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Abstract

Keyphrases in a research paper succinctly capture the primary content of the paper and also assist
in indexing the paper at a concept level. Given the huge rate at which scientific papers are pub-
lished today, it is important to have effective ways of automatically extracting keyphrases from a
research paper. In this paper, we present a novel method, Syntax and Semantics Aware Keyphrase
Extraction (SaSAKE), to extract keyphrases from research papers. It uses a transformer archi-
tecture, stacking up sentence encoders to incorporate sequential information, and graph encoders
to incorporate syntactic and semantic dependency graph information. Incorporation of these de-
pendency graphs helps to alleviate long-range dependency problems and identify the boundaries
of multi-word keyphrases effectively. Experimental results on three benchmark datasets show
that our proposed method SaSAKE achieves state-of-the-art performance in keyphrase extrac-
tion from scientific papers.

1 Introduction

Keyphrases are words or phrases that capture important concepts of a document. The task of keyphrase
extraction, i.e., automatically extracting a collection of keyphrases from a document, has attracted con-
siderable attention from the research community due to its pivotal importance in various applications
like text document retrieval (Jones and Staveley, 1999; Sanyal et al., 2019), document categorization
(Hulth and Megyesi, 2006; Hammouda et al., 2005), opinion mining (Berend, 2011) and summarization
(Qazvinian et al., 2010; Zhang et al., 2004). Keyphrase extraction from research papers is especially
important due to their ability to concisely capture the main tenets of the complex scholarly documents.
Although it is common for authors to specify keyphrases in research papers, they are not present in all
publications. In these cases, it is beneficial to automatically infer the most relevant keyphrases.

Traditional methods for keyphrase extraction follow a two-step procedure where important phrases
from the document are extracted as potential keyphrase candidates by heuristic rules (Medelyan et al.,
2009; Witten et al., 2005; Le et al., 2016), and then the extracted candidate phrases are ranked either
by unsupervised approaches (Bougouin et al., 2013; Erkan and Radev, 2004; Le et al., 2016; Mihalcea
and Tarau, 2004) or supervised approaches (Medelyan et al., 2009; Witten et al., 2005). They typically
label each candidate phrase independently without taking into account the dependencies that could po-
tentially exist between neighbouring labels, and they also ignore the semantic meaning of the text. To
overcome the above stated limitation, recently (Gollapalli et al., 2017) formulated keyphrase extraction
as a sequence labeling task and used linear-chain Conditional Random Fields for this task. However,
this approach does not explicitly take into account the long-term dependencies and semantics of the text.
More recently, to capture both the semantics of the text as well as the dependencies among the labels
of neighboring words, (Alzaidy et al., 2019) used a deep learning-based approach called BiLSTM-CRF
that combines a bi-directional Long Short-Term Memory (BiLSTM) layer, which models the sequential
input text, with a Conditional Random Field (CRF) layer, which captures the dependencies in the output.

This work is licensed under a Creative Commons Attribution 4.0 International License. License de-
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While the above models are promising, they still suffer from some limitations which we address in this
work. For example, consider the sentence in Fig.1. The previous models (Santosh et al., 2020; Alzaidy
et al., 2019; Gollapalli et al., 2017) fail to recognize “recurrent Elman neural network” as a keyphrase.
This can be attributed to two reasons. Firstly, due to the long-range dependency between the words “we”,
“extracted” and “network”, the model fails to understand the importance of the phrase with respect to
the sentence. Secondly, due to their inability to detect the boundaries of phrase accurately, they fail to
predict multi-word keyphrases correctly.

