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Abstract

Generating relevant responses in a dialog is challenging, and requires not only proper modeling
of context in the conversation, but also being able to generate fluent sentences during inference.
In this paper, we propose a two-step framework based on generative adversarial nets for gen-
erating conditioned responses. Our model first learns a meaningful representation of sentences
by autoencoding, and then learns to map an input query to the response representation, which is
in turn decoded as a response sentence. Both quantitative and qualitative evaluations show that
our model generates more fluent, relevant, and diverse responses than existing state-of-the-art
methods.!

1 Introduction

Dialog generation is a challenging problem because it not only requires us to model the context in a
conversation but also to exploit it to generate a relevant and fluent response. A dialog generation system
can be divided into two parts: 1) encoding the context of the conversation, and 2) generating a response
conditioned on the given context. A generated response is considered to be “good” if it is meaningful,
fluent, and most importantly, relevant to the given context.

With the advancement of deep learning, sequence-to-sequence (Seq2Seq) models (Sutskever et al.,
2014) are adopted for dialog systems to encode conversational context and generate a response. However,
they suffer from the problem of generic utterance generation, e.g., always generating “I don’t know”
(Serban et al., 2016; Li et al., 2016). One possible explanation (Wei et al., 2019) is the high uncertainty
in dialog generation. A plausible response is analogous to a “mode” of a continuous distribution, and the
response distribution is thus multimodal. However, the decoder of a Seq2Seq model is trained by cross-
entropy loss, which is equivalent to minimizing the KL divergence between the target and predicted
distributions. The asymmetric nature of KL divergence makes the learned distribution wide-spreading,
analogous to the mode-averaging problem for continuous variables.

Variational encoder-decoders (Serban et al., 2017; Bahuleyan et al., 2018; Zhao et al., 2017) and
Wasserstein encoder-decoders (Bahuleyan et al., 2019) adopt probabilistic modeling to encourage di-
versity in responses. However, their decoders are also trained by cross-entropy loss against the target
sequence, still making the model generate generic utterances.

In this paper, we propose an approach that uses adversarial learning in the latent space for dialog gen-
eration. We first train a variational autoencoder (VAE) (Kingma and Welling, 2014) on sentences, and
then apply a generative aderversarial network (GAN) on the latent space of the VAE. At inference time,
we obtain the latent representation of the response from the generator of the GAN and decode it using
the VAE’s decoder. In this way, we can benefit from the mode-capturing property of GANs (Mao et
al., 2019; Thanh-Tung et al., 2019). Also, our GAN is trained on the latent space, and techniques like
Gumbel-Softmax and reinforcement-learning (RL) are not necessary, which largely simplifies the train-
ing procedure.We further introduce a mean squared error (MSE) auxiliary loss to our adversarial module,

*Equal contribution.
'The code is available at https://github.com/vikigenius/conditional_text_generation
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Figure 1: The framework of our proposed two-step training procedure. @ denotes concatenation.

which mitigates the mode-missing problem in GANs (Che et al., 2017), resulting in more relevant and
diverse responses.

We evaluate our model on the deduplicated version (Bahuleyan et al., 2018) of the benchmark Daily-
Dialog dataset (Li et al., 2017) and also the Switchboard dataset (Godfrey et al., 1992). Results indicate
that responses generated by our model are more relevant to the input query/context, and are more diverse
and fluent than the existing baselines.

The main contributions of our paper are as follows.

1. We propose a two-step framework of latent-space adversarial learning for generating diverse and
relevant responses.

2. We propose a combination of adversarial loss and an auxiliary mean squared loss to help the GAN
to converge faster and achieve better performance for dialog generation.

2 Approach

Figure 1 provides an overview of our proposed two-step approach.

Step 1: We first train an autoencoder, which takes an utterance s (either a query or a response) as
input, gets its latent code zs from the encoder, and then feeds it to a decoder for reconstructing. The
autoencocder learns a real-valued vector representation of a generic sentence.

Step 2: We train an adversarial network on the latent z space for learning dialog generation. Given a
query-response pair (g, ) in the training set, we use the trained encoder from Step 1 to obtain their latent
variables z, and z,.. The query latent variable 2z, is fed to a generator (&, that maps it to the corresponding
response’s latent variable z2,. When training the generator, we aim to match z, and 2, through the
adversarial loss combined with a mean-squared error loss. In here, the adversarial loss further involves
a discriminator that classifies the predicted response representation 2, versus the encoded representation
of the true response z,, conditioned on the query z,.

