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Abstract

This paper proposed a supervised visual attention mechanism for multimodal neural machine
translation (MNMT), trained with constraints based on manual alignments between words in a
sentence and their corresponding regions of an image. The proposed visual attention mechanism
captures the relationship between a word and an image region more precisely than a conven-
tional visual attention mechanism trained through MNMT in an unsupervised manner. Our ex-
periments on English-German and German-English translation tasks using the Multi30k dataset
and on English-Japanese and Japanese-English translation tasks using the Flickr30k Entities JP
dataset show that a Transformer-based MNMT model can be improved by incorporating our
proposed supervised visual attention mechanism and that further improvements can be achieved
by combining it with a supervised cross-lingual attention mechanism (up to +1.61 BLEU, +1.7
METEOR).

1 Introduction

As mainstream machine translation, Neural Machine Translation (NMT) model, widely used since the
early days, is the Recurrent Neural Network (RNN)-based NMT with attention mechanism (Luong et al.,
2015). This model achieves higher translation accuracy than conventional RNN-based NMT by using
a cross-lingual attention mechanism that captures the relationship between words in source and target
language sentences. In recent years, the Transformer model (Vaswani et al., 2017) has been attracting
much attention because it achieves higher accuracy than methods using RNN and Convolutional Neural
Network (CNN). In addition to the conventional cross-lingual attention mechanism, the Transformer
model introduces a self-attention mechanism that captures relationships between words in a sentence.

Various studies have been conducted on methods to improve NMT’s performance and on one method
constraining the cross-lingual attention mechanism (Liu et al., 2016; Mi et al., 2016; Garg et al., 2019).
These cited researchers have improved translation performance by using a tool to obtain alignments
between words in source and target language sentences in advance and then providing alignments as
supervisions to train the cross-lingual attention mechanism.

Multimodal NMT (MNMT) (Barrault et al., 2018) is a machine translation task that aims to improve
translation performance by using images in addition to source language sentences because input images
are considered useful for disambiguation and omission completion. Helcl et al. (2018) have proposed an
MNMT model that introduces a visual attention mechanism into the Transformer-based MNMT model’s
decoder to capture alignment between words in a sentence and image regions to utilize image features
from CNNs. Additionally, Delbrouck and Dupont (2017) have proposed a model that introduces a vi-
sual attention mechanism into an RNN-based MNMT model’s encoder. However, these visual attention
mechanisms are automatically trained through MNMT in an unsupervised manner, and, hence, they do
not always capture the relationship between words in a sentence and image regions that they should.

This paper proposes a supervised visual attention mechanism trained with constraints based on manual
alignments between words in a sentence and their corresponding image regions to improve MNMT
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performance. In the MNMT’s conventional visual attention mechanism, the image’s region where a
word should pay attention is not given as a supervision but is learned automatically through MNMT
in an unsupervised manner. In our method, we prepare data that shows alignments between words in
a source sentence and objects in an image as supervisions and then directly train the visual attention
mechanism in the Transformer-based MNMT model’s encoder from the supervisions. Note that when
only alignments between target language words and image objects can be obtained, our method converts
them to alignments between source language words and image objects by using word alignments between
source and target sentences.

We experimented with English-German and German-English translation using the Multi30k
dataset (Elliott et al., 2016) and with English-Japanese and Japanese-English translation using the
Flickr30k Entities JP dataset (Nakayama et al., 2020). These experiments show that the proposed su-
pervised visual attention mechanism improves a Transformer-based MNMT model’s performance (i.e.,
METEOR and BLEU scores).

2 Background

In this section, we overview the Transformer NMT model (Vaswani et al., 2017) and then explain super-
vised cross-lingual attention for the Transformer model (Garg et al., 2019).

2.1 Transformer NMT

The Transformer NMT model consists of an encoder, which converts the source language sentence into
an intermediate representation, and a decoder, which generates a target language sentence from the inter-
mediate representation. The encoder and decoder are stacked with multiple encoder and decoder layers.
Each encoder layer has two sub-layers—a self-attention and position-wise fully connected feed-forward
network. Each decoder layer consists of three sub-layers—the same two sub-layers used for the encoder
and the cross-lingual attention layer. Residual connection (He et al., 2016) and layer normalization (Ba
et al., 2016) are used between sub-layers.
The self-attention and the cross-lingual attention mechanisms are computed as follows:

Att(Q, K, V) = AV, (1)
T

ﬁ)’

where A is called attention matrix, (), K, and V are hidden states of the encoder/decoder, and dj, is the
dimension of (), K, and V. In the self-attention mechanism, ), K, and V' are given as the previous sub-
layer’s output. In the cross-lingual attention mechanism, () is given as output of the decoder’s previous
sub-layer, and K and V are given as the encoder’s output. The self-attention mechanism calculates
relationships between words in the same sentence, and the cross-lingual attention mechanism calculates
relationships between words in the source language sentence and words in the target language sentence.

