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Abstract

Cognitive and social traits of individuals are reflected in language use. Moreover, individuals
who are prone to spread fake news online often share common traits. Building on these ideas,
we introduce a model that creates representations of individuals on social media based only on
the language they produce, and use them to detect fake news. We show that language-based
user representations are beneficial for this task. We also present an extended analysis of the
language of fake news spreaders, showing that its main features are mostly domain independent
and consistent across two English datasets. Finally, we exploit the relation between language use
and connections in the social graph to assess the presence of the Echo Chamber effect in our data.

1 Introduction

Fake news have become a problem of paramount relevance in our society, due to their large diffusion in
public discourse, especially on social media, and their alarming effects on our lives (Lazer et al., 2018).
Several works show that fake news played a role in major events such as the US Presidential Elections
(Allcott and Gentzkow, 2017), stock market trends (Rapoza, 2017), and the Coronavirus disease outbreak
(Shimizu, 2020). In NLP a considerable amount of work has been dedicated to fake news detection, i.e.,
the task of classifying a news as either real or fake — see Zhou and Zafarani (2020), Kumar and Shah
(2018) and Oshikawa et al. (2020) for overviews. While initial work focused uniquely on the textual
content of the news (Mihalcea and Strapparava, 2009), subsequent research has considered also the social
context in which news are consumed, characterizing, in particular, the users who spread news in social
media. In line with the results reported in other classification tasks of user-generated texts (Del Tredici
et al., 2019; Pan and Ding, 2019), several studies show that leveraging user representations, together
with news’ ones, leads to improvements in fake news detection. In these studies, user representations
are usually computed using informative but costly features, such as manually assigned credibility scores
(Kirilin and Strube, 2018). Other studies, which leverage largely available but scarcely informative
features (e.g., connections on social media), report less encouraging results (Zubiaga et al., 2016).

Our work also focuses on users. We build on psychological studies that show that some people are
more prone than others to spread fake news, and that these people usually share a set of cognitive and
social factors, such as personality traits, beliefs and ideology (Pennycook et al., 2015; Pennycook and
Rand, 2017). Also, we rely on studies showing a relation between these factors and language use, both in
Psychology and Linguistics (Pennebaker et al., 2003; De Fina, 2012) and in NLP (Plank and Hovy, 2015;
Preotiuc-Pietro et al., 2017). We therefore propose to leverage user-generated language, an abundant
resource in social media, to create user representations based solely on users’ language production. We
expect, in this way, to indirectly capture the factors characterizing people who spread fake news.

We implement a model for fake news detection which jointly models news and user-generated texts.
We use Convolutional Neural Networks (CNNs), which were shown to perform well on text classification
tasks (Kalchbrenner et al., 2014) and are highly interpretable (Jacovi et al., 2018), i.e., they allow us to
extract the informative linguistic features of the input texts. We test our model on two public English
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datasets for fake news detection based on Twitter data, both including news and, for each news, the
users who spread them on Twitter. We leverage two kinds of user-generated language, i.e., past tweets
and self-description. In line with our expectations, model performance improves when language-based
user representations are coupled with news representations, compared to when only the latter are used.
Moreover, the model achieves high results when leveraging user-generated texts only to perform the task.

We use the linguistic features returned by the model to analyze the language of fake news spreaders,
showing that it has distinctive features related to both content, e.g., the large usage of words related
to emotions and topics such as family and religion, and style, e.g., a peculiar usage of punctuation.
Importantly, these features are largely independent from the domain of the dataset, and stable across
datasets. Moreover, we find that the two kinds of user-generated language we consider provide partially
overlapping information, but with some relevant differences.

Finally, we consider the relation between the language produced by the users and their connections
in the social graph. In particular, we investigate the Echo Chamber effect, i.e, the situation in which the
ideas expressed by a user are reinforced by their connections (Jamieson and Cappella, 2008). In previous
NLP work, the effect has been studied by observing whether users connected in the social graph post the
same content, usually defined as a link to a web page from a manually compiled list (Garimella et al.,
2018; Choi et al., 2020). We propose to define the content produced by the users based on their linguistic
production, and to compute the Echo Chamber effect as a function of the similarity between the content
of connected users and their distance in the social graph. By applying our methodology, we show that
the Echo Chamber effect is at play, to different extent, in both the datasets under scrutiny.