The details of our approach will be introduced in the rest of this section.

2.1 Step 1: Training an Autoencoder

In Step 1, our primary goal is to learn a continuous representation of all utterances in the dialog corpus.
The mapping from a sentence to its continuous representation should ideally be invertible so that our
adversarial loss (in Step 2) could be applied to the continuous space to generate dialog responses.

In particular, we adopt a variational autoencode (Kingma and Welling, 2014, VAE) for our first step.
A VAE encodes an input sentence s to a probabilistic, latent continuous representation z, from which the
input sentence s is reconstructed.

We first impose a prior distribution on z, which is typically set to standard normal p(z) = A (0,I).
Given the sentence s, VAE encodes a posterior distribution ¢z (2|s) = N(u, diag ?), where p and o
are predicted by the encoder of VAE. The training objective is to minimize the expected reconstruction
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loss, penalized by a KL divergence term between the posterior and the prior. This is given by

JAE(OEnc, Opec) = —Eq, (z)s) [log p(s]2)] + AkLKL(qr(2]s)|[p(2)) (1)

where Ak, balances the two terms.

Compared with a deterministic autoencoder, VAE learns a smoother latent space by its KL regulariza-
tion. This is helpful during the second step, where a GAN is trained to predict the latent representation
of a response for decoding.

2.2 Step 2: Predicting the Representation of the Response

In Step 2, the main objective is to predict the representation of the response given dialog context (such
as the previous utterance). In this way, the predicted latent representation of the response can be fed to
the trained decoder in Step 1 to generate the response utterance.

To predict the response representation, we re-use the encoder in Section 2.1 to capture the meaning of
the context query as z,. Then we have a two-layer perceptron (with a ReLU activation function in the
hidden layer) to predict the representation of the utterance to be generated, denoted by 2, = G(z,).

For adversarial training, we also encode the representation of the ground truth reply r as z, by the
encoder in Step 1. We train an adversarial discriminator D to classify whether the response representation
is real or predicted. Such classification should be based on context, because we would learn not only if an
utterance is appropriate as a reply, but also if the utterance is appropriate to a specific query. Therefore,
we also feed the encoded context representation into the discriminator. The classification is denoted by
D(z,,z,) or D(2,,2z,), where we essentially concatenate the representations of the response and the
query before feeding them to a logistic regression layer.

The adversarial loss for training the latent space is given by:

Jegan = mén max V(D,G) 2)
V(D,Q) = E (2,2 )~Disain [logD(zr, z¢) + log(1 — D(G(zq), 2¢))] 3)

where Dy,ip 1s the training data.

In other words, the discriminator D is trained by maximizing V' (D, G) so as to distinguish the true
representation of a response and the predicted response representation given the query, whereas the
generator (G is trained to fool the discriminator by minimizing V (D, G).

It should be emphasized that our model is different from adversarial autoencoders (Makhzani et al.,
2015), because our discriminator takes the query into consideration. Our adversarial loss learns an im-
plicit conditional distribution p(z;|z,), instead of a marginal distribution p(z,) as in Zhao et al. (2018).

Additionally, we introduce an auxiliary mean square error (MSE) loss to the objective function:

JMSE = ||Zr - 27“H2 (4)

The MSE loss on the generator helps stabilize the GAN training and mitigate the mode-missing prob-
lem of GANs (Che et al., 2017). In summary, the overall training objective is given by

J = Jcgan + YJIMSE (5)

where « is a tunable hyperparameter that moderates the effect of the MSE loss.

For inference, our model first uses the pretrained VAE from Step 1 to encode an unseen query ¢* as
z4+. This encoded representation is then passed to the generator G to predict the response latent code
G(z4+), which is finally fed to the decoder of the VAE from Step 1 to generate a response sentence.

In our experiments, we have two settings for dialog generation: single-turn and multi-turn. In the
single-turn setting, we form query-response samples by extracting every pair of consecutive utterances
of a conversation in the training data.