The Transformer is also characterized by a multi-head attention mechanism, in which hidden states
are split into sub-spaces to represent various types of information in each sub-space. The multi-head
attention mechanism consisting of h heads is expressed as follows:

A = softmax(

2

MHA(Q, K, V) = [heads; . . .; head,]W©, 3)
head; = Att(QWE, KWK, vwY), @)
where | | denotes the concatenation operation, and WZ-Q, WHE WY € Rimoder*dk and WO ¢ Rk > dmodet

are parameter matrices. d,,oqe; 1 the embedding dimensions and dy = dy0der/ -
The position-wise fully connected feed-forward network is represented as follows:

FFN(:U) = maX(O, Wi + bl>W2 + bo, (5

where W, € RimoderXdss W, € RAff*dmodel b € RS, and by € R%model are parameter matrices.
dmodei 1s the number of input and output dimensions, and d ¢ is the inner-layers’ number of dimensions.
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The Transformer introduces positional encoding to incorporate word order information into hidden
states. By adding positional encoding to a word’s embedded representation, word order information is
added.

2.2 Supervised cross-lingual attention

Garg et al. (2019) have proposed a supervised learning method for the Transformer NMT’s cross-lingual
attention mechanism by providing word alignment between source and target languages for supervision
of cross-lingual attentions. Word alignment between languages is obtained by using an alignment tool.
The cross-lingual attention mechanism is learned by minimizing the difference between an attention
matrix computed by one attention head of the multi-head cross-lingual attention mechanism and word
alignment.

The difference is calculated as cross entropy loss as follows:

M N
Lo(A) = -7 > G x 10g(Amn), (6)

where M and N are the length of a target sentence and that of a source sentence, respectively, A is an
attention matrix computed by Equation (2), and G is a word-alignment matrix where G, , = 1 if the
n-th source word is aligned to the m-th target word (otherwise G, , = 0). The objective function L for
the NMT model using the supervised cross-lingual attention mechanism is given as a loss function that
adds L,(A) to the translation loss L; as follows:

L =L+ \L,(A), @)
where A is a hyperparameter.

3 Proposed method

This section explains the proposed method for supervised training of visual attention mechanisms to
improve MNMT translation performance. First, we describe our Transformer-based MNMT model and
then propose a supervised training for the visual attention mechanism.

3.1 Architecture of Transformer-based MNMT model

Figure 1 shows our Transformer-based MNMT model’s overall image. The model has the image encoder
in addition to the source sentence encoder and the decoder. Given an input image, the image encoder
first applies CNN to the input image to obtain its image features. Then, self-attention is applied over the
CNN output; this enables the image encoder to learn relationships between image regions. Finally, the
self-attention layer’s output is applied to position-wise fully-connected feed-forward neural networks to
generate the image encoder’s output.

Next, visual attention (Libovicky et al., 2018) is calculated in the source sentence encoder by using
the self-attention’s output for the source sentence and the image encoder’s output. The visual attention
mechanism calculates relationships between image regions and words. In Equation (1), @ is the self-
attention layer’s output in the source sentence encoder, and K and V' are the image encoder’s output in
the case of visual attention.

Figures 5 (c) and 6 (c) show examples of visual attention in which darker cells represent higher at-
tention for the words “man” and “lamp,” respectively. The CNN maps the input image to image features
that are high-dimensional coarse-grained bitmaps. Each pixel of the coarse-grained bitmaps corresponds
to a region in the original bitmaps and has high-dimensional features. For example, image features for
Figures 5 (c) and 6 (c) have 7 x 7 regions, and each region has 2,048 features. In the visual atten-
tion mechanism, each word attends to regions in the image features. Therefore, visual attention can be
visualized as a region heatmap.
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Figure 1: Multimodal Transformer NMT model

[ ] lays on [the bench] to which [a white dog] is also tied.

Figure 2: Flickr30k entities sample

3.2 Supervised training for the visual attention mechanism

The proposed method learns relationships between source language words and image objects by pro-
viding constraints based on manual alignments between source language words and their corresponding
image regions as supervisions for the visual attention mechanism. Specifically, constraints are applied to
attentions between the image encoder’s output and the self-attention mechanism’s output in the source
sentence encoder.

