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Abstract

We introduce ManyEnt, a benchmark for entity typing models in few-shot scenarios. ManyEnt
offers a rich typeset, with a fine-grain variant featuring 256 entity types and a coarse-grain one
with 53 entity types. Both versions have been derived from the Wikidata knowledge graph in
a semi-automatic fashion. We also report results for two baselines using BERT, reaching up to
70.68% accuracy (10-way 1-shot).

1 Introduction

Information extraction is targeted at inferring knowledge from unstructured documents, most commonly
in the form of entities and relations between them. Like many other NLP tasks, the field has recently
experienced a boost from deep neural networks (Wang et al., 2019;(Wadden et al., 2019; [Li et al., 2019).
While research datasets are usually derived from Wikipedia, for industrial applications it is the adaptation
to new domains which matters: Here, different relations may be of interest than on the source domain,
and existing relations may express themselves differently (think of the “part_of” relation, which differs
between the medical domain and mechanical engineering).

As data is often scarce on the target domain, recent work has addressed few-shot scenarios: A model
is pre-trained on a training set of relations representing the source domain and is then adapted to new
relations representing the target domain, usually using only few (i.e., 1—5) samples. One prominent
example is the FewRel benchmark (Han et al., 2018)) for relation classification: Given a sentence in
which two entity mentions are marked, the tasks is to assign the entity pair to a relation. Models are first
trained on a dataset of 80 relation types and are then applied to held-out test relation types.

While FewRel addresses relations, we argue that — since information extraction models targeted at new
domains will have to adapt both to new entities and relations — the few-shot scenario is also interesting
for entity typing. This way, models pretrained on some entity types (such as computer) can be adapted
to other types (such as smartphone). Therefore, we suggest a novel benchmark “ManyEnt’ﬂ for few-
shot entity typing. The benchmark is based on FewRel and features a similar setting: Given a sentence
with a highlighted entity, the entity is to be assigned to an entity type. Here, a rich number of types
is beneficial: Only if a breadth of types is known in training transfer can be expected to work well by
adapting to “similar” types as the ones from the source domain. While FewRel offers a much richer
typeset of relations (80 types) than other datasets, e.g. (Hendrickx et al., 2010), it offers no entity types.
Therefore, our first contribution is a semi-automatic annotation of entities on FewRel at two granularities
(53 types and 256 types) using the Wikidata knowledge graph. Second, we also report the results of two
common baselines based on the well-known BERT model (Devlin et al., 2018)), which reach an accuracy
of up to 70.68% (10-way 1-shot).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

'Our dataset (including more detailed statistics) can be found at https://github.com/markus—eberts/
many—-ent.
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2 Related Work

Few-shot learning has been applied to numerous NLP tasks such as relation extraction (Han et al., 2018)
and text classification (Yu et al., 2018). Here specialized few-shot architectures like meta networks
(Munkhdalai and Yu, 2017) or prototypical networks (Snell et al., 2017)) were shown to alleviate overfit-
ting and improve generalization compared to naive finetuning baselines.

With respect to entity typing, models and benchmarks addressing rich typesets exist (Ling and Weld,
2012} (Choi et al., 2018). We follow a similar approach in label acquisition to [Ling and Weld (2012),
exploiting the Wikidata hierarchy. Only few previous works, however, are specifically targeted at few-
shot scenarios: |[Hofer et al. (2018) apply a BILSTM with GloVE embeddings for NER in medical texts.
They show that few-shot performance can be improved by a pre-training on related domains. In com-
parison with ManyEnt, the dataset used by Hofer et al. contains only a small number of entity labels
(6) and is very domain specific. |[Fritzler et al. (2019)) train a prototypical network based model on the
Ontonotes dataset (18 entity types, about 170k sentences). ManyEnt is smaller regarding sentences, but
contains a broader set of entity types. |Li et al. (2020) apply a meta-learning approach for NER domain
adaption. They use six domains with homogeneous entity types, while our goal is to adapt a model to
unknown entity types given only a few labeled samples. Finally, Ma et al. (Ma et al., 2016) present a
few-shot and zero-shot model focusing on category representations exploiting similarities between cate-
gory labels (e.g., book vs. song). In contrast, our model is based on instance-level prototypes similar to
FewRel.