We notice long-range dependencies such as those illustrated in the first limitation are shortened in
semantic dependency graphs in which nodes represent words and edges represent semantic relations
between the words, thereby representing predicate-argument relations between content words in a sen-
tence. In Fig.1, lower pink edges show the semantic dependency graph using DM (DELPH-IN Minimal
Recursion Semantics) representation schema (Ivanova et al., 2012) shortening the distance between those
long-range dependencies. These properties of a semantic dependency graph allow neural network models
to capture long-range semantic dependencies effortlessly (Ivanova et al., 2012). To address the second
limitation, we posit that syntactic dependency graphs in which nodes represent words and edges represent
syntactic relations between the words provide the ability to find the boundaries of keyphrases accurately.
In Fig.1, the upper red arrows indicate the syntactic dependency relations among words, providing the
ability to recognize the boundaries of the keyphrase “recurrent Elman neural network” with the help of
the syntactic labels that act as important cues to identify such multi-word keyphrases in the sentence.
Though historically, feature based approaches (Nguyen and Kan, 2007; Kim and Kan, 2009) did rely
on syntactic and semantic dependency information to extract various features, the latest generation of
keyphrase extraction models put syntax and semantics aside in favour of neural sequence models which
outperformed syntactically-driven feature engineering methods. We believe that one of the reasons for
this choice is the lack of simple and effective methods to incorporate syntactic and semantic dependency
information into sequential neural networks.

In this paper, we propose SaSAKE, an acronym for Syntax and Semantic Aware Keyphrase Extraction
from research papers based on transformer architecture (Vaswani et al., 2017) which stacks up sentence
encoders to incorporate sequential information and graph encoders to incorporate syntactic and semantic
dependency graph information. Firstly, the sentence encoder reads the sentence producing context-level
representations for each word through multi-head self-attention mechanism that is then fed as input to
both the syntactic and the semantic graph encoders along with their corresponding dependency graphs.
Then the semantic (syntactic) graph encoder captures the semantic (syntactic) relations among words and
enhances the context-level representations incorporating semantic (syntactic) dependency information to
produce semantics (syntax)-aware representations. We adopt a multi-head graph attention mechanism in
graph encoders to aggregate the information of the relation triples (head, type, tail) into the corresponding
head and tail nodes to construct a semantics/syntax-aware representation. However, the propagation of
semantic and syntactic relations from distant nodes may introduce noise into the representations. So,
we employ an aggregation layer that balances the influence of the local contextual information and the
additional information obtained from the syntactic and the semantic relations, thereby producing more
balanced final representations for each word that are then passed to a CRF layer which models the
dependencies among the labels for prediction. Experimental results on three datasets of research papers
show that SaSAKE outperforms previous state-of-the-art approaches for keyphrase extraction.

2 Related Work

Keyphrase extraction has been an active area of research since two decades (Frank et al., 1999). Un-
supervised approaches score the extracted potential candidate phrases based on graph-based ranking
algorithms (Page et al., 1999) wherein each word in the document is mapped to a node in the graph and
the connecting edges in the graph represent the association patterns among the words in the document.
Then, the scores of the individual words are estimated using various graph centrality measures and a
combination of other heuristic rules based on tf-idf scores, word co-occurrence measures, extraction of
specific lexical patterns and clustering. Such methods include TextRank (Mihalcea and Tarau, 2004),
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Figure 1: An example sentence from KP20K dataset annotated with syntactic and semantic dependency
graphs. The upper red and lower pink dependency edges represent the syntactic and the semantic rela-
tions, respectively. Other dependency edges are omitted from display.

LexRank (Erkan and Radev, 2004), TopicRank (Bougouin et al., 2013), SGRank (Danesh et al., 2015)
and SingleRank (Wan and Xiao, 2008). On the other hand, supervised approaches use binary classifica-
tion to label the extracted candidate phrases as keyphrases or non-keyphrases based on textual features
such as term frequencies (Hulth and Megyesi, 2006) and syntactic properties (Nguyen and Kan, 2007).
Additionally, (Caragea et al., 2014) incorporate external knowledge like document citation context to
mine features.