Modelling user-generated data requires careful consideration of the possible ethical aspects related to
the treatment of such data. We provide an ethics statement in Appendix A with details on how we have
dealt with these aspects.

2 Related Work

Several studies on fake news detection focus uniquely on the text of the news (Mihalcea and Strapparava,
2009; Rashkin et al., 2017; Pérez-Rosas et al., 2018). Despite some positive results, this approach is
inherently undermined by the fact that fake news are often written in such a way as to look like real
news. More recently, researchers have explored the possibility to leverage social information together
with the one derived from news texts. Some works focus on the patterns of propagation of fake news
in social networks. Vosoughi et al. (2018) show that, compared to real news, fake news have deeper
propagation trees, spread faster and reach a wider audience, while Ma et al. (2017) show that fake news
originate from users with a few followers, and are spread by influential people. A parallel line of research
considers the users who spread fake news. Some works focus on the detection of non-human agents
(bots) involved in the spreading process (Bessi and Ferrara, 2016), while others model the characteristics
of human spreaders, as we do in this paper. Gupta et al. (2013) and Zubiaga et al. (2016) represent users
with simple features such as longevity on Twitter and following/friends relations, and show that these
features have limited predictive power. Kirilin and Strube (2018), Long et al. (2017) and Reis et al.
(2019) use more informative features, such as users’ political party affiliation, job and credibility scores.
While leading to improvements on the task, features of this kind are usually either hard to retrieve or have
to be manually defined, which hinders the possibility to scale the methodology to large sets of unseen
users. Guess et al. (2019) and Shu et al. (2019a) rely on manually annotated lists of news providers,
thus presenting a similar scalability problem. Finally, Shu et al. (2019b) represent users by mixing
different kinds of information, e.g., previous tweets, location, and profile image. This approach shares
with ours the usage of the previous tweets of a user (as will be explained in Section 3.2). However, to our
knowledge, we are the first to create user representations based uniquely on users’ linguistic production.

Previous NLP work showed the presence of the Echo Chamber effect (ECE) on social media, espe-
cially in relation to political discourse (Ul Haq et al., 2019). The majority of the studies implement a
similar approach, whereby the ECE is said to exist if users which are connected in the social graph post
the same content. Usually, the content considered in these studies is a link to a web page from an an-
notated list. For example, Del Vicario et al. (2016) investigate the relation between echo chambers and
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spread of conspiracy theories by observing users that share links to pages promoting this kind of theories.
Choi et al. (2020) apply a similar approach to the analysis of rumours spread, while other studies adopt
it to investigate echo chambers in relation to political polarization, in which case, links are labelled with
political affiliation (Colleoni et al., 2014; Garimella et al., 2018; Gillani et al., 2018). We adopt the same
approach but, crucially, we define the shared content based on the linguistic production of the users.

3 Data

3.1 Datasets

We use two datasets, PolitiFact and GossipCop, available in the data repository FakeNewsNet!' (Shu
et al., 2020). While other datasets for fake news exist (Oshikawa et al., 2020), those in FakeNewsNet
provide the possibility to retrieve the previous linguistic production of the users, thus making them
particularly suitable for our purposes. However, these datasets are not annotated with the features used
by previous work to represent users (see Section 2), and hence a direct comparison between the language-
based user representations we propose and the ones obtained with existing methodologies is not possible.
Both PolitiFact and GossipCop consist of a set of news labelled as either fake or real. PolitiFact (PF)
includes political news from the website https://www.politifact.com/, whose labels were
assigned by domain experts. News in GossipCop (GC) are about entertainment, and are taken from
different sources. The labels of these news were assigned by the creators of the data repository. For each
news in the datasets, its title and body are available,? together with the IDs of the tweets that shared the
news on Twitter. We tokenize titles and bodies, set a maximum length of 1k tokens for bodies and 30
tokens for titles, and define news as the concatenation of their title and body. We remove words that
occur less than 10 times in the dataset, and replace URLs and integers with placeholders. We add the tag
<CAP> before any all-caps word in order to keep information about style, and then lowercase the text.
Finally, we keep only news which are spread by at least one user on Twitter (more details in Section 3.2).
We randomly split each dataset in train/validation/test (80/10/10). In Table 1 we report the number of
fake and real news per dataset after our preprocessing.