3 The ManyEnt Dataset

The basis for ManyEnt is the FewRel dataset for few-shot relation extraction (Han et al., 2018]). FewRel
offers a large-scale annotated set of sentences extracted from Wikipedia, annotated with 80 relation types
but no entity types. FewRel also contains two annotated entity mentions per sentence, each linked to a
Wikidatzﬂ entity. We denote the set of all these entities with E.

While Wikidata comes with a rich concept hierarchy, we found many of its entity types to be unsuit-
able: They are either too specific (high school), too coarse/uninformative (physical object) or unintuitive
(artificial geographic entity). We would like to select a subset T" of “suitable” entity types, following
common criteria for concept ontologies (Naphade et al., 2006) such as utility (practical relevance), cov-
erage (semantic breadth), feasibility of detection, and observability in the corpus. Given the subset of
suitable entity types 7', we map each Wikidata entity from E to a type from 7' using a semi-automatic
procedure outlined in the following section.

3.1 Mapping Entities to Entity Types

For now, we assume the entity typeset 1" to be given and describe our mapping as a function map : £ —
T from Wikidata entities to entity types. As common for knowledge graphs, Wikidata consists of triples
linking concept nodes via relations. Though Wikidata does not feature a separate T-Box and A-Box, we
assume that some nodes represent concrete entities E (such as USA) while others represent entity types
(such as country). We identify six indicator relations — such as instance _of or subclass_of — leading to
entity types.

Starting from an entity e E, we follow all edges labeled with any of the six indicator relations in a
breadth search until reaching one of our predefined types t€T, and set map(e)=t. We maintain nodes to
be visited in a queue, and rank the indicator relations such that when expanding a node, certain relations
(e.g., subclass_of) are inserted into the queue before others (e.g., part_of). See the example in Figure
1, where we compute an entity type for the voice level “bass”: While other relations such as source or
use are ignored, our search follows the relations subclass_of and instance_of. Since a breadth search is
used, we map to the node voice_type on Level 1 instead of musical_instrument on Level 2. If the search
remains unsuccessful, we set map(e)=None.

https://www.wikidata.org/
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e tences™ | tions* || (ME-53) | (ME-256)

t
‘ L training || 44,485 | 89,793 26 80

isubclass_of test 9’536 11,012 27 176

Figure 1: Left: We map the entity “bass”€ E to the entity type voice_type € T using a breadth search
following key relations (here, subclass_of and instance_of). Right: Dataset Statistics (* for ME-256). As
ManyEnt addresses a few-shot scenario, we utilize larger types for training and sparse types for testing.

3.2 Identifying Entity Types

Obviously, we face a chicken-egg problem; while the breadth search in map() requires a set T" of terminal
types, defining appropriate types requires map() to get an impression of their entities. To estimate both
T and map(), we initialize 7' by manually selecting 44 coarse preliminary entity types offering high
coverage: For a substantial subset of entities e€ E/, we conduct a manual search of the Wikidata graph
for a suitable type. For example, given the entity iPhone 6S Plus, we traverse up the concept hierarchy
(iPhone, smartphone, ...) and select the type device.

Afterwards, we optimize the set of entity types 71" by an iterative process alternating between re-
estimating the mapping map() automatically and refining the entity types 7" manually. Thereby, we
segment the types T into increasingly finer ones by manually inspect sample type #’s entities map ' (t).
If we find these entities to be unintuitively diverse, we manually search the Wikidata graph for more
fine-grain types and replace ¢ with those types. For example, we found the type role to be too diverse
and segmented it into subtypes such as occupation and military rank. We then recompute map() using
the procedure in Section Note that due to the type refinement some entities may end up with no
type. We revisit those None-entities and try to identify suitable types for them. Overall, we applied 6 — 7
iterations of this process, each time removing about 10 types and adding about 40 finer ones. Finally, we
discard 286 entity mentions for which no matching type was found.

3.3 Manual Post-Processing and Coarser Entity Types

We finally apply a manual refinement by a discussion of three experts: 14 non-sensical types were
identified based on their instances (such as “abstract object”) and discarded. This results in 256 fine-
grain entity types, which we refer to as ManyEnt-256 in the following. To assess the overall data quality,
we manually inspect one random mention per type. We manually assign this mention to a type and
compare this ground truth to map(e). This resulted in an accuracy of 97.66%.

To also distinguish between different levels of granularity, we aggregate our rich 256-typeset to a
medium-granularity typeset. Again, this process was based on a discussion and agreement between the
same three experts, who inspected the 256 types and their entities and unified semantically similar types
(such as “hill” and “mountain range”) to new types. This process resulted in a set of 53 types, which we
refer to as ManyEnt-53.