(Gollapalli et al., 2017) was the first to formulate keyphrase extraction as a sequence labeling task
and used Conditional Random Fields (CRF) on the extracted features. (Alzaidy et al., 2019) integrated
CRF with BiLSTM to capture local contextual information within the sentence. (Sahrawat et al., 2019)
expanded the BiLSTM-CRF approach by using contextualized word embeddings. (Zhou et al., 2020)
proposed a multi-level memory network with CRFs, which represents the memory network with two dif-
ferent levels (i.e., sentence level and document level) to capture the long-range contextual information.
(Santosh et al., 2020) incorporated additional long-range contextual information from the document us-
ing document-level attention mechanism into the BiLSTM-CRF approach. There is another line of work
that deals with generation of keyphrases that are even absent in the document (Meng et al., 2017; Yuan et
al., 2018; Chen et al., 2018; Chen et al., 2019). In the present work, we will focus on keyphrase extrac-
tion. To the best of our knowledge, no existing work has attempted integrating semantic and syntactic
dependency graphs into neural models for keyphrase extraction. We adopt graph neural networks as the
graph encoder to leverage syntactic and semantic dependency graphs.

3 Problem Definition

Given a sentence as the sequence of words X = [x1, x2, · · · , xn] as input, we parse the input sen-
tence X to obtain the syntactic dependency graph G1 = (V1, E1) and the semantic dependency graph
G2 = (V2, E2) using existing tools, where V1, V2 denote the sets of nodes and E1, E2 denote the sets of
edges in the two cases, respectively. Each edge in G1 represents a triple (head, type, tail) where head
∈ V1, tail ∈ V1 and type represents a syntactic relation in {nsubj, nmod, dobj, . . .}. Each edge in G2

represents a triple (head, type, tail) where head ∈ V2, tail ∈ V2 and type represents a semantic relation
{ARG1, ARG2, compound, . . .} as per DM annotation scheme. Keyphrase extraction task is formu-
lated as a sequence labeling task as follows: Given an input sentence X , its syntactic dependency graph
G1 and its semantic dependency graph G2, our aim is to output a sequence y = [y1, y2, . . . , yn] where
each yi is a label from the set {KP,NKP}. Here KP denotes that the word xi is a keyphrase word and
NKP denotes otherwise. Every longest sequence of KP words in a sentence constitutes a keyphrase.

4 Our Approach: SaSAKE

Our proposed approach, SaSAKE consists of the following components: (1) Sentence Encoder (2) Syn-
tactic Graph Encoder (3) Semantic Graph Encoder (4) Aggregation Layer and (5) Label Sequence Pre-
diction Layer. The sentence encoder takes a sequence of words as input to produce a context level
representation of the words. Then the syntactic and semantic graph encoders work in parallel taking the
context level representation of the words along with the syntactic and the semantic dependency graphs
to produce syntax-aware and semantics-aware representation of the words, respectively. The aggregation
layer combines the obtained syntax-aware and semantics-aware representations; it also helps to mitigate
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the influence of the distant supporting information as we believe that the prediction should be based pri-
marily on the local context. Finally, the above representations are fed into a CRF layer which acts as a
decoder to predict the label, KP or NKP, associated with each word.

4.1 Sentence Encoder
We build the sentence encoder using the transformer architecture (Vaswani et al., 2017). It produces
context-level representation of words of the input sentence X . It is composed of a stack of N1 identical
layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism and the second is
a fully connected feed-forward network. A transformer contains no recurrence or convolution. Therefore,
to obtain input representations that use the order of the sequence, we add positional encoding to the
learned input embeddings of the first layer l0i = ei + pi where pi, ei denote the positional encoding and
the input embedding, respectively, corresponding to the ith word in the input sequence xi.

Each multi-head self-attention sub-layer allows the model to jointly attend to information from differ-
ent representation subspaces at different positions, which is calculated with the help of multiple heads.
For each head, we initially project them and then apply scaled dot-product attention to the queries of
dimension dk, keys of dimension dk and values of dimension dv by computing the dot products of the
query with all keys, then dividing each by

√
dk and finally, applying the softmax function to obtain the

weights on the values.