3.2 Users

The only information about users that we leverage is the language

they produce. We retrieve it as follows. First, for each news, we fake real users DE
identify the users who posted the tweets spreading the news.> For PF 362 367 207k 79%
some news it is not possible to find any user, due to the fact that the GC 25k 49 625k 82%
tweets were cancelled or that the user is not on Twitter anymore. We
remove these news from the datasets. Also, in both datasets there ~ Table 1:  Statistics for each
are some users who spread many news. One risk, in this case, is that ~ dataset after  preprocessing:
the model may memorize these users, rather than focus on general ~ Number of fake and real news;
linguistic features. For this reason we keep only unique users per ~ nhumber of users; percentage
news, i.e., users who spread only one news in the dataset. Finally, —©of users for which a self-
we randomly subsample a maximum of 50 users per news, in order ~ description (DE) is available.

to make the data computationally tractable. As a result, for each

news we obtain a set including 1 to 50 users who retweet it (on average, 28 users per news for PF
and 9 for GC). For each of these users, we retrieve their timeline (TL), i.e., the concatenation of their
previous tweets, and their description (DE), i.e., the short text where users describe themselves on their
profile. We expect descriptions and timelines to provide different information, the former being a short
text written to present oneself, while tweets are written to comment on events, express opinions, etc.
Note that the description is optional, and not all the users provide it. We set a maximum length of 1k
tokens for timelines and 50 tokens for descriptions, and we apply to both the same preprocessing steps

"https://github.com/KaiDMML/FakeNewsNet.
2The body of the news is not in the downloadable dataset files, but it can be obtained using the code provided by the authors.
3In order to identify users and retrieve their information, we query the Twitter API using the Python library tweepy.
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detailed in Section 3.1. Additionally, we add the tag <EMOJI> before each emoji. In Table 1 we report
the number of users per dataset, and the percentage for which a description is available.

4 Model

We implement a model which takes as input a news n and the set U = {uy, ug, ..., u; } of texts produced
by the users that spread n, and classifies the news as either fake or real. The model consists of two
modules, one for news and one for user-generated texts, both implemented using Convolutional Neural
Networks (CNNs). The two modules can be used in parallel or independently (see Section 5). The news
module takes as input 7 and computes a vector n € R, where d is equal to the number of filters of the
CNN (see below). The users module takes as input U and returns a vector u € R?, which is the weighted
sum of the representations computed for user-generated texts in U.* Vectors n and u are weighted by
a gating system which controls for their contribution to the prediction, and then concatenated. The
resulting vector is fed into a one-layer linear classifier W € R%+9%2 where 2 is the number of output
classes (real and fake), which returns the logits vector o0 € R?, on which softmax is computed.’

Extracting Linguistic Features from CNNs Recently, model interpretability has gained much traction
in NLP, and an increasing number of studies have focused on understanding the inner-workings and the
representations created by neural models (Alishahi et al., 2019). Inspired by this line of work, and, in
particular, by the analysis of CNNs for text classification by Jacovi et al. (2018), we inspect our model in
order to extract the linguistic features it leverages for the final prediction, which we use for our analysis
(see Section 7). We describe below how we extract the relevant linguistic features from the model.

A CNN consists of one or more convolutional layers, and each layer includes a number of filters (or
kernels). Filters are small matrices of learnable parameters which activate (i.e., return an activation value)
on the n-grams in the input text which are relevant for the final prediction: The higher the activation value,
the more important the n-gram is for the prediction.® As a first step, we collect all the relevant n-grams
returned by the filters in the model. Then, we assess which n-grams are relevant for the fake class, and
which for the real class. We do this by considering the contribution of each filter to the two target classes,
which is defined by the parameters in W € R4+9%2 (Jacovi et al., 2018). The contribution of filter f
to the real and fake classes is determined, respectively, by parameters Wyo and Wygq: if the former is
positive and the latter negative, we say that f contributes positively to the real class, and, therefore, the
n-grams detected by f are relevant for that class. Consequently, for n-gram « returned by the filter f
with activation value v, we compute the importance of x for the class real as 2, = v x Wy and for the
class fake as F, = v X Wy,

5 Experimental Setup

Setups and Baseline Our goal is to assess the contribution of language-based user representations to
the task of fake news detection. Thus, for each dataset, we implement the following setups:

- News: We assess model performance when only news information is available.

- TL / DE / TL+DE: We provide the model only with user information. User information can be
either the timeline (TL), the description (DE) or their concatenation (TL+DE).

