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Abstract

Recent studies use a combination of lexical and syntactic features to show that footprints of
the source language remain visible in translations, to the extent that it is possible to predict the
original source language from the translation. In this paper, we focus on embedding-based se-
mantic spaces, exploiting departures from isomorphism between spaces built from original target
language and translations into this target language to predict relations between languages in an
unsupervised way. We use different views of the data — words, parts of speech, semantic tags
and synsets — to track translationese. Our analysis shows that (i) semantic distances between
original target language and translations into this target language can be detected using the notion
of isomorphism, (ii) language family ties with characteristics similar to linguistically motivated
phylogenetic trees can be inferred from the distances and (iii) with delexicalised embeddings
exhibiting source-language interference most significantly, other levels of abstraction display the
same tendency, indicating the lexicalised results to be not “just” due to possible topic differ-
ences between original and translated texts. To the best of our knowledge, this is the first time
departures from isomorphism between embedding spaces are used to track translationese.

1 Introduction

The term “translationese” refers to systematic differences between translations and text originally au-
thored in the target language of the translation, in the same genre and style (Gellerstam, 1986; Baker and
others, 1993; Baroni and Bernardini, 2005; Volansky et al., 2015). Characteristics such as simplification,
over-adherence to conventions of the target language, and explicitation can occur as a communicative
process itself. This is contrasted with “interference” or “shining-through” (Teich, 2003), described as
“phenomena pertaining to the make-up of the source text tend to be transferred to the target text” (Toury,
2012). Prominent evidence for shining-through as a translationese effect is found in the work of Rabi-
novich et al. (2017), who show that footprints of the source language remain visible in translations, to
the extent that it is possible to predict the original source language from the translation. In the similar
vein, a significant amount of work has gone into training classifiers to distinguish between translations
and originally authored text and then investigating the contributions of individual features to the result of
the classification (Baroni and Bernardini, 2005; Koppel and Ordan, 2011; Volansky et al., 2015; Avner
et al., 2016). Features that contribute strongly to classification are interpreted as indicating important
dimensions of translationese.

In contrast, in this work, we leverage departures from isomorphism between embedding-based seman-
tic spaces to detect translationese. We construct embedding spaces from original English (O) data and
translations into English (T ) from comparable data in a number of languages. We hypothesize that the
closer the source language is to English, the more isomorphic the embedding spaces are. In other words,
departure from isomorphism is an indicator of language distance. We use eigenvector similarity (Søgaard
et al., 2018) to quantify departure from isomorphism. If our hypothesis is correct, we should be able to
reconstruct phylogentic trees from measures of departure from isomorphism. We show that this is indeed
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the case and compare our embedding-based results with previous results of reconstructing phylogenetic
trees (Serva and Petroni, 2008). In order to show that our outcomes are not the result of topic divergences
between O and T data, we explore delexicalised views1 of our data, using embeddings based on parts of
speech (PoS), semantic tags (ST), and synsets (SS), rather than word tokens (Raw). We show that our
results are robust under delexicalisation.

Our paper is structured as follows: Section 2 discusses related work and inference of phylogenetic
trees. Section 3 introduces our experimental setup. The distance measure is described in Section 4. We
present our results and analysis in Section 5, followed by conclusions in Section 6.

2 Phylogenetics and Shining-through

Historical comparative linguistics determines genetic relationships between languages using concept lists
of words that share a common origin, similar meaning and pronunciation across multiple languages
(Swadesh, 1952; Dyen et al., 1992). By contrast, computational analysis methods aim to reconstruct
language phylogeny based on measurable linguistic patterns (Rabinovich et al., 2017; Bjerva et al.,
2019).

Rabinovich et al. (2017) showed that source language interference is visible in translation. Specifically,
they leverage interference (PoS trigrams and function words) and translation universal features (cohesive
markers) to construct phylogenetic trees. Agglomerative clustering with variance minimisation (Ward Jr,
1963) is used as linkage procedure to cluster the data. The result is compared to the pruned gold tree
of Serva and Petroni (2008) (henceforth referred to as SP08) used as the linguistic phylogenetic gold
standard tree. Their comparison metric, which is based on the L2 norm, is basically the sum of squared
deviations between each pair’s gold-tree distance g and computed distance P :

Dist(P, g) =
∑
i,j

(DP (li, lj) −Dg(li, lj))
2 (1)

SP08 was constructed by computing the Levenshtein (edit) distance between words from an open
cross-lingual list (Dyen et al., 1992) to compare linguistic divergence through time and thus partially en-
codes lexical similarity of languages (Oncevay et al., 2020). Rabinovich et al. (2017) also acknowledges
that SP08 has been disputed and researchers have not yet agreed on a commonly accepted tree of the
Indo-European languages (Ringe et al., 2002). More recently, Bjerva et al. (2019) built on this work and
compared different languages based on distance metrics computed on phrase structure trees and depen-
dency relations. They claimed that such language representations correlate better with structural family
distances between languages than genetic similarities. These examples show that phylogenetic recon-
struction approaches and in particular, the evaluation of generated trees remains a highly debated topic
in the history of linguistics and is beyond the scope of this study.