MultiHeadS(Q,K, V ) = Concat(head1, . . . , headM )WO (1)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ) (2)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

where WQ
i ,W

K
i ,W

V
i and WO represent trainable matrices for projection and M is a hyperparameter

denoting the number of heads. In the fully connected feed-forward network sub-layer, it consists of two
linear transformations with a ReLU activation in between.

FFN(x) = max(0, yW1 + b1)W2 + b2 (4)

where W1,W2 represent trainable matrices and b1, b2 represent trainable bias vectors. We employ a
residual connection (He et al., 2016) around each of the two sub-layers, followed by layer normalization
(Lei Ba et al., 2016). That is, the output of each sub-layer is LayerNorm(x + Sublayer(x)), where
Sublayer(x) is the function implemented by the sub-layer itself.

Summarizing, the sentence encoder for the kth layer works as follows:

t = LayerNorm(lk−1 +MultiHeadS(lk−1, lk−1, lk−1)) lk = LayerNorm(t+ FFN(t)) (5)

where k ∈ [1, N1], and the final contextual-level representations lN1 are fed into the semantic and the
syntactic graph encoders in parallel.

4.2 Syntactic & Semantic Graph Encoder
We will describe syntactic graph encoder in brief. The semantic graph encoder is exactly identical to
it with the only difference being the consideration of the semantic dependency graph in place of the
syntactic dependency graph. A syntactic graph encoder takes context-level representations along with
syntax dependency graphs as input to produce syntax-aware representations. It is composed of a stack of
N2 identical layers. Each layer has two sub-layers. The first is a multi-head graph-attention mechanism
and the second is a fully connected feed-forward network. We also employ a residual connection around
each of the two sub-layers, followed by layer normalization as previously done in sentence encoder. We
initialize the input of each node to the first multi-head graph attention layer with contextual representation
obtained from sentence encoder.

As in sentence encoder, we calculate multi-head graph attention by jointly attending to information
from different representations from different heads. For calculating each head representation, we use



5376

graph attention mechanism proposed by (Veličković et al., 2017) to incorporate the information obtained
from syntactic dependency graph which is directed and also contains labels. For each relation triple
(head,type,tail), we obtain the representation of the head and the tail by concatenating the node repre-
sentations of the head hhead, the tail htail and the learnable type representation htype, and then pass it
through a linear transformation followed by a nonlinear activation function as follows.

ghead = ReLU((hhead, htype, htail)W1 + b1) (6)

gtail = ReLU((hhead, htype, htail)W2 + b2) (7)

whereW1,W2 are trainable weight matrices and b1, b2 are trainable vectors. We obtain the representation
of head and tail using above mentioned method for every relation. Then we aggregate the information
for each node considering all the representations obtained using the semantic relations in the graph
corresponding to that node. Initially we calculate the attentive weight αij of each representation gi
corresponding to node hj obtained as follows

αij =
exp((giWK)T (hjW

Q))∑
r∈N(j) exp((grWk)T (hjWQ))

(8)

where WK ,WQ are trainable matrices and N(j) represents nodes in the neighbourhood of node j whose
node representation is hj . Finally we obtain the updated representation h∗j of node hj using attention
mechanism as follows.

h∗j =
∑

i∈N(j)

αijhiW
V (9)

where W V represents trainable matrix. Similar to sentence encoder, we concatenate several representa-
tions using multi-head operation as follows:

MultiHeadG(hj) = Concat(h∗1j , h
∗2
j , . . . , h

∗3
N ) (10)

where N represents the number of heads and h∗pj represents the output of the graph attention mechanism
obtained by headp.
Summarizing the graph encoder for kth layer which works as follows:

r = LayerNorm(gm−1 +MultiHeadG(gm−1))) gm = LayerNorm(r + FFN(r)) (11)

where m ∈ [1, N2]. Thus we obtain the final syntax-aware representation gN2 . Similarly we obtain
the final semantics-aware representation hN3 through application of a similar graph encoder mechanism
which is composed of a stack of N3 identical layers.

