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Abstract

Breaking domain names such as openresearch into component words open and research
is important for applications like Text-to-Speech synthesis and web search. We link this problem
to the classic problem of Chinese word segmentation and show the effectiveness of a tagging
model based on Recurrent Neural Networks (RNNs) using characters as input. To compensate
for the lack of training data, we propose a pre-training method on concatenated entity names in
a large knowledge database. Pre-training improves the model by 33% and brings the sequence
accuracy to 85%.

1 Introduction

Word segmentation is a fundamental NLP analysis problem for written languages with no space delimiters
between words such as Chinese and Japanese. In the age of digital communications, new URLs (e.g.
www.openresearch.org) and hashtags (e.g. #photooftheday), which often include strings of
concatenated words (openresearch, photooftheday) are being added every day to a growing set
of tokens that an NLP system may need to deal with, and they pose challenges for language and speech
applications. For example, a Text-to-Speech (TTS) synthesis system will struggle to pronounce these
concatenated tokens, since simply applying a grapheme-to-phoneme system out of the box to something
like photooftheday will usually yield poor results. This suggests the need for a model that can split
such tokens into the component words. So-called “end-to-end” neural TTS systems (Sotelo et al., 2017;
Wang et al., 2017), which learn to map directly from character sequences to speech might seem to hold
out the hope of avoiding treating this problem separately. However, the fact that URLs occur relatively
rarely in most TTS training data limits the promise of such models on this long-tail problem.

The problem of analyzing URLs does differ in one useful way from more general text normalization
problems. For a token such as 123 in a text, one typically needs to know what context it occurs in in
order to know how to read it: is it one hundred twenty three or one twenty three; see
(Sproat et al., 2001), inter alia. In the case of URLs, these are largely context-independent since the output
segmentation is usually unaffected by the surrounding words. Hence the problem can be treated as a
standalone one that does not require the system to be trained as part of broader text normalization training.

Our training data comes from camel case URLs that naturally define the segment boundaries (e.g.
NYTimes.com maps to N Y Times . com) along with manual corrections for non-trivial bound-
aries. We release our training and evaluation data sets to promote research on this problem. By drawing an
analogy with Chinese word segmentation, we cast the URL segmentation problem as a sequence tagging
problem. We propose a simple Recurrent Neural Network (RNN) based tagger with an encoder and a
decoder.

The model trained on the data set has a decent full sequence accuracy (64%) but fails to generalize
to more rare words due to the size of the training data. Inspired by the success of pre-training in many
NLP tasks (Peters et al., 2017; Devlin et al., 2019), we propose a pre-training recipe for the segmenter.
Based on the observation that URLs are often compound entity names and so are knowledge graph entities
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(Bollacker et al., 2008), we create a large synthetic training data set by concatenating the knowledge graph
entity names. We observe 21% absolute (33% relative) improvement in sequence accuracy after applying
pre-training followed by fine-tuning.

2 Related Work

Every text-to-speech system has to be able to read URLs and other electronic addresses, but there is
very little in the published literature that discusses this problem specifically as a research topic, and
most systems seem not to do much in the way of interesting analysis of the internal components of
the address. For example, the Kestrel text normalization system (Ebden and Sproat, 2014) identifies
URLs and other electronic addresses using finite-state matchers, and parses the main components into
separate tokens based on standard delimiters (/, :, etc.): thus www.google.com would be parsed into
www . google . com. The individual components are then pronounced separately. Common
components such as ., www, nytimes and com are handled by table look-up, but other components,
such as jpopasia in jpopasia.com are not otherwise broken down and if they do not match a
lexicon entry, may end up being read letter-by-letter.

The problem has applications beyond TTS. In web search, analyzing URLs and hashtags leads to better
matching. Wang et al. (2011) termed the problem “URL word breaking”. They used a noisy channel model
with an n-gram language model trained on word-segmented data and a word-synchronous beam search
algorithm for inference. The model is essentially unsupervised. They found that the style of the text used
to build the model played a crucial role and document titles yielded the best results. In our pre-training
experiments, we also tried web queries and documents. None of them gave the same improvement as the
knowledge graph entity names in title case. Srinivasan et al. (2012) improved the model of Wang et al.
(2011) by adding a supervised max-margin structured prediction model using individual unsupervised
language models as features. Fine-tuning on in-domain data is the counterpart in our system. Both have
created training or evaluation data sets of URL domain names for their experiments, but these have not
been publicly released. We contribute a data set of URLs crawled from a public repository of Web texts
with their internal segments annotated by crowd sourcing.

Chiang et al. (2010) reported experiments on a related artificial problem of splitting of space-free
English through Bayesian inference for FSTs following the work of Goldwater et al. (2009).1

A closely related problem is compound splitting. Macherey et al. (2011) presented an unsupervised
probabilistic model for splitting compound words into parts, with the compound part sub-model being a
zero-order model to enable efficient dynamic programming inference. The model is optimized for the task
of machine translation. They only reported results for seven (Germanic, Hellenic, and Uralic) languages
other than English. More recently, fully supervised letter sequence labelling models have been introduced
for German compound splitting (Ma et al., 2016) and Sanskrit word splitting (Hellwig and Nehrdich,
2018). Pre-training can potentially further improve these models.

