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Abstract

Network representation learning (NRL) is crucial in the area of graph learning. Recently, graph
autoencoders and its variants have gained much attention and popularity among various types of
node embedding approaches. Most existing graph autoencoder-based methods aim to minimize
the reconstruction errors of the input network while not explicitly considering the semantic re-
latedness between nodes. In this paper, we propose a novel network embedding method which
models the consistency across different views of networks. More specifically, we create a second
view from the input network which captures the relation between nodes based on node content
and enforce the latent representations from the two views to be consistent by incorporating a mul-
tiview adversarial regularization module. The experimental studies on benchmark datasets prove
the effectiveness of this method, and demonstrate that our method compares favorably with the
state-of-the-art algorithms on challenging tasks such as link prediction and node clustering. We
also evaluate our method on a real-world application, i.e., 30-day unplanned ICU readmission
prediction, and achieve promising results compared with several baseline methods.

1 Introduction

Over the last few years, network representation learning, or node embedding, has gained increasing in-
terest in the community of machine learning, due to the popularity of the special data form. In reality,
datasets from different fields are often in the form of networks, such as social networks, drug-target-
interaction networks, mobile phone networks, citation networks, etc. It is therefore very important to
find a way to well represent the networks, which is challenging because there is no direct way to en-
code the high-dimensional data into low-dimensional feature vectors efficiently (Hamilton et al., 2017b).
Moreover, network embedding techniques benefit a variety of downstream applications like link predic-
tion, node classification and node clustering.

In recent years, researchers have developed different kinds of network embedding approaches, many
of which have shown great performance in analytical evaluation and have been quite effective in down-
stream applications. These studies range from traditional machine learning techniques like matrix fac-
torization to recent deep-learning-based methods like graph autoencoders.

Traditional models, or shallow models, usually optimize the embeddings of nodes directly. For these
shallow models, the mapping from networks to vectors is simply a embedding lookup, i.e., each node
corresponds to a unique embedding vector (Hamilton et al., 2017b). Factorization-based approaches like
GraRep (Cao et al., 2015), HOPE (Ou et al., 2016) and random walk-based approaches like DeepWalk
(Perozzi et al., 2014), node2vec (Grover and Leskovec, 2016) all fall into this category. Shallow models
generally suffer from computational inefficiency and lack of ability to well represent complex networks.

More recently, deep models, or autoencoder-based approaches, have been gaining more and more
attention, and have shown superior performance in many applications. Compared with shallow models
which use a simple lookup table as the encoder function, deep models usually use deep neural networks
as the encoder. For example, SDNE (Wang et al., 2016) and DNGR (Cao et al., 2016) use deep neural
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networks as the encoder and decoder functions to generate low-dimensional representations. GAE and
VGAE (Kipf and Welling, 2016b) aggregate neighborhood messages based on convolutional encoders,
e.g., graph convolutional networks (GCN) (Kipf and Welling, 2016a) and its variants, to generate node
embeddings. The encoders share parameters across nodes and it leads to better efficiency. Note that GCN
variants like GraphSAGE (Hamilton et al., 2017a) and GAT (Veličković et al., 2017) are not discussed
as they mostly focus on message passing which is not the main focus of this work.

Another successful variant of graph autoencoders incorporates the generative adversarial networks
(GAN) for representation learning. For example, ARGA and ARVGA (Pan et al., 2018) enforce the latent
node embeddings to match a prior normal distribution based on an adversarial training mechanism. The
adversarial training procedure usually provides regularization and results in more robust and meaningful
representations (Makhzani et al., 2015). DBGAN (Zheng et al., 2020) estimates the prior distribution of
latent representations by prototype learning and aims to balance both sample-level and distribution-level
consistency via a novel bidirectional adversarial learning framework.

A common theme among most of the aforementioned approaches is that they do not explicitly consider
the semantic relatedness between nodes. For shallow models like DeepWalk (Perozzi et al., 2014),
they mostly only focus on preserving the topological structure of the network while neglecting the rich
information in node content. For deep models, they implicitly incorporate node content by aggregating
neighborhood node features using powerful encoders like graph convolutional networks.