4.3 Aggregation Layer
Through employment of syntactic and semantic graph encoders, syntactic and semantic relation informa-
tion are propagated along the neighbourhood nodes. Such propagation helps to spread the information
mitigating the issue of long-range dependency. But leveraging this additional long distance syntactic
and semantic information has a downside of introducing noise into the representations. To alleviate this
problem, we use a bi-directional LSTM (Hochreiter and Schmidhuber, 1997) that balances the influence
of the local contextual information and the additional information obtained from the syntactic and the
semantic relations. We concatenate the syntax-aware and the semantics-aware representations of each
word and feed it as input to the bi-directional LSTM incorporating the information for the context words
on both the directions where the forward LSTM reads the sequence from x1 to xn and the backward
LSTM reads the sequence from xn to x1, producing final representations b1, b2, . . . , bn corresponding to
the n words in the sentence X .

4.4 Label Sequence Prediction Layer
To model the dependency among the output labels, we use Conditional Random Field (CRF) that treats
the output labels as random variables forming a Markov Random Field conditioned upon the input
b1, b2, . . . , bn obtained from the aggregation layer.
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5 Experiments

5.1 Datasets

We use three publicly available datasets of research papers namely KP20k (Meng et al., 2017), KDD and
WWW (Gollapalli et al., 2017) to evaluate our model. KP20k dataset contains the metadata for 567,830
papers with distinct splits of train, validation, and test sets referred to as KP527K, KP20K-V and KP20K
respectively. In all our experiments, we use KP527K for training, KP20K-V for tuning hyperparameters
and KP20K, KDD and WWW for testing the model. Table 1 presents the detailed statistics of the datasets.

Table 1: Statistics of the dataset

Statistic KP527K KP20k-V KP20K KDD WWW
Number of documents 527,830 20,000 20,000 755 1,330
Number of sentences 4,686,986 176,930 177,278 7,768 12,288
Number of keyphrases 2,806,381 106,181 105,523 3,093 6,405
Number of tokens in keyphrases 5,458,743 205,586 207,073 12,181 6,119

5.2 Implementation Details

We parse the input sentences with state-of-the-art semantic dependency parser (Wang et al., 2018) which
employs a neural transition-based parser, using a variant of list-based arc-eager transition algorithm. We
obtain the syntactic dependency graph using (Dozat and Manning, 2016) which uses BiLSTM-based
approach with biaffine classifiers to predict arcs and labels. In the training stage, we choose the top
50,000 frequent words to form the predefined vocabulary and set the embedding dimension to 768. We
also set the dimensions for hidden states to 768. We set the number of heads for multi-head self-attention
in sentence encoder, multi-head graph attention in syntactic graph encoder and multi-head graph attention
in semantic graph encoder to 4, 8, 8, respectively. We set the number of layers of sentence encoder
N1, syntactic graph encoder N2 and semantic graph encoder N3 to 3, 4 and 4, respectively based on
hyperparameter tuning experiments which are described in later sections. We adopt the Adam optimizer
(Kingma and Ba, 2014) with an initial learning rate of 0.0001 and weight decay ε = 10−4. We also
employ a dropout rate of 0.5 to prevent overfitting.

5.3 Baselines and Evaluation Metrics

We compare SaSAKE with the following baselines: DAKE (Santosh et al., 2020), MLM-CRF (Zhou et
al., 2020), Bi-LSTM-CRF (Alzaidy et al., 2019), CRF (Gollapalli et al., 2017), copy-RNN (Meng et al.,
2017), KEA (Witten et al., 2005), Tf-Idf, TextRank (Mihalcea and Tarau, 2004) and SingleRank (Wan
and Xiao, 2008). Tf-Idf, TextRank and SingleRank are unsupervised extractive approaches while KEA,
Bi-LSTM-CRF, CRF, DAKE, MLM-CRF and SaSAKE follow supervised extractive approach. Copy-
RNN is a generative model based on sequence-to-sequence learning along with a copying mechanism.
Following previous works, we evaluate the predictions of each model against the author-input gold stan-
dard keyphrases and report percentages of Precision, Recall and F1-score. For the unsupervised models
and the sequence-to-sequence learning model, we report the performance at top-5 predicted keyphrases
since top-5 showed highest performance in the previous works for these models.