Dataset Split The sentences in ManyEnt correspond to FewRel’s joined training and validation sets.
A challenge is that the distribution of entity types is heavily skewed, which limits the applicability for
few-shot scenarios. The most frequent class (human) occurs 24,100 times, while the median number of
samples per class is only 86 and the minimum is 11. To include as many test types as possible, we sort
the entity types by their frequency and use frequent types for training and infrequent ones for testing.
Then each sentence is assigned to either training set or test set based on its two entities’ types. If one type
belongs to training and one to testing, we assign the sentence to the test set. Table [I] shows the statistics
of the resulting splits.
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ME-256 ||  1-shot |  5-shot ME-53 || 1-shot |  5-shot
fine-tuning? H no ‘ yes ‘ no ‘ yes fine-tuning? H no \ yes \ no \ yes
5-way 53.72 | 81.14 | 81.08 | 90.28 5-way || 55.46 | 79.12 | 83.02 | 91.88

10-way 43.42 | 70.68 | 74.14 | 85.34
20-way 3471 | 63.18 | 65.37 | 77.78

Table 1: Accuracy (%) for our two BERT baselines for fine-grain types (left) and coarse types (right).
Fine-tuning comes with improvements in accuracy by up to 29% (20-way 1-shot).

4 Experiments

We adapt the commonly used few-shot setting (Han et al., 2018}; (Chen et al., 2019) for entities. The
setting is formulated as a N-way, K-shot problem: Given a set of N entity types (way), which the model
did not encounter during training, the correct type of a sample must be predicted given only K examples
(shots) per type. The set of entity type examples is commonly denoted as the support set and the samples
that the system must classify as the query set. We design a prototypical network (Snell et al., 2017)
using the pre-trained transformer-type network BERT (Devlin et al., 2018) as the encoder. Prototypical
networks aim at creating a concise representation (the prototype) of a target class (here, an entity type)
from the support set. It is trained on randomly sampled episodes, each consisting of K support samples
per N entity types and Q query samples per type (see |Snell et al. (2017)) for more details). We first
tokenize an input sentence, obtaining a sequence of n byte-pair encoded tokens. These tokens are then
embedded with BERT into a sequence of contextualized embeddings (e, e2, ...e,,). Given an entity span
s:=(e;, €11, ..., €i+k) with length k, an entity representation e(s) is obtained by averaging over s. The
prototype representation of an entity type t is acquired by an averaging over the support set S; of ¢:

p(t) = % > e(si) (1)

S¢€St

Each query sample is also encoded (again by averaging over the entity’s span) and compared with
each prototype by Euclidean distance. A probability distribution over all entity types is obtained using a
Softmax function over the negated distances. We then minimize the negative log-likelihood loss of the
ground truth entity type. We trained the model for 3 epochs of 4,000 episodes. We use the BERTgasE
(multilingual-cased) model for our experiments. Hyperparameters were tuned on a held-out validation
set (10% of training data). We use the Adam optimizer with a learning rate of 3e-5 and a linear in-
crease/decrease schedule and perform early stopping on the validation set.

We evaluate our model on 200 random episodes per setting, each containing 5 query samples per entity
type. The accuracy is averaged over all episodes. We also include a second baseline, where BERT is
not fine-tuned, to asses the inherent ability of BERT to distinguish entities through its unsupervised pre-
training. For the fine-grain dataset, we evaluate on a 5-, 10-, and 20-way setting with 1 or 5 shots. Since
ME-53 contains fewer types, only a 5-way setting is evaluated. Table [1| contains the results of our two
baseline approaches for the fine-grain (ME-256) and coarse (ME-53) types. While we observe BERT
to already perform well without fine-tuning, especially on the 5-shot settings, performance improves in
every setting when BERT is fine-tuned instead. Here fine-tuning appears to be particularly important
when given only a single example per type (up to 29% accuracy improvement).

5 Conclusions

We have introduced a new benchmark for few-shot entity typing featuring a rich entity typeset of 256
types. Results with two baselines using a BERT-based prototypical network indicate that BERT — partic-
ularly when fine-tuned — already provides a solid performance (62-93%). A key challenge to the system
appears to be the separation of similar fine-grain types (such as “comic format” and “document”), which
poses an interesting challenge for future research.
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