In the multi-turn setting, we have the query-response pairs by extracting every utterance with its pre-
ceding utterances in the entire conversation. The VAE in Step 1 remains the same, but we introduce
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Model BLEU Diversity Fluency
Avg [ Max | HM | Intra-1 | Intra-2 | Inter-1 | Inter-2 | ASL (14.43) | TTR PPL
Single-turn results
Seq2Seq 0.143 | 0.217 | 0.172 0.99 0.99 0.46 0.49 4.63 0.019 18.45
WED-S 0.215 | 0.357 | 0.268 0.94 0.99 0.48 0.74 10.42 0.034 33.91
DialogWAE 0.296 | 0.356 | 0.323 0.85 0.97 0.42 0.74 19.34 0.005 20
VAE-M (ours) | 0.191 | 0.293 | 0.231 0.98 0.99 0.5 0.79 9.36 0.029 19.7
VAE-A (ours) 0.295 | 0.359 | 0.323 0.93 0.99 0.46 0.76 13.64 0.035 21.38
VAE-AM (ours) | 0.306 | 0.367 | 0.334 0.91 0.99 0.46 0.82 16.90 0.034 17.01
Multi-turn results
HRED* 0.232 | 0.232 | 0.232 0.94 0.97 0.09 0.10 10.1 - -
CVAE* 0.222 | 0.265 | 0.242 0.94 0.97 0.18 0.22 10.0 - -
CVAE-CO* 0.244 | 0.259 | 0.251 0.82 0.91 0.11 0.13 11.2 - -
VHCR* 0.266 | 0.289 | 0.277 0.85 0.97 0.42 0.74 16.9 - -
DialogWAE 0.279 | 0.365 | 0.316 0.79 0.92 0.35 0.68 19.84 0.007 161.86
VAE-AM (ours) | 0.314 | 0.371 | 0.340 | 0.847 0.98 0.41 0.73 15.3 0.036 | 119.39

Table 1: Results on the DailyDialog dataset. BLEU scores are computed by the average/maximum of
10 randomly sampled replies. HM is the harmonic mean of average and maximum BLEU scores. Suffix
A: adversarial loss; suffix M: MSE loss; suffix AM: both adversarial and MSE losses. * denotes results
taken from Gu et al. (2019), whose training and test sets contain duplicate samples. The Bold font shows
the best performance on the de-duplicated dataset. The number in the bracket of the ASL column is the
groundtruth average sentence length.

Model BLEU Diversity Fluency
Avg | Max [ HM | Intra-1 | Intra-2 | Inter-1 | Inter-2 | ASL (8.49) [ TTR PPL
Single-turn results
Seq2Seq 0.088 | 0.176 | 0.118 | 0.989 0.956 0.816 0.927 2.66 0.026 23.62
WED-S 0.193 | 0.395 | 0.259 | 0.941 0.989 0.404 0.525 10.41 0.032 35.63
DialogWAE 0.235 | 0.375 | 0.289 | 0.739 0.712 0.354 0.571 10.32 0.017 25.36
VAE-M (ours) | 0.231 0.3 0.261 0.954 0.998 0.322 0.479 8.84 0.045 24.58
VAE-A (ours) 0.229 | 0.376 | 0.285 0.725 0.751 0.218 0.354 11.73 0.053 27.55
VAE-AM (ours) | 0.259 | 0.364 | 0.303 | 0.989 0.999 0.436 0.569 7.08 0.062 21.87
Multi-turn results
HRED* 0.262 | 0.262 | 0.262 | 0.813 0.452 0.081 0.045 12.1 - -
CVAE* 0.258 | 0.295 | 0.275 0.803 0.415 0.112 0.102 124 - -
CVAE-CO* 0.269 | 0.299 | 0.283 0.863 0.581 0.111 0.110 10.3 - -
VHCR* 0.234 | 0.276 | 0.254 | 0.877 0.536 0.130 0.131 9.29 - -
DialogWAE 0.267 | 0.394 | 0.318 | 0.779 0.844 0.325 0.513 14.7 0.019 183.82
VAE-AM (ours) | 0.271 | 0.372 | 0.313 0.954 0.966 0.412 0.559 8.72 0.065 | 136.81

Table 2: Results on the Switchboard dataset. * denotes the numbers taken from Gu et al. (2019).

another RNN to encode context. Specifically, it is built upon the VAE’s encoded representation of each
utterance, and yields a fixed-length vector representation of the entire context. During the adversarial
training, we concatenate the context vector with the query (immediate preceding utterance) representa-
tion before feeding them to the generator. In this way, our generator now also takes the context into
account when predicting the response latent code. A similar adjustment is applied during inference as
well.

3 Experiments

We conduct experiments on the DailyDialog dataset (Li et al., 2017), a manually labeled multi-turn dialog
dataset, and the Switchboard dataset (Godfrey et al., 1992), a dialog dataset containing transcripts of
telephonic conversations. For DailyDialog, we use the original splits after removing duplicates following
Bahuleyan et al. (2019). We use the the AllenNLP framework (Gardner et al., 2018) to implement all
our models. Appendix A presents more experimental details and hyper-parameters.