- N+TL / N+DE / N+TL+DE: The model is provided with combined information from both news
(N) and user-generated texts, which can again be in the three variants defined above.

We implement a Support Vector Machine (SVM) (Cortes and Vapnik, 1995) as a baseline. SVMs have
been shown to achieve results which are comparable to those by neural-based models on text classifica-
tion tasks (Basile et al., 2018), and we thus expect the model to be a strong baseline.

“The fact that vectors n and u have equal dimensionality is not a constraint of the model but a methodological choice.

SWe report the details of the implementation in Appendix B.
8The size of a filter corresponds to the length of the n-grams it activates on. Hence, a filter of size 2 activates on bi-grams.
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Dataset Model | News User Information Combined Information
TL DE TL+DE | N+TL N+DE N+TL+DE
PolitiFact (PF) SVM | 0.839 | 0.654 0.714 0.673 0.654 0.686 0.682

CNN | 0.865* | 0.812 0.706 0.824 0.888* 0.879*  0.882*
GossipCop (GC) | SVM | 0.629 | 0.505 0.439 0.514 0.518 0.609 0.525
CNN | 0.641* | 0.545 0.463 0.526 0.710*° 0.714*¢  0.719*°

Table 2: Results on the test set (binary F-score), for all the setups in our experiment. Standard deviation is
in range [0.01-0.02] for all CNN setups. We group setups in which only information from user-generated
texts is used (User Information) and those in which news and user-generated texts are jointly modelled
(Combined Information). For CNN, we mark with * the results which significantly improve over setups
in User Information, while ¢ indicates a significant improvement over the News setup.

Hyperparameters For each setup we perform grid hyperparameter search on the validation set using
early stopping with patience value 10. We experiment with values 10, 20 and 40 for the number of filters,
and 0.0, 0.2, 0.4 and 0.6 for dropout. In all setups batch size is equal to 8, filters focus on uni-grams,
bi-grams and tri-grams, and we use Adam optimizer (Kingma and Ba, 2015) with learning rate of 0.001,
51 =0.9 and B = 0.999. All the CNN modules have depth 1, and are initialized with 200-d GloVe
embeddings pretrained on Twitter (Pennington et al., 2014).

We train the SVM baseline on uni-grams, bi-grams and tri-grams. When modelling user information,
we concatenate the user-generated texts of the users spreading the target news. We use the rbf kernel,
and perform grid hyperparameter search on the validation set. We explore values 1, 2, 5, 10, 15 and 30
for the hyperparameter C, and 16705, 16704 1603 1¢=02 1 0 for ~.

For both CNN and SVM models, we use binary F-score as optimization metric, and indicate the fake
class as the target class.

6 Results

We report the results of the fake news detection task in Table 2. The results of our CNN model are
computed as the average of 5 runs with different random initialization of the best model on the validation
set. For SVM, we report the single result obtained by the best model on the validation set.’

CNN outperforms SVM in all the setups, except for one.® The largest improvements are in the TL and
TL4+DE setups for PF and in all the Combined Information setups: Our intuition is that these improve-
ments are due to the weighted sum of the user vectors and to the gating system of the CNN (see Section
4), which allow the model to pick the relevant information when the set of user-generated texts is large
and includes long texts,” and when news and user-generated texts are jointly modelled.

We then focus on the performance of the CNN in the different setups. First, we observe that results in
the News setup are significantly higher than those in the User Information setups.'? This was expected,
as classifying a news based on its text is presumably easier than by using only information about users
who spread it. Nevertheless, the results in the TL setup are surprisingly high, especially in PF, which
indicates that the language used in timelines is highly informative. The results in the DE setup, both
in PF and GC, are lower than those in TL. The two setups, however, cannot be directly compared, as
descriptions are not available for all users (see Section 3.2). When we re-run the models in the User
Information setups keeping only users with both timeline and description, we observe no statistically
significant differences between the results in the TL and DE setups. Lastly, we observe no significant
improvement when we add descriptions to timelines (i.e., TL+DE and N+TL+DE do not improve over

"While a direct comparison to previous studies using the same dataset is not possible due to the specific preprocessing we
applied to the data (see Section 3), the reported results are in line with those in the literature — see, e.g., Shu et al. (2019a).