There is a large body of research on Chinese word segmentation. The best models are supervised ones
using structured prediction (Peng et al., 2004), transition-based models (Zhang and Clark, 2007), and
most recently RNNs (Ma et al., 2018) and BERT-based models (Huang et al., 2019). The superior results
of the BERT-based models demonstrate that pre-training is effective on word segmentation. Unlike BERT,
we pre-train the entire model, not just the encoder.

3 RNN Tagging Model

We formulate the segmentation problem as a character sequence tagging model. Given an input character
sequence X = x1, . . . , xI , the model predicts an output tag sequence Y = y1, . . . , yI , with yi ∈ {B, I}
being the tag for the character xi. B indicates the underlying character starts a new segment. I indicates
the underlying character continues the current segment. Tag sequences {B, I}+ correspond one-to-one to
segment sequences. For example, B,B,I,B is equivalent to the segment sequence [x1], [x2, x3], [x4].

1It is worth noting that the problem of resegmenting space-free English has a long history: the earliest reference we are aware
of is (Olivier, 1968).
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Figure 1: RNN tagging model architecture. GRU→ and GRU← are forward and backward encoder RNNs
implemented with Gated Recurrent Units (GRU). GRUdec is the decoder RNN. The concatenation of
GRU→, GRU←, and the input embedding at the current position, as well as the embedding of the previous
tag is fed to GRUdec. The output of GRUdec is fed to a softmax layer to generate the output tagging
sequence.

We model P (Y |X) with an encoder-decoder RNN. The encoder generates hidden state sequences of
length I . At decoding step i, the decoder attends to position i in both the hidden state sequences and
the input embedding sequence. Figure 1 illustrates the architecture of the model. Our architecture is a
modification of the stacking LSTM architecture of Ma et al. (2018) which can also be understood as using
hard attention (Aharoni and Goldberg, 2017) in the decoder. We do not use bigram character features.
Instead, we rely on forward and backward RNNs for implicit input feature extraction. We make the
decoder auto-regressive by feeding the previously predicted tag to the decoder RNN and applying beam
search in inference.

3.1 Pre-training
RNN models demand a large number of training examples. While labelled data is often scarce, un-labelled
data with matching domain is often abundant. Pre-training the encoder component of a sequence-to-
sequence model for a different task such as language modelling has been extremely successful, as
manifested by the BERT model. We take a different approach because we not only can find data that
matches the domain of interest but also can construct input-output mappings with high accuracy. Therefore,
we pre-train the entire model with the same objective on a synthetic domain-matching data set. The
fine-tuning phase follows the pre-training phase by simply switching the training data to the labelled data
set.

4 Data

4.1 Camel Case URLs
We use two distinct sources for our camel case URL data set, an internal crawl and Common Crawl2. The
internal data is comprised of approximately 21k domain names automatically segmented based on case
(DisneylandNews→Disneyland News) and then manually corrected. Manually correcting the

2https://commoncrawl.org
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data created interesting examples where the segmentation, given casing, is non-trivial (e.g. Awardsand
Honors vs. Awards and Honors). The Common Crawl data was scraped from extracted plain text
from web archives and consists of approximately 21k domain names with manual corrections done via
crowd sourcing. The Common Crawl URL data set is publicly available on GitHub.3

4.2 Knowledge Graph Entity Names
The pre-training data is derived from entity names found in Google’s Knowledge Graph4. The entity
names are naturally space-separated and case-sensitive. Further splitting is also done on entity name
segments that are all uppercase consonants since these are virtually always verbalized letter by letter (e.g.
CD Player to C D Player).

4.3 Data Set Statistics
Table 1 lists the statistics of the data sets. The two data sets, namely the internal crawl and the Common
Crawl, have approximately equal means of input and output lengths, even though their creation processes
are different. On the other hand, the pre-train Knowledge Graph data set contains larger proportions of
longer sequences. The pre-train set is four orders of magnitude larger than either of the two annotated
data sets.

Average Average Total
Input No. of No. of

Length Segments Examples
internal crawl train 12.96 2.47 17036
internal crawl dev 12.94 2.48 1893
internal crawl test 13.17 2.49 2104
Common Crawl train 12.63 2.65 17575
Common Crawl dev 12.77 2.66 1953
Common Crawl test 12.64 2.67 2170
Knowlege Graph pre-train 29.22 4.54 >200m

Table 1: Statistics for camel case URL data sets and Knowledge Graph pre-train data set.

5 Experiments

We choose the hyper-parameters on the internal crawl dev set for the network in Figure 1. Table 2 lists the
key parameters. In Section 5.1 and Section 5.2, we develop training strategies using the internal crawl
data set. In Section 5.3, we report the final results on both the internal and the Common Crawl test sets
based on the hyper-parameters and the training strategy developed on the internal data set.

Input embedding size 256
Output embedding size 64
Number of forward encoder layers 2
Number of backward encoder layers 2
Number of decoder layers 1
Number of decoder GRU units 64
Number of encoder GRU units per layer 256
Beam size 2

Table 2: Network hyper-parameters.