In this paper, we propose a novel network embedding method based on multiview graph convolutional
network and adversarial regularization. The method aims to preserve the distribution consistency across
two views of the network, as well as shape the output representations to match an arbitrary prior distri-
bution, by incorporating a multiview adversarial regularization module. More specifically, we regard the
topological structure as the first and main view of the network, and create a second view that captures the
relatedness between nodes based on node content. Different from DBGAN (Zheng et al., 2020) which
tries to reconstruct the node features directly, the proposed method relaxes this requirement and focuses
on preserving the semantic relatedness between them. A multiview reconstruction loss function is lever-
aged to optimize the model jointly. We evaluate the proposed method on three diverse applications. The
experimental results on benchmark datasets demonstrate that the method outperforms the state-of-the-art
algorithms in link prediction and node clustering. We also evaluate our method on a real-world down-
stream application, i.e., ICU readmission prediction, and the method compares favorably with several
baseline methods. Our contributions can be summarized as follows:

• We propose a novel network embedding method, i.e., Multiview Adversarially Regularized Graph
Autoencoder (MRGAE). Unlike previous studies that either neglect node content or aim to recon-
struct the entire node feature matrix, we focus on the semantic relatedness between nodes and aim
to preserve the consistency of node presentations across two specific views of the network. We
incorporate a multiview adversarial regularization module to achieve the objective and enforce the
output representations to match a prior distribution.

• We conduct extensive and diverse experiments for evaluation. The experimental studies demonstrate
the superb performance of our method, by updating the state-of-the-art results in link prediction and
node clustering on benchmark datasets. Our method also compares favorably with baselines in the
task of ICU readmission prediction.

2 Methodology

2.1 Preliminaries

2.1.1 Graph Convolutional Networks
Most recent graph neural network models usually use a common architecture, i.e., graph convolutional
networks (GCN) (Kipf and Welling, 2016a), to encode the input networks. Essentially, graph convolu-
tional networks transform the original graph or network into a lower-dimensional representation matrix
Z, given the adjacency matrix A and the feature matrix X as the input. Each of the transformations can
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Figure 1: Architecture of MRGAE.

be written as a non-linear convolution function:

H(l+1) = f(H(l),A) (1)

where H(0) = X which is the input feature matrix, and H(l) refers to the output representation matrix
(i.e., embeddings) Z(l) for the l-th layer convolutional neural network. Essentially, different types of
the convolution function f usually correspond to variants of the GCN model. The standard convolution
function can be written as:

Z(l+1) = H(l+1) = f(H(l),A) = σ(D̂−
1
2 ÂD̂

1
2H(l)W(l)) (2)

where Â = A+ I, and I is the identity matrix of A. D̂ is the diagonal degree matrix of Â, and W(l) is
the weight matrix for the l-th layer neural network, which is also the parameter to optimize. We use the
ReLU function as the activation function σ in this paper, and adopt a two-layer GCN as the encoder for
all the experiments.

2.1.2 Adversarial Regularization
Adversarial regularization has proven effective in various network representation learning approaches
(Makhzani et al., 2015; Pan et al., 2018; Dai et al., 2018). Generally, in the encoder-decoder framework,
one can view the encoder as a generator, and incorporate a discriminator (e.g., a multi-layer perceptron)
to distinguish whether a latent representation is from the encoder or from an arbitrary prior distribution.
By incorporating this module, one can shape the learned representations to match an arbitrary prior
distribution, e.g., Gaussian distribution. This is similar in spirit to VGAE, which uses KL divergence
instead of adversarial training to achieve the same purpose (Makhzani et al., 2015). In this work, we
extend the adversarial regularization module to a multiview scenario, where we aim to enforce the learned
representations from the two views to be distribution consistent and to match a prior distribution.