Constraints on the visual attention mechanism are applied to minimize the difference between a su-
pervision matrix and the attention matrix in Equation (2) in the visual attention mechanism, where we
suppose that the supervision matrix is provided as manually annotated alignment between words in the
source language sentence and corresponding image regions. The difference is calculated as cross entropy
loss as follows:

1 M N
Limg,src(A) = _M Z Z Gm,n X log(Am,n)a (8)
m=1n=1

where M and N are the length of a source language sentence and the number of image regions, re-
spectively, A is an attention matrix computed by Equation (2), and G is a supervision matrix, where
G = 1 if the m-th source word is aligned to the n-th image region (otherwise G, , = 0).
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Figure 3: Example of making a supervision matrix for the visual attention mechanism

In this study, we create supervision matrices for the visual attention mechanism by using the Flickr30k
entities dataset (Plummer et al., 2017) made from the Flickr30k dataset (Young et al., 2014), in which
five caption sentences are attached to one image, and if a word in each captioned sentence is related to an
object in the image, the dataset shows to which region in the image the word is related (Figure 2). From
this dataset, We extract relationships between words in the source language sentence and objects in the
image.

First, we re-scale relationships between words and objects, that is, bounding boxes in the Flickr30k
entities dataset, to CNN output regions. For example, if the image is mapped to 4 x 4 by the CNN used
in the image encoder, we compute relationships between a word and its object in the image’s 16 regions.
When multiple regions are related, values are averaged so that each region is equally related. This means
that the value is set to 1/ Nregions> WHETe Nyegions 18 the number of related regions (Figure 3(a)). Then,
two-dimensional regions are linearized to one dimension (Figure 3(b)). This process is performed for
all words in the source language sentence. As for words that do not correspond to objects in the image,
special tokens are used to process them, inspired by Liu et al. (2016) and Mi et al. (2016). Note that
they introduced special tokens for supervised cross-lingual attention. In our method, a special token is
attached to the beginning of the matrix in Figure 3(b), and words that do not relate to objects in the image
are associated to the special token.

The objective function L for the MNMT with supervised visual attention become as follows:

L= LT + AlLimg,sra (9)

where L is the loss function of the multimodal Transformer NMT model, L;p,g4_src is the loss function
between the attention matrix of the visual attention mechanism and the supervision matrix, and A; is the
hyperparameter to control weights between translation loss and supervised visual attention loss.

3.3 Supervised training of visual attention and cross-lingual attention

In this study, we also introduce the supervised cross-lingual attention explained in Section 2.2 to our
MNMT model to improve translation performance. To supervise the cross-lingual attention mechanism,
alignment must be acquired between words in the source language sentence and the target language
sentence. In this study, we use an alignment tool following Liu et al. (2016) and Garg et al. (2019). As
an alignment tool, we use MGIZA (Gao and Vogel, 2008), an implementation of GIZA++ (Och and Ney,
2003), to run multi-threaded on multi-core machines.

When a word in the target language sentence is related to multiple words in the source language
sentence, values are averaged so that they are equally related. This means the value is set to 1/10rds»
where n.,0rgs 1S the number of related words in the source language sentence. Similar to Section 3.2, for
words not related to the word in the source language sentence, special tokens are used for processing. In
this method, as shown in Figure 4, a special token is set at the beginning of the source language sentence,
and words that do not relate to the word in the source language sentence are associated with the special
token.

The objective function L for the MNMT with supervised visual attention and cross-lingual attention
becomes as follows:

L=1Lyp+ >\1Limg,src + /\2Lsrc,tgta (10)

4308



ein

alter

mann

allein

ein

bier
trinkt

Figure 4: Example of word alignment

en — de de —en en — ja ja—en

B M B M B M B M
NMT 38.76 57.59 4258 39.19 43.69 59.27 4421 40.03
MNMT 38.89 57.35 4229 39.13 44.09 59.59 4442 40.03
MNMT+SVA 3991 58.11 4252 3886 44.51 60.03 44.76 40.40

MNMT+SVA+SCA 40.50 59.05 43.76 39.71 44.79 60.23 45.36 40.65

Table 1: Experiment results. B and M denote BLEU and METEOR, respectively.

where L, +4¢ 18 the supervised cross-lingual attention loss, and A and g are hyperparameters to control
weights among the translation loss, the supervised visual attention loss, and the supervised cross-lingual
attention loss.

4 Experiments

We performed four translation experiments: English-German, German-English, English-Japanese, and
Japanese-English. For English-German and German-English translation experiments, we used the
Multi30k dataset (Elliott et al., 2016), which consists of a pair of images and their captions. 29,000
pairs of training data, and 1,014 pairs of development data. We used the ‘2016 test set’ as test data; 1,000
test pairs.

