FoS are listed in Table 2. As can be seen, the core concepts of the clusters can
thus be revealed and are generally consistent with the 10 categories defined by Cora.

5 Paper Recommendation

5.1 Task and Dataset
In this section, we evaluate representations via paper recommendation. The goal is to extract and rank
papers in order of relevance to users queries. In the experiments, we let the measured similarity between
a query and a document be the relevance score, and examine whether the resulting ranks can be consistent
with the results provided by human beings.

The dataset we use is User Study dataset (Kanakia et al., 2019). It contains 2,014 academic papers,
where 147 of them are query papers. For each query paper, at most 20 relevant papers are recommended
by human experts. Additionally, the human experts are asked to provide a score ranging from 1 to 5 for
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quantifying the relevance when recommending a paper. Currently the papers in User Study dataset does
not have text content. We then crawled paper titles and abstracts from Microsoft academic graph by the
provided paper IDs for experiments.

5.2 Experimental Settings

As the queries provided by users are usually a few words, we generate query data by two different
methods for simulating the scenario.

Titles as queries: We take titles of the 147 query papers as the actual queries. The averaged length
of the titles is 8.79.

Words randomly sampled from abstracts as queries: The averaged length of abstracts in User
Study dataset is 191.78. To get compact queries, we randomly sample words from the abstract of
each query paper. The sampling rate ranges from 10% to 100% with 10% interval (i.e. 10%, 20%,
30%, etc.), where 100% rate means the query is identical to the original abstract. In order to augment
testing data and estimate ranking performance more accurately, for each sampling rate between 10%
and 90%, we generate 100 queries with different random seeds.

With generated query data, we obtain relevance scores between queries and candidate papers by the
following methods, where the content of the candidate papers are abstracts.

BM25: BM25 is a well-known and effective document retrieval method. In the experiments, we set
k1 and b in the score function of BM25 be 1.2 and 0.75 respectively.

MAG skip-gram: The queries and candidate papers are represented by averaged word embeddings
with l2-normalization. The obtained document embeddings are the same as we introduced in Sec-
tion 4.2. To verify the arguments in Section 3.3, we compare two similarity measurements dTa db and
dTaWdb. The two similarity measurements are denoted by MAG-SG and MAG-SG-QUAD respec-
tively.

FoS-based methods: We tag FoS on queries and candidate papers by our system for obtaining
FoS-Sparse and FoS-Sparse-IDF representations. The similarity is measured by 1

||fa||2||fb||2 · f
T
a fb

introduced in Section 3.1.

With the relevance scores, we rank the candidate papers for each query and evaluate the results by
averaging normalized discounted cumulative gain at 5 (nDCG@5) scores.

5.3 The Tagged FoS of Queries

As tagging FoS on short documents or sentences was not investigated by Shen et al. (2018), we first
check whether our system can tag reasonable FoS on short queries. Examples of tagging are provided in
Table 3. In the table, the first two rows in the queries column are two paper titles and the last two rows
are two abstracts with 10% sampling rate. Due to the space limit, only top 6 FoS and their confidence
scores are listed.

We could firstly see that the tagged FoS can generally be relevant to the queries. Secondly, we noted
that the tagged FoS could provide additional information for document retrieval. Take the first row
for example, the tagged FoS “Machine Learning” can help identify documents also related to machine
learning while do not contain the three words “Generate”, “Adversarial”, or “Nets”. Therefore, the effect
of FoS on short documents could be similar to query expansion, where the ability could come from
the knowledge acquired from 170 million papers. We finally examine the number of tagged FoS. The
averaged number of tagged FoS on titles and abstracts are 9.35 and 16.89 respectively. Compared with
their original lengths, 8.79 and 191.78 in average, we could see that the tagged FoS can be compact
summaries for long documents while be extended textual features for short documents.



6214

Queries Top 6 Tagged FoS and Confidence Scores
Generative grammar: 0.37, Adversarial system: 0.35,

Generative Adversarial Nets Artificial intelligence: 0.33, Machine Learning: 0.31
Computer Science: 0.29, NLP: 0.29

Digital watermarking: 0.55, Computer vision: 0.39
Image Watermarking With Better Resilience Data mining: 0.39, Pattern recognition: 0.39

Machine learning: 0.39, Computer Science: 0.38
driver the cloud describe microsoft drivers Cloud Computing: 0.48, Operating System: 0.35

our us of to present results Software Engineering: 0.35, Data Science: 0.35
Database: 0.34, Human-Computer-Interaction: 0.34

centmail limiting of protocol neither joining Communication source: 0.54, Computer security: 0.43
money begins send a no client’s the large Internet privacy: 0.42, Computer network: 0.42

number to many account World Wide Web: 0.41, Telecommunications: 0.41

Table 3: Tagged FoS of queries.