5.4 Performance Evaluation

Table 2 shows the results of SaSAKE in comparison to various baselines. From Table 2 , we observe that
supervised methods perform better than unsupervised methods. Among supervised methods, we observe
that deep learning-based approaches perform better than the traditional feature-based approaches. This
indicates the importance of understanding the semantics of the text for keyphrase extraction. BiLSTM-
CRF yields better results in terms of the F1-score over CRF indicating that the combination of BiLSTM,
which is effective in capturing the semantics of the textual content, and CRF, which captures the de-
pendencies among the output labels, helped boost the performance in identifying keyphrases. DAKE
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Table 2: Performance of different keyphrase extraction algorithms.

KP20K KDD WWW
Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Tf-Idf 8.97 13.49 10.77 8.90 10.00 9.40 8.30 10.20 9.20
TextRank 15.29 23.01 18.37 5.80 7.10 6.20 5.10 6.50 5.60
SingleRank 8.42 12.70 10.14 8.80 10.90 9.50 7.70 10.30 8.60
KEA 15.14 22.78 18.19 13.57 15.25 13.86 11.39 14.50 12.42
copyRNN 27.71 41.79 33.29 11.47 14.72 12.89 8.59 11.8 9.94
CRF 66.67 10.04 17.46 64.89 22.11 32.98 55.76 18.69 27.99
BiLSTM-CRF 64.19 24.66 35.63 64.33 28.43 39.43 57.83 31.85 41.08
MLM-CRF - - - 37.87 27.71 32.00 32.51 24.17 27.73
DAKE 68.21 30.66 42.30 68.42 31.21 42.86 60.15 33.68 43.18
SaSAKE 70.48 36.23 47.85 71.08 38.58 49.74 65.18 38.22 48.18
SaSAKE–SynSem 65.24 26.38 37.56 65.72 30.27 41.44 58.37 32.08 41.40
SaSAKE–Sem 68.11 32.76 44.24 69.26 35.18 46.64 63.18 36.38 46.17
SaSAKE–Syn 67.86 32.18 43.65 69.42 34.95 46.49 61.95 36.27 45.75
SaSAKE–AL 69.17 35.19 46.64 70.17 37.22 48.64 64.76 37.67 47.63
SaSAKE–CRF 68.66 34.52 45.94 69.88 36.46 47.91 63.83 36.52 46.45

performs better than BiLSTM-CRF approaches demonstrating that additional supporting contextual in-
formation obtained from the document helps in identifying keyphrases by effectively capturing the se-
mantics. We observe that our model, SaSAKE outperforms all the baselines. This can be attributed to
several distinctive features of SaSAKE: (i) the sentence encoder designed using a transformer architec-
ture incorporates contextual representations more effectively; (ii) the syntactic graph encoder helps the
model to identify the boundaries of multi-word phrases effectively; and (iii) the semantic graph encoder
helps the model to capture long-range dependencies effectively. We will study the effect of these factors
in more detail in the following sections.