2.2 MRGAE
2.2.1 Overview
The overall framework of the proposed method contains three main parts, as depicted in Figure 1. First,
we consider the topological structure as the first and main view of the input network, and create a second
view of it. Next, we use two graph convolutional networks (GCN) as the encoders to separately encode
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the two views of the input network. Then, we incorporate two discriminators, one to distinguish between
the representations from the main view and the prior distribution, the other to distinguish between the
representations from the two views. In this paper, we use the Gaussian distribution as the prior distribu-
tion since the Gaussian assumption has been widely adopted in various previous studies (Makhzani et al.,
2015; Kipf and Welling, 2016b; Pan et al., 2018). Finally, we design a specific multiview reconstruction
loss function, combine it with the two discriminators, and optimize the model jointly.

2.2.2 Notations
Given the undirected input network G = (V,E), we regard it as the first view G1 and create a second
view G2 from it. Specifically, we denote the two views of the network G as G1 = (V,E1) and G2 =
(V,E2), respectively. Note that we have E1 = E. Each view Gi(i = 1, 2) has the same node set V with
N nodes (N = |V |) and a different set of edges Ei. Each view has its own adjacency matrix Ai and
degree matrix Di. We further introduce a N ×D feature matrix X for V , where each row corresponds
to the input features of D dimensions for each node. For featureless networks, we use the identity matrix
as a replacement for X. The goal is to learn a unified representation matrix Z for the nodes.

2.2.3 Second View Construction
We aim to construct a second view G2 = (V,E2) of the network that captures the semantic relatedness
between nodes. To defineE2, we adopt a straightforward strategy to calculate cosine similarities between
node content. Essentially, if the cosine similarity between two nodes is greater than a threshold αprox,
then we create a link between them in the second view.

2.2.4 Encoder-Decoder Framework
In this paper, we follow the generalized encoder-decoder framework (Hamilton et al., 2017b) for learning
network representations. More specifically, we adopt two-layer GCNs as the encoders, and each of them
encodes one single view of the input multiview network. Essentially, the encoder model transforms the
nodes in the network into low-dimensional feature representations (i.e., embeddings), and this encoding
process can be written as:

Zi = ENC(X,Ai) = GCN(X,Ai) (3)

where Zi refers to the representation matrix learned from the i-th view Gi. Along with Equation 2, the
encoding process can then be further explained as:

Z
(0)
i = X (4)

Z
(1)
i = ReLU(D̂

− 1
2

i ÂiD̂
1
2
i XWi

(0)) (5)

Z
(2)
i = D̂

− 1
2

i ÂiD̂
1
2
i Z

(1)
i Wi

(1) (6)

where Âi and D̂i refer to the adjacency matrix and degree matrix of the i-th view Gi, respectively.
Similarly, Wi

(l) represents the parameter matrix for the l-th layer graph convolutional network with Gi.
Thus, in general this encoding process with Equation 3 can be written as:

Zi = ENC(X,Ai) = q(Zi|X, Âi) = Z
(2)
i (7)

With regard to the decoder model, essentially it decodes the learned low-dimensional representations,
and transforms them into some information that can be evaluated in some way, for example, the existence
of edges between nodes or label predictions on specific downstream tasks. The evaluations are a good
way to measure the quality of the learned representations of nodes. In this paper, we use a simple yet
effective pair-wise inner-product decoder to reconstruct the edges of the original network, which is shown
as follows:

DEC(zp, zq) = zp
>zq (8)

The inner-product decoder model aims to reconstruct the edge set between nodes in the input network,
where the reconstructed edge set should be as similar as the original one. In our case, the reconstruction
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loss is calculated based on each of the views, i.e., the decoder aims to reconstruct each view from the
learned representations from that view, respectively. The decoding process is shown as follows:

p(Âi|Zi) =

N∏
p=1

N∏
q=1

p((Âi)pq|zip, ziq) (9)

p((Âi)pq = 1|zip, ziq) = σs(DEC(zip, ziq))

= σs(zip>ziq)
(10)

where (Âi)pq refers to the edges between nodes, and σs here is the logistic sigmoid function.