BM25 MAG-SG MAG-SG-QUAD FoS-Sparse FoS-Sparse-IDF
0.688 0.635 0.605 0.691 0.690

Table 4: Averaged nDCG@5 scores on User Study dataset. The queries are paper titles.

5.4 Performance of Unsupervised Paper Ranking
The averaged nDCG@5 scores of quering by titles and reduced abstracts are shown in Table 4 and Figure
2. The observations and discussions are summarized as follows.

• MAG-SG, MAG-SG-QUAD and FoS-based methods respectively correspond to dTa db, d
T
aWdb and

dTa Ŵabdb introduced in Section 3. Here we can see the advantage of Ŵab which boosts the ranking
performance. We can also see the matrix W is not directly beneficial to downstream tasks. As
argued in Section 3.3, the irrelevant information could have strong and negative impacts and can be
eliminated by the threshold function with hierarchy-based strategy.

• When the queries are sufficiently long, BM25 shows the best performance in the experiments. How-
ever, if the queries contain limited information, FoS-based methods can have more advantages.
From Figure 2, we can see that FoS-Sparse can outperform BM25 if sampling rate is lower than
50% which is around 55 words. As discussed in Section 5.3, the advantages could come from the
query expansion effects compensating missing information.

• Different from the results in Section 4.3, including the IDF weightings of FoS does improve the
performance. A possible reason could be the topics covered by User Study dataset are more diverse
than Cora. Therefore, there exist fewer FoS similar to stop words which are constantly observed
while encode less relevant information.

5.5 Ensemble Methods
As shown that BM25 and FoS-Sparse have respective advantages, here we investigate the effects of
combining the two methods. The combination method is simply the weighted sum of estimated relevance
scores. For example, given a query and a candidate document, let the relevance scores obtained by BM25
and FoS-Sparse be Sbm and Sfs respectively, the relevance score estimated by the combination method
is Sbm + βSfs.

Although β could be a hyper-parameter, we attempt to investigate the effects of optimized β in this
work. We do the optimization by a learning to rank method, ListNet (Cao et al., 2007), which is a listwise
ranking approach. Since we only have one learnable variable, the amount of labelled data could be less
demanding.
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Figure 2: Averaged nDCG@5 scores on User Study dataset. The queries are words sampled from ab-
stracts.

Figure 3: Averaged nDCG@5 scores on sampled
User Study dataset. The queries are words sam-
pled from abstracts.

BM25 FoS-Sparse Ensemble
0.687 0.691 0.705

Table 5: Averaged nDCG@5 scores on sampled
User Study dataset. The queries are paper titles.

In the experiments, we randomly sample 50% data from User Study dataset as the labelled data for
training, and let the remaining 50% be testing data. We repeat the process 30 times and average the
nDCG@5 scores for estimating final performance. Notably, when the queries are generated by sampling
from abstracts, we train a β for each sampling rate. The averaged nDCG@5 scores are reported in Table
5 and Figure 3.

From the results, we could firstly see that BM25 and FoS-Sparse show similar behaviors reported
in Section 5.4. After simple combination, the distinct advantages of the two methods can not only be
retained but also be strengthened. It could support the previous argument that FoS tagging can capture
features of textual data in different aspects.

6 Conclusion

In this work, we investigated whether the concepts summarizing academic publications can be effective
sparse representations for diverse applications. To examine the effectiveness, we provided theoretical
analyses and empirical studies for verification. We presented that the tagging method with the con-
cept hierarchy could have an effect on capturing more thorough semantics. We also revealed several
advantages of the proposed representations. The intrinsic advantages would be interpretability and com-
pactness, helping people understand the underlying knowledge more efficiently. When coming to down-
stream tasks, the knowledge learned from millions of publications can show the impact. As reported,
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the tagging system can infer additional features from data with limited information. Also, the additional
features can be easily combined with common ranking methods and achieve better performance.

For future work, a direction would be focusing on the neural model providing the dense word and
FoS representations. As the current system has a limitation that dynamic contextual information is not
included, it could be interesting to investigate whether similar conclusions can be made on contextualized
embeddings.
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