8Both CNN and SVM outperform a random baseline which samples labels based on their frequency in the dataset, and
which obtains an F-score of 0.33 in GC and 0.48 on PF.

“Recall that, on average, there are 28 users per news in PF and 9 in GC (see Section 3.2).

1We compute statistically significant differences between sets of results using the unpaired Welch’s ¢ test.
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TL and N+TL, respectively). Finally, in all the Combined Information setups the performance of the
model significantly improves compared to the News setup — except for N+DE in PF, for which the
improvement is not statistically significant. When we substitute user vectors with random ones in the
Combined Information setups, we observe no improvement over the News setup.

Overall the results confirm our initial hypothesis that leveraging user representations based only on the
language produced by users is beneficial for the task of fake news detection. They also raise interesting
questions related to what makes user-generated language informative, and which qualitative differences
exist, if any, between timelines and descriptions. We address these questions in the next section.

7 Linguistic Analysis

In this section, we analyse the language of news
and of user-generated texts. We address two ques-

negative_emotion, . Real

tions: (Q1) Which features of the language used by — ok
fake news spreaders are relevant for fake news de- fm:w":—_
tection, and how are they different from those of foy;tné
the language used by real news spreaders? (Q2) cﬁnamrsn____—aér&%mén
Which linguistic features do timelines and descrip- =) J—
tions share, and which are different? Also, which _Ewp%?ﬁfg
features do these two kinds of user-generated texts gdnh,gttg
share with the language of news? =i

To answer these questions, we need to analyse E?f‘;ﬁ;‘t

meeting
domipant heirarchical
bankmg

the language used in timelines, descriptions, and
news independently. We therefore consider, for
both datasets, the models used at test time in TL,
DE and News. For each model, we extract the set  _i5 =T — 5 5 15 I5 o
of relevant n-grams, compute the R, and F, val- Actvetion velues

ues for all of them, and sum the R, and F;, of n-
grams returned by more than one filter (see Section
4). We use n-grams to analyse both style and con-
tent. Regarding content, we analyse the topic of the n-grams, proper names and, for user-generated
texts, hashtags. Regarding style, we consider punctuation marks, all-caps, function words and, for
user-generated texts, emojis.!! We check to which category, if any, each n-gram belongs to (e.g., trump
— proper names and #usarmy — hashtags). The category topic includes a list of topics (e.g., Politics
and War), and n-grams are assigned to these topics (e.g., missile, army — War). Similarly, function
words includes several parts of speech (POS), hence, e.g., me, you — Pronouns. We define the impor-
tance of each topic and POS for the two target classes by summing the R,, and F,, values of the n-grams
they include. Finally, to consider only the n-grams which are relevant for one of the target classes, we
compute the difference between R, and F,, for each n-gram, compute the mean p and standard deviation
o of the differences, and keep only n-grams whose difference is larger than p + o.

In Figure 1 we show the analysis of the topics for the News setup in PF. Red bars represent [, values,
blue bars R, values: The higher the R, (F},) value, the more the importance for the real (fake) class. For
example, the topics Negative Emotions and Death are important for fake news; Government and Politics
for real news. Usually, to a large positive F}, value corresponds a large negative R, value, and vice versa.
We apply our methodology to address the questions introduced at the beginning of this section.

Igader
business

law .

economics
politics

dovernment

Figure 1: Activation values of topics for the
News setup in PF. Best viewed in color.

Q1: The language of fake news spreaders In Figure 2 we show the main categories of the language
of fake news spreaders (red circles) and real news spreaders (blue circles) in PF (top) and GC (bottom).
Underlined categories refer to style, the others to content.'2

""'We detect the topic using the Empath lexicon (Fast et al., 2016), and use the LIWC lexicon (Pennebaker et al., 2001) to
detect function words. We use the Python libraries name—-dataset for proper names and emo ji for emojis.
"2For simplicity, we aggregate similar topics, e.g., ‘positive emotions’ includes topics such as Affection, Love and Optimism.
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Figure 2: The language of real news spread-
ers (blue circles) and fake news spreaders
(red circles) in PF (top) and GC (bottom).
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Figure 3: Relevant categories for TL and
DE of fake news spreaders (a) and real news
spreaders (b). Solid-line boxes: categories
of fake (a) and real (b) news in PF. Dashed-
line boxes: categories of fake (a) and real
(b) news in GC.