For English-Japanese and Japanese-English translation experiments, we used the Flickr30k Entities
JP dataset (Nakayama et al., 2020)'. Following text pre-processing in the Multi30k dataset, we applied
lowercase, punctuation normalization, and the Moses tokenizer? for English sentences. We used Kytea?
for word segmentation of Japanese sentences. Only pairs in which both English and Japanese sentences
were less than 100 words were used in training data. We used 59,516 pairs for training, 2,017 pairs for
development, and 2,000 pairs for testing.

As pre-processing, the image was resized to 256 x 256, and then the image’s central part was cropped
to 224 x 224. ResNet50 (He et al., 2016) was used for CNN in the image encoder. Output of the
final convolutional layer in ResNet50 was used for image features, which consisted of 7 x 7 x 2048
features. CNN fine-tuning was not performed during training. The image encoder, source sentence
encoder, and decoder were stacked with 6 layers. The number of heads was 8, and the number of
embedding dimensions was 512. The size of the inner feed-forward network layer was set to 2048. We

'nttps://github.com/nlab-mpg/Flickr30kEnt-JP

https://github.com/moses—smt/mosesdecoder/blob/master/scripts/tokenizer/
tokenizer.perl

*http://www.phontron.com/kytea/index—-ja.html
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(a) Reference (b) MNMT (w/o constraint) (c) MNMT+SVA

Figure 5: Visual attentions for the word “man”

(a) Reference (b) MNMT (w/o constraint) (c) MNMT+SVA

Figure 6: Visual attentions for the word “lamp”

used the Adam optimizer (Kingma and Ba, 2014), and we trained a model for 40 epochs with a mini-
batch size of 128. We applied Byte Pair Encoding (BPE) (Sennrich et al., 2016) for English-German and
German-English experiments, in which we used 3,492 words for English vocabulary and 4,536 words
for German vocabulary. During inference, target sentences were generated by the greedy method.

Translation performance was evaluated by BLEU (Papineni et al., 2002) and METEOR (Denkowski
and Lavie, 2014). We selected the epoch model with the highest BLEU value for development data and
evaluated performance for the test data. In experiments, we compared: (i) the text-only Transformer
NMT model (NMT), (ii) the unconstrained multimodal Transformer NMT model (MNMT), (iii) the
model with only the supervised visual attention mechanism (MNMT+SVA), and (iv) the model with
supervised both visual and cross-lingual attention mechanisms (MNMT+SVA+SCA). The supervised
cross-lingual attention mechanism is the same as Garg et al. (2019)’s supervised attention mechanism
described in Section 2.2. Constraints to the attention mechanism for supervision were applied to the
sixth layer (i.e., the final layer) of the source language sentence encoder and the decoder. Constraints
were placed on one head of the visual attention mechanism and the cross-lingual attention mechanism.
In Equation (10), hyperparameters were A\; = 0.05 and A2 = 0.05, following Garg et al. (2019). In the
model with only the supervised visual attention mechanism, hyperparameters were set to A = 0.05. Note
that alignments between words and image objects are tagged only in English sentences for both experi-
mental datasets. As for English-German and English-Japanese tasks, supervision matrices for the visual
attention mechanism were created directly from manually annotated alignments. As for German-English
and Japanese-English tasks, manually annotated alignments in English sentences were first converted to
alignments between German/Japanese words and image objects by using word alignments obtained by
MGIZA, and then supervision matrices for the visual attention mechanism were created from converted
alignments.

Table 1 displays experimental results, showing that in all tasks, BLEU and METEOR were the highest
when both visual and cross-lingual attention mechanisms were supervised. These results demonstrate
the proposed supervised visual attention mechanisms’ effectiveness.
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Source: HNWIXYY EBEHELBEOTH. BOAO YNV THZHM> TV S,

MNMT: a boy in a red shirt is shoveling sand .

MNMT+SVA: a boy in a red shirt is digging in the sand with a yellow shovel .

Reference: a boy wearing a red shirt digs into the sand with a yellow shovel .

(a) Examples of translations in the Japanese-English translation task

Source: ein rothaariger mann mit dreadlocks sitzt und spielt auf einer akustischen gitarre .

MNMT: a man with red-hair sits on an acoustic guitar .

MNMT+SVA: ared-haired man with dreadlocks is sitting and playing an acoustic guitar .

Reference: a red-haired man with dreadlocks is sitting playing and acoustic guitar .