We use the following baseline models for comparison:

e Seq2Seq. The standard sequence to sequence model based on LSTM.

5029



WED-S. A stochastic Wasserstein encoder-decoder model (Bahuleyan et al., 2019).

DialogWAE. A model based on adversarial regularization of autoencoders (Gu et al., 2019).

HRED. A generalized Seq2Seq model that uses hierarchical RNN encoder (Serban et al., 2016).
e CVAE. A conditional VAE model with KL annealing (Zhao et al., 2017).
e CVAE-CO. A collaborative conditional VAE model (Shen et al., 2018).

3.1 Results and Analysis

The results for the Daily Dialog and the Switchboard datasets are shown in Tables 1 and 2, respectively.
The generated responses are evaluated by the following criteria:

Overall quality. We measure the quality of the generated responses by BLEU scores (Papineni et al.,
2002), for which we adopt the smoothing techniques in Gu et al. (2019). For each query, we generate 10
responses for a query, and compute the average and maximum BLEU scores. Then we also compute the
harmonic mean of the average and the maximum BLEU scores.” Our model is either the best-performing
model or highly competitive in terms of the BLEU scores. The DialogWAE model also achieves high
BLEU scores, while the Seq2Seq model is the worst-performing model.

Diversity. We measure the diversity of dialog generation in two aspects:

e Intra-diversity. The Intra-diversity score measures the proportion of distinct unigrams and bigrams

in each response. It is similar for most models.

o Inter-diversity. The Inter-diversity scores measure the proportion of distinct unigrams and bigrams

across all 10 responses.

We note that our model performs the best across Inter-diversity metrics. We further use other diversity
indicators such as the Average Sentence Length (ASL) of the responses. We see that diversity scores for
the Seq2Seq model are very high on the Switchboard dataset; however, it has the lowest ASL score as
well. This observation is within expectations, and the Seq2Seq model does not generate diverse responses
overall. DialogWAE generates longer responses on average; however, our model is closer to the ground
truth ASL (14.43 for DailyDialog and 8.49 for Switchboard). We also note that our model achieves good
Type-Token Ratio (TTR) scores,’ indicating diverse word choices when compared with other models.

Fluency. We compute the PPL scores of generated responses to measure fluency. We notice that
our model achieves the best PPL scores, although DialogWAE is quite close. The Seq2Seq model also
achieves low PPL, but this is mainly due to the short and generic responses. Interestingly, PPL scores
are generally higher in the multi-turn setting, which may be attributed to the increased complexity of the
output when more context is given.

Analysis of Losses. Combining the MSE and adversarial losses leads to significant improvements
across all metrics, including the BLEU scores, response diversity (Inter-1 and Inter-2), and fluency (PPL).
In our experiments, we also notice that the MSE term leads to quicker and more stable convergence of
the GAN (within 6 epochs), making training easier.

We present human evaluation in Appendix B and a case study in Appendix C.

4 Conclusion

We propose an effective two-stage model for dialog generation. We make use of sentence representations
learned by a VAE and train a adversarial network on VAE’s latent space to generate diverse responses
given a query and context. We observe that our model outperforms existing state-of-the-art approaches
by generating more diverse, fluent, and relevant sentences.

2The evaluation protocol follows Gu et al. (2019) with code at https://github.com/guxd/DialogWAE/blob/
29f206af05bfe5fe28fecd448e208310a7¢9258d/experiments/metrics.py#L90
3TTR is computed in the corpus level, whereas Inter-n diversity is the average of per-sample distinct unigram ratio.
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A Hyperparameter Settings and Training

Single-turn. In this setting, we first train a VAE on the entire corpus. We use a single-layer encoder
with Bidirectional LSTMs (Hochreiter and Schmidhuber, 1997) and a unidirectional LSTM layer for the
decoder of the VAE. Both use a hidden size of 512. The dimension of our latent vectors is 128, and that
of the word embeddings is 300. Further, we adopt KL-annealing and word dropout from Bowman et al.
(2016) to stabilize VAE’s training. We use a word dropout probability of 0.5 and a sigmoid annealing
schedule to anneal the KL weight to 0.15 for 4500 iterations. The performance statistics of VAE in Step
1 are shown in 3.