We report results in terms of full sequence accuracy, where Accuracy = #CorrectSegmentations
#Sequences . For

example, photooftheday has only one correct segmentation photo of the day. There is no
3https://github.com/google-research-datasets/common-crawl-domain-names
4https://developers.google.com/knowledge-graph
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partial credit.

5.1 Lowercase Training

Lowercase Accuracy
baseline 70.10%
pre-train 82.25%
+fine-tune 88.80%

Table 3: Lowercase results. Training and pre-training data sets are lower-cased. Results are on the
development set which is also in lowercase.

The camel case training data has implicit word boundary annotations. In order to train a model to
predict boundaries when case cues are not present, we need to hide the annotations by normalizing case.
For this we simply lowercase both the training and evaluation sets. Table 3 summarizes the results of pure
lowercase models. The baseline model uses no external data besides the train set.

The improved model is first trained only on the pre-train set and then fine-tuned on the train set.
Pre-training alone is already better than the baseline by a large margin (12%), indicating the importance
of learning from a large number of entity names. Fine-tuning yields a further improvement (6%).

5.2 Mixed Case Training

Lowercase Accuracy Camel Case Accuracy
baseline 69.36% 94.82%
pre-train 81.56% 92.18%
+fine-tune 89.54% 96.67%

Table 4: Mixed LowerCase/CamelCase results. Training and pre-training sets have equal proportions of
lowercase and camel case examples. Results are reported on both lowercase and camel case development
sets.

The lowercase model works well on lowercase input. But the accuracy of 88.8% is not very high for
camel case input because the simple rule of splitting words based on case switching is 92.55% accurate.
One could have a hybrid system in which the neural segmenter is invoked when the input has no case cues
and the rule is invoked for camel case input, but we ought in principle to be able to train a model that
handles both kinds of input well.

In Table 4, we show our final results of training on mixed lowercase and camel case data. For every
camel case example, a lowercase example is added. This is done for both the training set and the
pre-training set. Essentially, we assign equal weights to the two types of examples. There is a small
degradation in lowercase accuracy for the baseline and the pre-train-only models. But after fine-tuning, not
only is the loss recovered, but there is even a slight gain (89.54% versus 88.80%). This can be explained as
an effect of transfer-learning if we view the lowercase examples and camel case examples as two different
domains. As expected, the camel case accuracy is now close to perfect (96.67%), higher than the accuracy
of the simple rule of splitting-by-case (92.55%).

5.3 Final Results
In this section, we report the final results on the test portion of the internal crawl and the Common Crawl
data sets. The model uses the mixed case training strategy mentioned in Section 5.2. Learning rates are
tuned on their dev counterparts. The top portion of Table 5 is for internal crawl. The bottom portion is for
Common Crawl. The common trends are:

• Pre-training (without fine-tuning) improves over baseline by a large margin when input is lowercase.

• Fine-tuning further improves the results regardless of input casing.
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Lowercase Accuracy Camel Case Accuracy

internal crawl
baseline 69.15% 94.87%
pre-train 80.89% 91.49%
+fine-tune 88.12% 96.20%

Common Crawl
baseline 63.64% 85.48%
pre-train 75.81% 81.29%
+fine-tune 85.21% 91.15%

Table 5: Testing results on the internal crawl and Common Crawl data sets.

5.4 Error Analysis
The pattern of improvement coming from pre-training is clear. Without pre-training, sometimes the model
generates word-like segments. The pre-trained model is better at distinguishing real words and fakes ones.
Table 6 shows some examples of success in the top region. What remains to be fixed are harder ones
shown in the bottom region of Table 6.

Reference Prediction

Errors fixed

Mainspring Press Mains pring Press

Prediction→Reference

N M animal Control N Manimal Control
artists ask art artist saskart
planet earth plane tearth
D C income D Cincome
Pubs history Pubshistory
mens weekly men sweekly
phoenix tennis pho enix tennis

Errors uncorrected

Bulk S e o Tools Bulk Seo Tools

Reference→Prediction

Library U s gen net Library Usgennet
just a film junkie justa film junkie
pet lvr pet l v r
ASAP Workouts A S A P Workouts
S e o article Seo article
iams company breeders i a m s company breeders
u s a p a store u s a pastore

Table 6: Errors fixed and remaining uncorrected by pre-training.

Figure 2 shows how accuracy varies as the number of characters or segments contained in the input
increases. The model is highly accurate on input with less than four segments. Due to more strict filtering
in the internal crawl data set, there are very few examples with a single segment. There are many more
single-segment examples in the Common Crawl data set. Single-segment examples are more challenging
probably because they correspond to more rare words or terms. Prediction accuracy is not strongly
correlated to input length as shown by the seemingly opposite trends on the two different data sets.

6 Conclusion

URL segmentation has applications in TTS and web search. Our contributions include a curated URL
data set and a highly accurate RNN model boosted by pre-training on Knowledge Graph entities.
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Figure 2: Accuracy as input/output length increases. The leftmost and rightmost lengths are bucketed.
Top: internal crawl dev. Bottom: Common Crawl dev.
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