A first observation is that very few categories are
shared by the language of fake and real news spread-
ers (overlap between blue and red circles), and that
those in common are mostly related to the domain of
the dataset (e.g., law and politics in PF). The language
of fake news spreaders shows many common categories
across datasets (overlap between red circles), mostly re-
lated to content. In particular, fake news spreaders of
both datasets extensively talk about emotions and topics
such as friendship, family, animals and religion. Inter-
estingly, many of these topics are not directly related to
the domain of either dataset. The most important proper
names (e.g., Jesus, Lord, Jehovah, Trump) and hashtags
(e.g., #usarmy, #trumptrain, #god, #prolife, #buildthe-
wall) are again the same in the two datasets, and are
highly related to the topics above. We observe some
content-related categories which are not shared across
datasets (non-overlapping areas in red circles), as they
are related to the domain of the dataset (see Q2). Cross-
dataset consistency is even more evident for style: Fake
news spreaders steadily use specific punctuation marks
(quotes, hyphen, slash, question and exclamation mark),
function words (first person pronouns and prepositions),
emojis and words in all-caps.

The language of real news spreaders has different
characteristics: many categories are dataset specific
(non-overlapping areas in blue circles), while few of
them are shared (overlap between blue circles). Also,
dataset specific categories have higher activation values
and are related to the domain of the dataset. Finally, no
relevant style-related category is found for the language
of real news spreaders.

Overall, the analysis shows that the language of fake
news spreaders is clearly characterized by a set of lin-
guistic features, related to both style and content. Cru-
cially, these features are largely domain-independent,
and are consistently identified across datasets. This is
in stark contrast with what is observed for the language
of other users, which is more related to the domain of the
dataset. These findings support the hypothesis that peo-
ple who are more prone to spread fake news share a set
of cognitive and sociological factors, which are mirrored
in the features of the language they use.

Q2: The language of timelines, description and news
We now analyse the relation between timelines, descrip-
tions, and news. In Figure 3 we show the relevant cate-
gories of timelines and descriptions for fake (a) and real
(b) news spreaders, in both datasets. The plots include
the same information displayed in Figure 2, but in greater
detail. In the plots, solid-line boxes indicate the relevant
categories for the news shared by fake/real news spread-
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ers in PF, dashed-line boxes the relevant categories for news shared by fake/real news spreaders in GC.

For fake news spreaders, we highlight the following findings. First, the largest overlap (dotted ellipse)
is observed between the descriptions across the two datasets. Importantly, in this area we find the ma-
jority of categories which are not directly related to the domain of the datasets. Second, in both datasets,
timelines have some categories shared with descriptions (e.g., Negative Emotions and Punctuation), plus
other categories related to the semantic field of violence (e.g., Crime and Aggression), together with
Proper Names. These timeline-specific categories are also the relevant ones for the fake news in PF
(solid-line boxes) and in GC (dashed-line boxes). The relevance of similar categories across datasets is
due to the fact that in both of them fake news are often built by mentioning a famous person (mainly
Trump in PF, a celebrity in GC) in relation to some negative event — a usual scheme in sensational news
(Davis and McLeod, 2003). In summary, all user-generated texts share some linguistic categories (cen-
tral area of the plot), but it is in descriptions that we find the largest number of dataset-independent
categories, related to both content and style, which characterize the language of fake news spreaders.
Conversely, timelines share more categories with the news spread by the users. These findings are in
line with our expectations about the different nature of descriptions and timelines, as the former include
more personal aspects of a user, while the latter are more related to the domain of the news they spread.
Furthermore, the limited similarity between the language of fake news spreaders and of the news they
spread provides further evidence to the hypothesis that the language of fake news spreaders is largely
shaped by sociological and cognitive factors, and mostly independent from the domain.

For real news spreaders, there is a large overlap of content-related categories between timelines and
descriptions within a given dataset (dotted ellipses), while no style-related category is relevant for either
kind of text. Differently from fake news spreaders, then, for real news spreaders descriptions and time-
lines do not present clear differences. Also, in both datasets, the relevant categories of real news strongly
reflect the topics discussed in user-generated texts (see solid-line boxes for PF, and dashed-line boxes for
GC). We can thus conclude that a set of domain-related topics exists in each dataset, and that these topics
are the relevant linguistic categories in timelines, description, and in news. In contrast, these texts do not
share any characteristic related to style.