5.5 Ablation Study

To understand the effectiveness of the architectural components of SaSAKE, we derive five variants of
our model to carry out an ablation study. We derive (i) SaSAKE–SynSem by removing the graph en-
coders at both the syntactic and the semantic levels, (ii) SaSAKE–Syn by removing only the syntactic
graph encoder, (iii) SaSAKE–Sem by removing only the semantic graph encoder, (iv) SaSAKE–AL by
removing aggregation layer (i.e., simply concatenating the representations obtained from syntactic and
semantic graph encoder) (v) SaSAKE-CRF by removing CRF layer and using softmax for prediction.
Table 2 presents the results of our variants. From Table 2, we observe that SaSAKE–SynSem performs
better than BiLSTM-CRF approach demonstrating the superiority of the transformer architecture used
in sentence encoder compared to BiLSTM to capture context-level representations. SaSAKE–Syn and
SaSAKE–Sem perform better than SaSAKE–SynSem showing that the incorporation of semantic and
syntactic dependency information helps to improve the performance by capturing long-range dependen-
cies effectively. Incorporation of syntactic and semantic graph encoder did show improvement but it
is pushed even further when we add the aggregation layer (SaSAKE–AL), which helps to mitigate the
noisy influence of learnt long-range dependencies and helps to refine according to the local context of
each word. When CRF is removed from SaSAKE, we observe that its performance falls showing that the
CRF layer successfully captures the label dependencies.

5.6 Effectiveness of Sentence Encoder

Variants of Sentence Encoder: In this section, we replace our sentence encoder, which is a transformer
with multi-head self-attention, with other encoders, namely, LSTM , Bi-directional LSTM (Hochreiter
and Schmidhuber, 1997) and transformer with single head self-attenion to study the effect of our en-
coder in capturing context-level information. Figure 2a presents the F1-score of these variants on the
three datasets. From Fig. 2a, we observe that BiLSTM performs better than LSTM; it captures the
context information from both the directions unlike only from a single direction in an LSTM. We also
observe that the transformer architecture performs better than the LSTM ones showing the superiority of
transformers in capturing the context effectively. Finally, we observe that the multi-head self-attention
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mechanism performs better than the single-head one, allowing the model to jointly attend to information
from different representation sub-spaces at different positions using multiple heads.
Effects on Number of Layers: In this section, we will study the influence of number of layers in the
sentence encoder on the performance. We report the F1-score on three datasets varying the number of
layers from 1 to 5 in Fig. 2d. From Fig. 2d, we observe that the performance rises till layer 3 in case
of KDD and KP20K dataset and then begins to fall as the number of layers increases. In case of WWW,
it increases till layer 4 and then takes a downward path but the marginal improvement (with respect to
layer) is less; so we have fixed the number of layers in the sentence encoder to three across all datasets.
The performance does not continue to increase due to the incremental complexity and the decreasing
generalization capability of our model with the growing number of layers.

(a) Various encoders for sentence. (b) Various encoders for syntactic de-
pendency graph.

(c) Various encoders for semantic de-
pendency graph.

(d) Number of layers in Sentence En-
coder.

(e) Number of layers in Syntactic
Graph Encoder.

(f) Number of layers in Semantic
Graph Encoder.

Figure 2: Analysis of various components in our model, SaSAKE.

5.7 Effectiveness of Syntactic Graph Encoder
Variants of Syntax Encoder: We study the effectiveness of our syntax graph encoder designed using
graph attention mechanism by comparing it with other syntax encoders like Tree-LSTM (Chen et al.,
2016), GCN (Kipf and Welling, 2016) without incorporation of edge label and direction, and GCN-E
(Marcheggiani and Titov, 2017) which incorporates edge direction information as incoming or outgoing
but no edge labels. From Fig. 2b, we observe that GCN performs better than Tree-LSTM because
GCN considers surrounding nodes whereas Tree-LSTM captures dependencies across unbounded paths
in a tree which may turn out to be noisy for our task of keyphrase extraction. We observe that GCN-E
performs better than GCN demonstrating the importance of edge direction information. Our model which
incorporates the direction as well as label information of the edges using graph attention mechanism
identifies the boundaries of multi-word phrases more effectively.
Effects of Number of Layers: We conduct experiments to study the effect of the number of layers of the
syntactic graph encoder on the performance. Fig. 2e shows the F1-score with 1 to 5 layers on the three
datasets. From Fig. 2e, we observe that the performance of our model on KP20K and WWW dataset
first improves with the increase in the number of encoder layers upto 4 layers and then drops as the
number of layers further increases. On the other hand, we have noticed for the KDD dataset, the curve
took a downward trend from layer 3 but the downfall is not much pronounced in layer 4. So, we have
set the number of layers in the syntactic graph encoder as four for uniformity across datasets. Since the
graph encoder passes information into the local neighborhood of any node, successive operations on the
dependency tree allows it to pass information to the farthest node, and the problem of overfitting takes
effect when the layer count rises beyond a threshold, explaining the curve after layer 4 in the figure.
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The improvements in latency (and area) obtained by Cartesian genetic programming are validated
using a professional FPGA design tool.