2.2.5 Multiview Adversarial Regularization
The intuition is that we want the latent embeddings learned from different views are consistent, i.e., the
same nodes from different views are close in the embedding space, and the learned latent embeddings
from different views fit a similar distribution. Thus, we propose the loss function should be in the
following form:

L =
2∑

i=1

(αiEq(Zi|X,Âi)
[− log p(Âi|Zi)]) + S (11)

where αi are the balancing coefficients. Intuitively, the first term corresponds to the addition of the
individual reconstruction loss from each view. The second term S is the term that models the consistency
across different views, and the specific methods differ in how this term is chosen and parameterized.

We then introduce a multiview reconstruction loss (MRL) function:

Lmrl =
2∑

i=1

(αiEq(Zi|X,Âi)
[− log p(Âi|Zi)]) + βEZ1∼q(X,Â1),Z2∼q(X,Â2)

[− log p(Â1|Z1,Z2)] (12)

where the first term refers to the addition of the individual reconstruction loss from each view, and
the second term is the loss of reconstructing the graph structure of the main view G1 with the en-
coded representations from both views, i.e., Z1 and Z2. Here instead of only adding the individual
reconstruction loss together, we use the encoded representations from both views to jointly recon-
struct the main structure, thus achieving better consistency and robustness. More specifically, we have
p((Â1)pq = 1|z1p, z2q) = σs(z1p>z2q).

Unlike previous work, we incorporate two discriminators, namely the normal discriminatorDn and the
view discriminator Dv, to distinguish between the representations from the main view and the Gaussian
distribution, and to distinguish between the representations from the two views, as depicted in Figure 1.
We share weights between them. The adversarial loss for the two discriminators is defined as:

Ladv =− (EZn∼N [logDn(Zn)] + Ex∼p(x)[1−Dn(G1(X,A1))])

− (Ex∼p(x)[logDv(G1(X,A1))] + Ex∼p(x)[1−Dv(G2(X,A2))])
(13)

where G1 and G2 refer to the two GCN encoders, respectively. And finally, we use a weighted sum of the
above losses:

L1 = Lmrl + γLadv + Lreg (14)

where Lreg is a regularization term and we have Lreg = EZ1∼q(X,Â1)
[− logDn(Z1)]. We then jointly

train the model by minimizing L1, and finally take the encoded representations from the main view, i.e.,
Z1, as the output representations.

3 Experiments

In this section, we evaluate our proposed method based on three tasks. First, we conduct the experiment
of link prediction on the benchmark dataset of three citation networks. We also report the experiment
of node clustering on these networks. Finally, we apply the proposed method to a real-world medical
application, i.e., 30-day unplanned ICU readmission prediction.1

1All datasets are freely available and the code is available at https://github.com/qiuhaolu/MRGAE.
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Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC 84.6± 0.01 88.5± 0.00 80.5± 0.01 85.0± 0.01 84.2± 0.02 87.8± 0.01
DW 83.1± 0.01 85.0± 0.00 80.5± 0.02 83.6± 0.01 84.2± 0.00 84.1± 0.00

GAE 91.0± 0.02 92.0± 0.03 89.5± 0.04 89.9± 0.05 96.4± 0.00 96.5± 0.00
VGAE 91.4± 0.01 92.6± 0.01 90.8± 0.02 92.0± 0.02 94.4± 0.02 94.7± 0.02

ARGA 92.4± 0.003 93.2± 0.003 91.9± 0.003 93.0± 0.003 96.8± 0.001 97.1± 0.001
ARVGA 92.4± 0.004 92.6± 0.004 92.4± 0.003 93.0± 0.003 96.5± 0.001 96.8± 0.001

MRGAE 94.0± 0.7 94.1± 0.6 94.3± 0.4 94.9± 0.8 97.2± 0.2 97.4± 0.3

DBGAN 94.5± 0.01 95.1± 0.05 94.5± 0.04 95.8± 0.01 96.8± 0.01 97.3± 0.02

MRGAE* 95.0± 0.3 95.2± 0.4 95.7± 0.5 96.4± 0.4 97.8± 0.1 97.8± 0.2

Table 1: Performance comparison on link prediction.

3.1 Link Prediction

Link prediction is a popular task in evaluating network embedding methods. Essentially, a small portion
of the edges are removed for generating the validation and test sets, and the same number of pairs of
unconnected nodes are randomly picked as negative samples. The goal of the task is to predict whether
or not there exists an edge between two nodes.