3 Experimental Settings

Data. We use the comparable portion of Europarl (Koehn, 2005) with translations from 21 European
Union languages into English to minimise the impact of domain difference. The amount of tokens per
language varies, ranging from 67 k tokens for Maltese to 7.2 M for German. We refer to the multiple
translations into English as Lj’s, where j = 1, 2, ..., n; and to originally written text in English as Le. We
select the subset of translations from 16 languages covering three language families: Romance (French,
Italian, Spanish, Romanian, Portuguese), Germanic (Dutch, German, Swedish, Danish) and Balto-Slavic
(Latvian, Lithuanian, Czech, Slovak, Slovenian, Polish and Bulgarian) into English and English original
text.

Abstractions. In addition to using raw word tokens, we create multiple views of the data at the mor-
phological (PoS), lexical semantic (ST) and conceptual-semantic (SS) levels. We use the spaCy tagger
(Honnibal and Johnson, 2015) with the OntoNotes 5 version (Weischedel et al., 2013) of the Penn Tree-
bank PoS tag set. For ST (Bjerva et al., 2016; Abzianidze et al., 2017), we use the best model of Brants

1Since these views represent diversified and complementary information of the same data, we refer to them as multi-view
representations.
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Feature Annotated Output Vocabulary

PoS DT NN VBD DT NN IN NN 37

ST DEF CON EPS DIS CON REL CON 57

Synset ministry.n.04 send.v.02 answer.n.04 inquiry.n.0.1 1667

Raw the ministry sent an answer to inquiry 6739

Table 1: Examples of the level of abstraction with the vocabulary size.

(2000) which works directly on the words as input, and determines formal lexical semantics. Their im-
plementation achieves around 95% accuracy, when evaluated on short Parallel Meaning Bank sentences.
For SS, we follow España-Bonet and van Genabith (2018) to retrieve synsets according to the PoS of a
token using the knowledge base of WordNet (Miller, 1998). We only select a subset of PoS tags, namely
NN, ADV, ADJ and VB and consider the first synset for each word/tag combination. Table 1 presents an
overview and examples of each type of annotation used in this study.

Vector Spaces. For each view, we induce a separate monolingual word embedding space (both Le and
Lj’s) by treating each token or tag as a word using fastText (Bojanowski et al., 2017). Embeddings have
300 dimensions and only words with more than 5 occurrences are retained for training. We use skip-gram
with negative sampling (Mikolov et al., 2013) and standard hyper-parameters.

4 Measuring Isomorphism

An empirical measure of semantic proximity between two languages is often computed using the degree
of isomorphism, that is, how similar the structures of two languages are in topological space (Søgaard
et al., 2018). Research in cross-lingual transfer tasks shows that linguistic differences across languages
often make spaces depart from isomorphism (Nakashole and Flauger, 2018; Søgaard et al., 2018; Patra et
al., 2019; Vulić et al., 2020). While this degrades the quality of bilingual embeddings, it is a desired char-
acteristic in our case: since our task involves processing of (multi-view) representations of monolingual
text, departures from isomorphism indicate diversity in the source that generates them.

To quantify isomorphism, we compute embeddings on a corpus in language L. Embeddings reflect
distributional properties in the data: words in similar contexts have similar meanings (Harris, 1954) and
should be close in embedding space. We then view the points representing words or tags in the resulting
hyperdimensional embedding space as a graph and compare different spaces (e.g. for data from different
languages, or originals and translations into the language of the originals) in terms of how similar or
dissimilar the corresponding graphs are. This is measured in terms of a well established metric, the
eigenvector similarity.

Eigenvector Similiarity (EV). Søgaard et al. (2018) proposed this spectral metric based on Laplacian
eigenvalues (Shigehalli and Shettar, 2011) to estimate the extent to which nearest neighbor graphs are
isomorphic. We use the same idea to model differences between two spaces: original X and transla-
tionese Y for the single target language translations from different source languages. First, we compute
the nearest neighbour graphs Gi of the two embedding spaces for the most frequent overlapping vocab-
ulary.2 We then compute the eigenvector similarity of the Laplacians of the nearest neighbor graphs,
L(X ) and L(Y) in original and translationese respectively. The degree of graph similarity is given by
the distance among the eigenvectors λ of the Laplacian of G:

∆ =

k∑
i=1

(λ1i − λ2i)
2 (2)

Following Søgaard et al. (2018), we find the smallest k1 in Equation 2 such that the sum of its k1
largest eigenvalues

∑k1
i=1 λ1i is at least 90% of the sum of all its eigenvalues. Analogously, we find k2

2All tokens were converted to lowercase, and stop words and non-alphanumeric characters were filtered out.
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Families PoS ST SS Raw

Germanic 1.00 0.95 0.70 0.56
Romance 2.86 1.27 0.75 0.59

Balto-Slavic 4.15 3.81 3.98 3.62

Table 2: Sum of normalised EV distance scores between original English and English target translations
from each family (lower means closer to original) on the different views.
.