8 Echo Chamber Effect

After showing the informativeness of language-

based user representations, we now use them to- . PF-TL o PF- DE
gether with the information from the social graph 0.26 4 o0 ]

to investigate the Echo Chamber effect (ECE). We o2 0.09 4

adopt the operational definition by Garimella et al. ~ 5°221 0.08

(2018), and say that the ECE exists when users in a EO'ZD 1 0071

social graph mostly receive content from their con- 5 = ° BG;TLS © 7 P 3Gc‘f DE5 ° 7
nections which is similar to the content they pro- Loas | 0.07

duce. We introduce a methodology to define the 'g&m- 0,06 4

content produced by a user based on their language O™

use, and to compute the ECE as a function of the ZE 057

content similarity of connected users and their dis- T3 3 % s e 3 S
tance in the social graph. Distance

Social Graph To define the social graph we fol-  Ejoyre 4: The similarity values obtained for the

low a common approach in the literature (Yang and o datasets with the TL-topic vectors (TL) and
Eisenstein, 2017; Del Tredici et al., 2019) and cre- with the DE-topic vectors (DE).

ate, for each dataset, a graph G = (V, E) in which
V' is the set of users in the dataset, and F is the set
of edges between them. An unweighted and undirected edge is instantiated between two users if one
retweets the other. We retrieve information about retweets in users’ timeline (see Section 3.2). In or-
der to make the social graph more connected, we also add as nodes users who are not in the dataset,
but have been retweeted at least 20 times by users in the dataset. The resulting graph for PF includes
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32K nodes and 1.6M edges (density= 0.0031), the one for GC includes 109K nodes and 4.9M edges
(density=0.0008).

User Representations To represent users based on their linguistic production, we adopt an approach
similar to the one of Section 7, and we first retrieve, for each user, the set of relevant n-grams and their
activation values.'® Since the ECE is related to the content posted by users, we consider only the topic
of the n-grams, and ignore their style.'# Thus, for each user, we analyse the topic in their set of n-grams
using again the Empath lexicon (see footnote 11), and we define a topic vector ¢ € RY, where d is the
number of topics in the lexicon, and ¢; is the activation value of the i-th topic. We create two topic
vectors per user, one based on the timeline (TL-fopic) and one on the description (DE-fopic), using the
best models at test time in the TL and DE setups (see Section 5).

Computing the Echo Chamber Effect We conjecture that the ECE exists for a user if the cosine
similarity between their topic vector and the one of their connections decreases as the distance (i.e, the
number of hops away in the graph) increases. To check the effect for all users in the graph, for each
distance value, we compute the average cosine similarity of the users at that distance.!?

As shown in Figure 4, we observe a monotonic decrease in similarity (Spearman p < —0.9, p <
0.005) in all setups, except for GC-DE, where the decrease in similarity is much less pronounced and,
consequently, the descending curve is more subject to fluctuations — see the increase after distance 6.
However, for all setups there is significative negative difference between sets of values at consecutive
distances (i.e., 1 and 2, 2 and 3, and so on) up to distance 4 (Welch’s ¢ test p < 0.005). We believe that,
overall, these results indicate that the ECE is present in our data, with different strength depending on
the setup. We also make the following observations.

First, we observe no difference, in terms of ECE, between fake news and real news spreaders. This
indicates that the effect is common to all users in the datasets, and not related to the cognitive and social
traits which influence the language production of fake news spreaders (see Section 7).

Second, in all the setups, the largest drop in similarity is observed between values at distances 1 and
2 or 2 and 3. We interpret this fact as an indication that the ECE is mostly at play, in our data, at close
proximity. This result is in line with previous findings in Sociolinguistics which show that, in social
networks, there are cliques of users linked by first or second order connections who mutually reinforce
their ideas and practices (Labov, 1972; Milroy, 1987).

As we inspect the results for timelines and descriptions, we observe that the former show higher
similarity values on average, while the drop in similarity at distance 2/3 is more evident for descriptions.
These findings are related to what observed in Section 7, as timelines share more domain-related topics,
which causes them to be more similar to each other, while descriptions include more personal aspects,
presumably shared with close connections.

Finally, the similarity values for both TL and DE are higher in PF than in GC. We believe this is due
to the polarization of political groups in social networks, whereby users belonging to the same political
party tend to group in segregated clusters, with few external connections (Conover et al., 2011).