3.1.1 Dataset and Second View Construction
We conduct the experiment on three popular citations networks, i.e., Cora, Citeseer and Pubmed (Sen
et al., 2008). The nodes represent scientific publications from different areas, and the edges represent
the citation links between them. The nodes are represented with feature vectors, which are described by
0/1-valued word vectors indicating the absence/presence of the corresponding word (Cora and Citeseer)
or tf-idf weighted word vectors (Pubmed). Each node has a corresponding class label.

In this experiment, we take the original edge set of the input network, i.e., the citation links, as the
first and main view. We construct the second view based on textual similarities. Essentially, if the cosine
similarity between two publications is greater than the empirical threshold 0.7, then we create a link
between them in the second view.

3.1.2 Baselines
We compare the proposed method with several baseline methods: Spectral Clustering (SC) (Tang and
Liu, 2011), Deepwalk (DW), Graph Autoencoder (GAE), Variational Graph Autoencoder (VGAE), Ad-
versarially Regularized Graph Autoencoder (ARGA), Adversarially Regularized Variational Graph Au-
toencoder (ARVGA) and DBGAN (Zheng et al., 2020).

3.1.3 Experiment Settings
For all the experiments, we split each of the datasets into the training set (85%), the validation set (5%),
and the test set (10%). To reduce the influence of randomness, we average the results over five randomly
selected splits as in (Zheng et al., 2020).

We use the same set of hyperparameters for the GCN encoder with the baselines (Kipf and Welling,
2016b; Pan et al., 2018; Zheng et al., 2020). More specifically, we use a 32-dim hidden layer and 16-
dim latent representations for the GCN encoder in the link prediction task. We also use two multi-layer
perceptrons (MLP) as the discriminators, each of which consists of two 128-dim hidden layers. We set
the balancing factors α1, α2, γ to 1.0, and set β to 0.8 in all experiments. The performance of our method
is recorded as MRGAE in Table 1.

Note that DBGAN uses a larger embedding size in their experiments. For a fair comparison, we also
set the representation size to 32-dim (Cora) and 64-dim (Citeseer and Pubmed), the results of which are
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Method Acc NMI F1 Prec ARI

SC 0.367 0.127 0.318 0.193 0.031
DW 0.484 0.327 0.392 0.361 0.243

RTM 0.440 0.230 0.307 0.332 0.169
RMSC 0.407 0.255 0.331 0.227 0.090
TADW 0.560 0.441 0.481 0.396 0.332

GAE 0.596 0.429 0.595 0.596 0.347
VGAE 0.609 0.436 0.609 0.609 0.346

ARGA 0.640 0.449 0.619 0.646 0.352
ARVGA 0.638 0.450 0.627 0.624 0.374

MRGAE 0.703 0.523 0.681 0.716 0.476

GALA 0.745 0.576 – – 0.531
DBGAN 0.748 0.560 – – 0.540

MRGAE* 0.764 0.559 0.740 0.742 0.570

Method Acc NMI F1 Prec ARI

SC 0.239 0.056 0.299 0.179 0.010
DW 0.337 0.088 0.270 0.248 0.092

RTM 0.451 0.239 0.342 0.349 0.203
RMSC 0.295 0.139 0.320 0.204 0.049
TADW 0.455 0.291 0.414 0.312 0.228

GAE 0.408 0.176 0.372 0.418 0.124
VGAE 0.344 0.156 0.308 0.349 0.093

ARGA 0.573 0.350 0.546 0.573 0.341
ARVGA 0.544 0.261 0.529 0.549 0.245

MRGAE 0.627 0.361 0.587 0.601 0.363

GALA 0.693 0.441 – – 0.446
DBGAN 0.670 0.407 – – 0.414

MRGAE* 0.671 0.403 0.620 0.620 0.418

Table 2: Node clustering performance on Cora (left) and Citeseer (right).

recorded as MRGAE*.