(b) Examples of translations in the German-English translation task

Figure 7: Translation examples

5 Analysis

5.1 Examples of visual attentions

Figures 5 and 6 show visual attentions from the word “man” and “lamp”, respectively, in the English-
Japanese translation task’s test data. In the figures, the darker region represents a higher attention score,
and when the constraint on visual attentions is not used, each of the two words pays equal attention to
the entire image (Figures 5(b) and 6(b)). In contrast, when supervised visual constraint is used, image
regions related with each of the two words can be identified more precisely through visual attentions
(Figures 5(c) and 6(c)). These results demonstrate that our supervised visual attention encourages visual
attentions to attend to each word’s related regions.

5.2 Examples of translations

From examples of translation results on test data of Japanese-English and German-English tasks, Figure 7
shows that sentences translated by the MNMT model without proposed supervised visual attentions do
not include some information from the source language sentence. For example, the “MNMT” translation
loses the information “a yellow shovel” in Figure 7(a) and the information on the man’s characteristic
“dreadlocks” in Figure 7(b). In contrast, the MNMT model with the proposed mechanism translates the
source language sentences correctly. This might be because the source language sentences could be en-
coded more properly by linking each source language word with the image’s related regions through the
proposed supervised visual attention mechanism, indicating that the proposed supervised visual attention
mechanism avoids under-generation errors.

5.3 Experiments with manual word alignments

In the Flickr30k Entities JP dataset, word alignments between source language words and target lan-
guage words are manually tagged. We evaluate the translation performance of our proposed mod-
els, “MNMT+SVA” and “MNMT+SVA+SCA”, when using manual word alignments rather than au-
tomatic word alignments. Table 2 shows that in the experimental results, both “MNMT+SVA” and
“MNMT+SVA+SCA” outperform “MNMT”, and “MNMT+SVA+SCA” is better than “MNMT+SVA”
on both English-Japanese and Japanese-English tasks. In other words, our proposed supervised atten-
tion mechanism using manual word alignments is also effective, and combination with the supervised
cross-lingual attention mechanism achieves further improvement.
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en — ja ja—en
B M B M

NMT 43.69 59.27 4421 40.03
MNMT 44.09 57.35 44.42 40.03
MNMT+SVA 44.51 60.03 4476 40.40

MNMT+SVA+SCA 4485 60.35 4490 4041

Table 2: Translation performance when using manual word alignments

6 Related Work

NMT has been improved by introducing a supervised cross-lingual attention mechanism trained with
constraints based on automatic or manual word alignments between source and target language words.
Mi et al. (2016) and Liu et al. (2016) have proposed supervised cross-lingual attention mechanisms for
RNN-based NMT models, and Garg et al. (2019) have proposed one for a Transformer-based NMT
model. Note that, as far as we know, supervised cross-lingual attention mechanisms have not been
applied to MNMT.

Recently, some studies have proved the effectiveness of images for machine translation (Elliott, 2018;
Caglayan et al., 2019). Various models have been proposed for MNMT. In the early days, RNN-based
MNMT was a dominant architecture (e.g., (Calixto et al., 2017; Caglayan et al., 2017; Delbrouck and
Dupont, 2017)) that extended RNN-based NMT (Bahdanau et al., 2015). In recent years, Transformer-
based MNMT models have been actively studied (e.g., (Helcl et al., 2018; Libovicky et al., 2018;
Gronroos et al., 2018; Ive et al., 2019; Zhang et al., 2020)), based on Transformer NMT (Vaswani et
al., 2017). Most MNMT models have incorporated an input image’s features with a visual attention
mechanism. Some studies have introduced a visual attention mechanism that captures relationships be-
tween source language words and image regions (Delbrouck and Dupont, 2017; Zhang et al., 2020),
while others have used a visual attention mechanism that captures relationships between target language
words and image regions (Calixto et al., 2017; Helcl et al., 2018; Libovicky et al., 2018; Ive et al., 2019;
Takushima et al., 2019). Note that these visual attention mechanisms were trained in an unsupervised
manner, and, as far as we know, a supervised visual attention mechanism has not yet been proposed.

7 Conclusion

We have proposed an MNMT supervised visual attention mechanism that generates supervisions for
visual attentions from manual alignments between words in a sentence and their corresponding regions of
an image and trains visual attentions of an MNMT model’s encoder from the supervisions. Experiments
showed that our proposed supervised attention mechanism improved a Transformer-based MNMT model
on English-German and German-English translation tasks using the Multi30k dataset and on English-
Japanese and Japanese-English translation tasks using the Flickr30k Entities JP dataset.

In future work, we will explore our proposed supervised visual attention mechanism’s effectiveness
for other Transformer-based MNMT models.
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