BiLSTM-CRF genetic programming
DAKE genetic programming
SaSAKE Cartesian genetic programming

We present a notion of eta-long beta-normal term for the typed lambda calculus with sums and
prove, using Grothendieck logical relations , that every term is equivalent to one in normal form

BiLSTM-CRF lambda calculus
DAKE typed lambda calculus
SaSAKE typed lambda calculus, Grothendieck logical relations

Table 3: Examples of the extracted keyphrases by our approach and other models. Phrases highlighted
in green boxes are gold-standard keyphrases.

5.8 Effectiveness of Semantic Graph Encoder

Variants of Semantic Encoder: We study the effectiveness of our semantic graph encoder by comparing
it with other semantic encoders, namely Tree-LSTM (Chen et al., 2016), GCN (Kipf and Welling, 2016)
and GCN-E (Marcheggiani and Titov, 2017) as described in Sec. 5.7. We observe that our proposed
method which adopts a multi-head graph attention mechanism in a graph encoder to aggregate the infor-
mation of the relation triples (head, type, tail) into the corresponding head and tail nodes to construct a
semantics-aware representation captures long-range dependencies better than the previous approaches.
Effects of Number of Layers: To study the influence of the number of layers in the semantic graph
encoder on the performance, we report the F1-score with 1 to 5 layers on the three datasets. As shown
in Fig. 2f, the performance of our model first improves with the increase in the number of layers upto 4
for all the datasets and then drops as the number of layers further increases. This is due to the overfitting
problem described above for the case of the syntactic graph encoder.

5.9 Case Study

We perform a case study to better understand the model performance. In Table 3, we show two exam-
ple sentences with gold-standard keyphrases highlighted with green boxes, along with the keyphrases
extracted by our model, SaSAKE, and the baselines BiLSTM-CRF and DAKE. In the first example,
the word ‘Cartesian’ associated with ‘genetic programming’ is not identified as part of keyphrase by
BiLSTM-CRF and DAKE but SaSAKE could identify it because of the syntactic dependency the word
’Cartesian’ possesses with ’genetic programming’. In second example, BiLSTM-CRF could not identify
the complete phrase ‘typed lambda calculus’ whereas DAKE could identify it due to the information
it obtained from the other sentences in the document. Our model SaSAKE could identify it due to
the syntactic dependency ‘typed’ possesses with ‘lambda calculus’. DAKE and BiLSRM-CRF failed
to extract the phrase ‘Grothendieck logical relations’ . On the other hand, our model could extract it
due to the semantic dependency it possesses with ‘prove’ and ‘present’. More interestingly, although
‘Grothendieck’ is an out-of-vocabulary term, our model was able to identify it as part of a keyphrase
exploiting the syntactic connection this word has with ‘logical relations’. So SaSAKE even helps to
alleviate out-of-vocabulary problem to some extent using dependency relations provided explicitly.

6 Conclusion

In this paper, we proposed SaSAKE - a deep neural architecture to extract keyphrases from a research
paper based on transformer architecture. It employs a sentence encoder to incorporate sequential infor-
mation, and graph encoders to incorporate syntactic as well as semantic dependency graph information
that helps to capture long-range dependencies and identify the boundaries of keyphrases effectively. It
outperforms several competing models on three standard benchmark datasets. In future, we plan to use
contextualized representations of words like BERT and its variants and also, compare our model with
other abstractive keyphrase generation algorithms. We also intend to incorporate additional supporting
information which can be obtained from citation contexts and citation graphs.
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