3.1.4 Results
We use the same evaluation metrics with the previous work, i.e., area under the Receiver Operating
Characteristics curve (AUC) and average precision (AP) scores.

As shown in Table 1, the proposed method (MRGAE) achieves the best performance on all three
citation networks, outperforming the state-of-the-art method, i.e., DBGAN, indicating the effectiveness
of exploiting node content by incorporating multiview adversarial regularization.

3.2 Node Clustering
In this experiment, we consider another unsupervised task of clustering nodes in the network. We first
compute the embeddings of Cora and Citeseer and perform K-means clustering on them, where K is set
to be the number of node classes in each network. Then we follow the same procedure of previous work
(Shi et al., 2019; Xia et al., 2014; Pan et al., 2018) and match the predicted class labels with the ground-
true labels using the Munkres assignment algorithm (Munkres, 1957). The results are evaluated based on
accuracy (Acc), normalized mutual information (NMI), precision (Prec), F-score (F1) and average rand
index (ARI).

3.2.1 Baselines
Except for the baselines we use in the link prediction task, we include four more baseline algorithms
which are designed for clustering: RTM (Chang and Blei, 2009), RMSC (Xia et al., 2014), TADW
(Yang et al., 2015), and GALA (Park et al., 2019).

3.2.2 Results
For a fair comparison, we first set the size of the output representations to 16-dim and record the results
as MRGAE, and since GALA and DBGAN only report high dimensional performance, we then report
the performance of our method with the same dimensions with DBGAN (i.e., 128-dim for Cora, 64-dim
for Citeseer) and record the result as MRGAE*.

As shown in Table 2, our proposed method MRGAE outperforms the other methods on both datasets
across all metrics. For the Cora dataset, the proposed method MRGAE* shows superior performance to
GALA and DBGAN in almost all metrics except NMI. For the Citeseer dataset, MRGAE* and DBGAN
perform similarly well while GALA gives the best results. It is mainly because GALA uses a 500-dim
node representation which is much larger than DBGAN and MRGAE*.
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Method
Link Prediction Node Clustering

AUC AP Acc NMI F1 Prec ARI

w/o Dv 93.8 94.4 0.748 0.540 0.732 0.744 0.526
w/o MRL 94.0 94.1 0.706 0.527 0.686 0.712 0.496
w/o both 92.9 93.2 0.643 0.482 0.645 0.664 0.397

MRGAE 94.4 94.7 0.764 0.559 0.740 0.742 0.570

Table 3: Effectiveness evaluation of Dv and MRL.

3.3 Ablation Study

In this section, we validate the effectiveness of the multiview adversarial regularization module in our
proposed method. We conduct the ablation experiments on both link prediction and node clustering tasks
with the Cora dataset.

We first remove the view discriminatorDv. By removing this part, the proposed method loses the abil-
ity to preserve the distribution consistency across the two specific views. We then remove the multiview
reconstruction loss (MRL) and replace it with a simple GAE-based reconstruction loss. By removing
this, the method losses rich information from the generated second view. Finally we remove both parts.
The three ablated methods are recorded as “w/o Dv”, “w/o MRL” and “w/o both”, respectively.

As shown in Table 3, removing either part would cause performance decrease on both link prediction
and node clustering tasks, indicating the effectiveness and necessity ofDv and MRL. The ablated method
“w/o both” shows the biggest performance decrease, which consistently validates the claim.

3.4 30-day Unplanned ICU Patient Readmission Prediction

In real-world networks, node content usually carries rich and important information for downstream
applications, which highlights the practical value of the proposed method. Therefore, to better evaluate,
we apply our method to a real-world application, i.e., unplanned ICU patient readmission prediction, to
test if any performance gain can be achieved, compared with several baseline embedding methods.

We conduct this experiment based on Lin et al.’s work (Lin et al., 2018), which leverages the embed-
dings of medical concepts (in the form of ICD-9 codes) in their method and achieves the state-of-the-art
performance. According to their claim, incorporating embeddings of medical concepts can benefit the
prediction performance greatly. In this experiment, we test the 30-day unplanned ICU patient readmis-
sion prediction performance with different network embeddings for the ICD-9 ontology.