PoS ST SS Raw

τ 0.55 0.44 0.39 0.37

Table 3: Correlations between similarities (SPO8 and EV) on the different views of linguistic represen-
tations (the higher the better).

and set k = min(k1, k2). The graph similarity metric returns a value in the half-open interval [0,∞),
where values (∆) closer to zero indicate more isomorphic embedding spaces.

To control the impact of data size for different Lj’s, we choose the size of common overlapping
vocabulary list corresponding to the range of the most resource-poor language in each view (see last
column of Table 1) and run EV on this size for the rest of Lj−1.

5 Results and Analysis

To analyse the computed distances between original English and English target translations on different
levels of linguistic analysis, in a first step, we calculate the sum of the normalised EV scores per language
family (i.e., Germanic, Romance, Balto-Slavic) shown in Table 2. Translations from Germanic languages
are the closest ones to original English (itself a Germanic language) regardless of the level of linguistic
representation, followed by translations from Romance and finally from Balto-Slavic source languages.
This shows that language distance in vector space is higher for etymologically distant language pairs in
translation providing evidence that languages with similar topological semantic structure exhibit less in-
terference. The fact that deviation from isomorphism between multi-view semantic spaces of translation
into English and original English changes with respect to source language shows that source language
interference is a strong characteristic of translated texts, adding new semantic space based support for
the findings in Rabinovich et al. (2017).

Footprints of the source language into the translation product allow us to construct phylogenetic trees.
Figure 1 shows the result of clustering the distance scores using agglomerative clustering with vari-
ance minimisation (Ward Jr, 1963) for four views considered in this study. Consistent results across
all the trees demonstrate strong presence of the shining-through. We identify some of the well known
language–language relationships in all four trees, such as for example, English is grouped with Ger-
manic and Romance languages while Balto-Slavic languages are always put together. Some interesting
divergences, with respect to Balkan Sprachbund (BS) are visible as well. The geographical location of
Romanian opens it to cross-pollination with the other languages of the BS area and the figures provide
some evidence for that.

Table 3 shows the Kendall τ correlation coefficients between how close languages are in SP08 and
in our difference-from-isomorphism based reconstructions. Our results show that both lexicalised and
delexicalised structures correlate reasonably well (τ ∈ [0.37, 0.55]) with the linguistically motivated
phylogenetic tree, indicating that the lexicalised results are not ”just” due to possible differences in topic
between original and translated texts. In fact, the delexicalised representations (PoS and ST) which
are less influenced by topic and have fewer types show more functional similarities with SP08 than the
fine-grained semantic representations.



6060

Figure 1: Clustering based on EV distances for the different views: PoS (top–left), ST (top–right), Synset
(bottom–left) and Raw (bottom–right)

6 Conclusion

We presented an investigation of translationese effects in a single language sourced from multiple trans-
lations based on the topology of their multi-view embedding spaces. We explored embedding spaces
constructed from word level (Raw), morphological (PoS), lexical semantic (ST) and conceptual-semantic
(SS) views of the data. To the best of our knowledge, our study is the first to track translationese using
isomorphism in semantic space.

Our translationese-based results can infer phylogenetic language family relations based on divergence
from isomorphism between embedding spaces from translations and originally authored text. We find
that language distances correlate with the divergence from isomorphism in embedding space. Our anal-
ysis demonstrates that while all embedding views exhibit source-language interference, delexicalised
embeddings do so most significantly. In turn, this allows us to conclude that the lexicalised results are
not just due to possible topic differences between original and translated texts.

Unlike supervised lexicostatistic approaches relying on aligned multilingual cognate lists, our isomor-
phism analysis is unsupervised and still able to detect important language differences related to linguistic
typology. In a sense, and compared to some previous approaches, departure from isomorphism in em-
bedding spaces lets “the data speak more for itself”.

As future work, we intend to extend our experiments to capture geometric properties of the embedding
features and work on isolated languages. Since we see that spaces with less tags, i.e., a smaller vocab-
ulary, are better predictor of genetic relationships, more thorough robustness tests on the quality of the
embeddings that might have an effect in skewing the results will be applied as well.
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