9 Conclusion

In this work we addressed the task of fake news detection, and showed that results can be improved by
leveraging user representations based uniguely on the language the users produce. This improvement is
due to the fact that the language used by fake news spreaders has specific and consistent features, which
are captured by our model, and which we highlight in our analysis. Language-based user representations
also allowed us to show the presence of the Echo Chamber effect in both our datasets.

Our results offer empirical confirmation of previous findings regarding the relation between language
use and cognitive and social factors, and they could foster further theoretical and computational work

BIn this case we ignore the class the n-gram is relevant for (i.e., the R, and F, values), and only consider value v (see
Section 4).

4We do not consider proper names and hashtags because the dimensionality of the resulting user vectors would be intractable.

5We consider distance values for which there are at least 100 connections. This results in a maximum distance of 7 for all
social graphs.
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in this line of research. In particular, future computational work might address some of the limitations
of the current study: For example, while we focus only on users spreading a single news, it would
be interesting to model also users who spread multiple news, which are possibly both real and fake.
Similarly, it would be relevant to investigate the cold start problem, that is, the number of posts needed
to create a reliable representation of the user, which is particularly important for newly registered users
and for those who are not highly active. Also, since the relation between language use and cognitive and
social factors holds in every sphere of linguistic production, a natural extension of this work would be
to apply the same methodology to other tasks involving user-generated language, such as, for example,
suicidal prevention and mental disorders detection. Finally, we hope the tools and insights provided in
this study might be used to fight the diffusion of fake news, for example, by identifying and warning
users who are vulnerable to them.
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A Appendix: Ethics Statement

We begin by clarifying our motivation for this work. We build on studies showing that, while there are
malicious users who consciously spread fake news for different (usually unethical) reasons, others do so
simply because they are not able to distinguish them from real news (Pennycook and Rand, 2017; Kumar
and Shah, 2018). Our goal is to implement a system which helps to automatically identify these vulner-
able users, not to hold them up to public disdain but, rather, to warn them of the risk to be involuntarily
involved in a harmful process.

Nowadays, many studies in NLP focus on tasks related to concrete societal issues, for example, hate or
abusive speech detection, suicidal prevention, or fake news detection as we do here. This line of research
leverages user-generated data extracted from online social media. This raises the question of how these
sensitive data should be managed. Several studies have been concerned with the ethical treatment of
user-generated data, both in NLP and related fields (Vitak et al., 2016; Leidner and Plachouras, 2017;
Schmaltz, 2018; Olteanu et al., 2019), focusing on different aspects and proposing good practices. We
did our best to follow such practices. Concretely:

e We collected and used only data made publicly available by the users, that we obtained using the
Twitter API. In this case, then, no approval and informed consent from the users were needed.

e The data only include users and tweet IDs: In no case did we try to trace these IDs back to the real
identity of the users.

e We controlled for possible biases in our data processing. For example, we randomly sub-sampled
users and we applied the same pre-processing to all user-generated content, as described in Section 3.

e We do not derive any conclusion about specific users or groups of users. Rather, we focus our attention
on language use, and its connections to psychological and societal factors.

B Appendix: Model

We provide here a more detailed description of the model used in our experiments. The input of the
model are the news n and the set U = {uy, ug, ..., u; } of texts produced by the users that spread n. The
model has two modules, one for news and one for user-generated texts, which can be used in parallel
or independently. The news module takes as input n and computes vector n € R?, where d is equal to
the number of filters of the CNN. The users module takes as input U and initially computes the matrix
U € R™? where m is the number of users in U, and vector u; € R? represents user u; in set U.
We assume not all the users to be equally relevant for the final prediction, and we therefore implement
a gating system as linear layer W, € R*1, which takes as input U and returns the vector s € R™.
A sigmoid function is applied to s, squeezing the values in it in range [0-1], where 0 means that the
information from a user-generated text is not relevant, and 1 that it is maximally relevant. The matrix
of the weighted representations of the users is thus obtained as U’ = U x s. We finally compress user
m

information in a single vector u € RY computed as u = Y u; € U’. Vectors n and u are weighted
by a gating system which controls for their contribution tolthle prediction, concatenated, and fed into a
one-layer linear classifier W € R4+4%2where 2 is the number of output classes (real and fake), which
returns the logits vector 0 € R2, on which softmax is computed.
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