3.4.1 Dataset and Second View Construction

In this experiment, we follow the data preprocessing procedure of previous work (Harutyunyan et al.,
2017; Lin et al., 2018; Lu et al., 2019), and generate a dataset of 48, 410 ICU stay records out of the
freely available MIMIC-III database (Johnson et al., 2016). The task is to predict whether or not a patient
in an ICU stay will be readmitted within 30 days after discharge.

We take the transitive closure of ICD-9 as the first and main view. We first transform the short textual
descriptions of nodes into one-hot representations, and compute the cosine similarities between them.
If the cosine similarity between two nodes is greater than an empirical threshold 0.7, we create a link
between them in the second view of ICD-9.

3.4.2 Baselines

Apart from the baselines used in the link prediction and node clustering task, we add one more strong
baseline method, i.e., Poincaré (Nickel and Kiela, 2017), as the Poincaré method proves to be particularly
effective in embedding hierarchical data, such as the ICD-9 ontology.
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Method Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.7223 0.9035 0.3740 0.7361 0.6655 0.7786 0.4827

GAE 0.7052 0.9061 0.3597 0.7089 0.6901 0.7712 0.4588

VGAE 0.7042 0.9007 0.3554 0.7127 0.6684 0.7653 0.4444

ARGA 0.7075 0.9126 0.3654 0.7057 0.7150 0.7757 0.4593

ARVGA 0.6966 0.9056 0.3518 0.6973 0.6934 0.7693 0.4519

MRGAE 0.7094 0.9157 0.3687 0.7055 0.7259 0.7807 0.4770
*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 4: Performance on 30-day unplanned ICU patient readmission prediction.

3.4.3 Experiment Settings
We use the same metrics with Lin et al.’s work (Lin et al., 2018). The area under the Receiver Operating
Characteristics curve (AUC or A.R) is the main metric for evaluation. The recall rate of positive cases
(Re-1), i.e., sensitivity, is also important in screening real patients. Additional metrics are reported, but
they can be unstable and better be used for additional evaluation. Lin et al. use the embeddings for
ICD-9 codes as part of their input. We replace the embeddings for ICD-9 with different methods.

3.4.4 Results
As shown in Table 4, our proposed method achieves the best AUC score of 0.7807 with the highest
sensitivity score of 0.7259. It is worth mentioning that the best reported AUC of Lin et al. is 0.791, but
this is unfair to compare with since all the embeddings in the table are trained from the ICD-9 only, while
the Claims embeddings (Choi et al., 2016) they use are trained from millions of textual data.

4 Related Work

Recently, researchers use specifically designed encoders to aggregate the local neighborhood information
of nodes, to generate low-dimensional embeddings. For example, GAE and VGAE (Kipf and Welling,
2016b) are two methods that use graph convolution networks (GCN) (Kipf and Welling, 2016a) as the
encoder. VGAE uses the Gaussian distribution as a prior and pushes the learned representations close
to this prior by incorporating a KL divergence penalty. ARGA and ARVGA incorporate an adversarial
regularization framework for the same purpose, which is essentially similar in spirit to VGAE. Actually,
incorporating adversarial regularization terms and matching the latent representations to a prior distri-
bution are particularly useful for generating robust and meaningful representations when dealing with
real-world complex graph data, which is first proposed by Adversarial Autoencoder (AAE) (Makhzani
et al., 2015). We extend the adversarial regularization framework to a multiview scenario where the dis-
tribution consistency across graph space and node content space are to be preserved. But unlike previous
methods like DBGAN (Zheng et al., 2020) and DANE (Gao and Huang, 2018) which aim to reconstruct
the node content directly, we focus on the semantic relatedness among them.

5 Conclusion

In this study, we propose a novel network embedding method, i.e., MRGAE, which models the consis-
tency of node representations across two specific views of networks. To achieve this, we incorporate a
multiview adversarial regularization module and specifically design a loss function for joint optimiza-
tion. We conduct extensive and diverse experiments for evaluation, and the results demonstrate the superb
performance of the proposed method.
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