Model | KL | BLEU | Dist-1 | Dist-2
VAE | 18.8 | 0.18 0.32 0.49

Table 3: Performance of the VAE in Step 1 on the DailyDialog dataset. BLEU is the reconstruction
BLEU-4, Dist-1 and Dist-2 are distinct unigrams and bigrams in generated samples, KL is the validation
KL in the best epoch (ELBO).

For the GAN, we use a 2-layer feed-forward network with a hidden layer of 256 units as the generator,
along with batch normalization (Ioffe and Szegedy, 2015) and LeakyReLU activation (Maas et al., 2013).
The discriminator shares a similar architecture. We use Adam (Kingma and Ba, 2015) to optimize all
our networks.

Multi-turn. In this setting, the VAE’s architecture remains the same as the Single-turn setting. We
introduce another BiLSTM encoder with hidden size of 512, which is fed with the VAE-encoded rep-
resentations of the context sentences. Other hyperparameters are kept the same. For implementation,
our generator predicts the response representation at each turn, but we use teacher-forcing, assuming the
context is the actual previous utterances.

B Human Evaluation

In addition to automatic metrics, we also evaluate our model and compare it with DialogWAE (Gu et al.,
2019) using human evaluation. Five human judges rate the response of each model on a scale of 1-5,
according to two criteria: 1) Relevance to the query, and 2) Fluency of the generated response. As can
be seen from Table 4 our model is competitive and achieves better scores on both criteria.

Model Relevance | Fluency
VAE-AM 2.3625 3.2225
DialogWAE | 2.3125 3.1775

Table 4: Human evaluation results

C Case Study

We conduct a case study on VAE-AM’s responses with DialogWAE’s in the single-turn and multi-turn
settings. For both settings, we show the best response out of 10 generated responses for each input.

Table 5 shows that DialogWAE generates generic responses, although its sentences are longer. Our
model has more concrete concepts, such as “leaflets” and “money.”

Table 6 shows generated responses in the multi-turn setting. We see that both models are more infor-
mative as we have more context compared with Table 5. However, DialogWAE is repeating the same
concept, such as “a lot of” in Examples 2, 3, and 5, and “have to pay” in Examples 2 and 5. This
observation is also consistent with the TTR results in Tables 1 and 2.
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# | Generated Responses

Query: o. k. well , go to google.com , and type in battle of gettysburg.

1 | VAE-AM: oh, there are a lot of things that i need to do .

DialogWAE: then ill have to check the details . what can i do for you today ?

Query: yes . i m going to the untied states for travel . what places do you recommend ?
2 | VAE-AM: here are some leaflets detailing everything . i have nt seen you in ages .
DialogWAE: it s very nice to see you again , but i think it s a good idea to do .

Query: medium one will be perfect , thank you

3 | VAE-AM: is that all ?

DialogWAE: in that case , i have to be able to get some of them .

Query: the annual charge rate is NUM .

4 | VAE-AM: that s a lot of money . can you make it a little cheaper ?

DialogWAE: then what about the <UNK> ? i mean , i am not sure .

Query: but it is too loose.do you have the smaller size ?

5 | VAE-AM: ok, we will . how about this one ?

DialogWAE: in that case , i have to be able to get some of them . i think i can get a new one .

Table 5: Generated responses in the single-turn setting

Generated Responses

Query: allan, i am really disappointed by your lack of effort on this project .
VAE-AM: it seems you are not aware of the actual work split . i have done more than anyone else.
DialogWAE: ok , it’s not that bad . but it’s not that bad . i don’t want to have any other questions about it .

Query: when is he coming ?
VAE-AM: next week . he is enjoying his month long vacation in miami .
DialogWAE: sorry , he’s not very serious . he’s got a lot of money to do .

Query: i1l try my best to make a good impression on the interviewer .
VAE-AM: do nt worry pal. only weak candidates should. just dress properly and try to make it alive there haha ...
DialogWAE: that is ok , we * 11 be able to get a raise in the next few days . we will have to pay you a lot of money .

Query: can you tell me where the pots and pans are ?
VAE-AM: absolutely not . i m not letting you cook today . you messed it real bad yesterday .
DialogWAE: yes , of course .

Query: what kind of personal information ?
VAE-AM: your name , height , sex , and contact . also tick this check box if you have faced this issue before .
DialogWAE: not at the moment . but there is a lot of money in the city , but we have to pay a lot of money for the money .

Table 6: Generated responses in the multi-turn setting
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