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Abstract

Emotion detection in conversations (EDC) is to detect the emotion for each utterance in conver-
sations that have multiple speakers. Different from the traditional non-conversational emotion
detection, the model for EDC should be context-sensitive (e.g., understanding the whole con-
versation rather than one utterance) and speaker-sensitive (e.g., understanding which utterance
belongs to which speaker). In this paper, we propose a transformer-based context- and speaker-
sensitive model for EDC, namely HiTrans, which consists of two hierarchical transformers. We
utilize BERT as the low-level transformer to generate local utterance representations, and feed
them into another high-level transformer so that utterance representations could be sensitive to
the global context of the conversation. Moreover, we exploit an auxiliary task to make our model
speaker-sensitive, called pairwise utterance speaker verification (PUSV), which aims to classify
whether two utterances belong to the same speaker. We evaluate our model on three benchmark
datasets, namely EmoryNLP, MELD and IEMOCAP. Results show that our model outperforms
previous state-of-the-art models.

1 Introduction

Oh	Monica,	we	are	so
sorry.	[Sadness]

Monica

Rachel

Pheobe

And	then	for	forgetting	to
invite	you	to	it.	[Neutral]

Well	first,	for	forgetting	to
throw	you	...	[Sadness]

Phoebe!	Rachel!	It's
Monica!	I	wonder	...	[Joy] For	what?	[Joy]

You	al-you	already	had	it?
[Surprise]

Rachel

Monica Pheobe

Monica

Well,	we	called	everyone
in	...	[Neutral]

Figure 1: An example of emotion detection in conversations.

Emotion detection in conversations (EDC), whose objective is to detect the emotion for each utterance
in conversations (Wen and Wan, 2014; Li et al., 2015), has received increasing attention in the natural
language processing (NLP) community (Majumder et al., 2019; Zhong et al., 2019; Ghosal et al., 2019)
due to its widely applications such as opinion mining (Cambria et al., 2017) and social media analy-
sis (Majumder et al., 2019). As illustrated in Figure 1, there may be multiple speakers and utterances in
the conversation and an EDC model needs to detect the emotion for each utterance from these speakers.
Therefore, different from the traditional non-conversational emotion detection, the emotion of an utter-
ance usually depends on the context of the whole conversation. In addition, the personality of a speaker
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High-level	Transformer

Low-level	Transformer	(BERT)

Utterance	2 Utterance	NUtterance	1 ...

MLP MLP

Biaffine Biaffine

Biaffine

...

EDC EDCPUSV

PUSV PUSV

Figure 2: The high-level overview of our model HiTrans. EDC represents Emotion Detection in Conver-
sations. PUSV represents Pairwise Utterance Speaker Verification.

may sometimes influence the emotion of an utterance. Follow previous work (Zhang et al., 2019), we
call such characteristics as context sensitivity and speaker sensitivity.

Previous studies for EDC can be roughly divided into two categories, namely sequence-based methods
and graph-based methods. Sequence-based methods treat the EDC task as a sequence labeling problem
and assign an emotion label to each utterance (Poria et al., 2017; Majumder et al., 2019; Jiao et al., 2019).
They usually leverage end-to-end neural sequence labeling models such as long short-term memories
(LSTMs) (Poria et al., 2017) and gated recurrent units (GRUs) (Majumder et al., 2019; Jiao et al., 2019),
which are capable of capturing long-distance context information from conversations. However, such
methods usually neglect the relationships between utterances and speakers.

In contrast, graph-based methods model the context information and utterance-speaker relationships
by constructing heterogeneous graphs that take utterances and speakers as vertices and their relationships
as edges (Ghosal et al., 2019; Zhang et al., 2019). Then graph convolutional networks (Kipf and Welling,
2017; Zhang et al., 2018) are applied to propagate information among the utterance and speaker vertices.
Therefore, the EDC task can be cast as a classification problem for the utterance vertices in the graph.
Although graph-based methods have many advantages, it needs manually-defined graph structures and it
may also suffer from the sparsity of graphs.

In this paper, we follow the line of sequence-based methods and propose a transformer-based context-
and speaker-sensitive model for EDC, namely HiTrans, which consists of two hierarchical transform-
ers (Vaswani et al., 2017), as shown in Figure 2. First, we utilize the pre-trained bidirectional transformer
encoder (BERT) (Devlin et al., 2019) to generate local utterance representations. Then another high-level
transformer is used to capture the global context information in conversations. On top of the model, a
multi-layer perceptron (MLP) is used to determine the emotion of an utterance based on its representa-
tion. To make our model speaker-sensitive, we employ a biaffine classifier (Dozat and Manning, 2017)
to classify whether two utterances belong to the same speaker, called pairwise utterance speaker verifi-
cation (PUSV). Therefore, our model performs multi-task learning (Caruana, 1997; Liu et al., 2017) to
learn from both the EDC and PUSV tasks.

We conduct experiments on three benchmark datasets to verify our models, including EmoryNLP (Za-
hiri and Choi, 2018), MELD (Poria et al., 2019) and IEMOCAP (Busso et al., 2008). The results show
that our model outperforms the previous state-of-the-art models (Poria et al., 2017; Majumder et al.,
2019; Ghosal et al., 2019; Zhang et al., 2019; Zhong et al., 2019), and improves the F1s for three bench-
mark datasets by about 2.4%, 2.5% and 0.3% absolutely. Empirical analysis shows than the PUSV task
facilitates the EDC task significantly, improving the F1s by about 1.6%, 0.8% and 1.2% respectively.
Experimental results demonstrate the effectiveness of our motivation that models the context sensitivity
via transformers and models the speaker sensitivity via an auxiliary task, PUSV.

Our contributions are summarized as follows:
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• We propose a hierarchical transformer-based model for emotion detection in conversation, which
consists of a low-level transformer for generating local utterance representations, and a high-level
transformer for capturing the global context information in a conversation.
• We exploit an auxiliary task to classify whether two utterance belong to the same speaker to make

our model speaker-sensitive, called pairwise utterance speaker verification (PUSV).
• Experimental results on three benchmark datasets show that our model outperforms the state-of-

the-art models.

2 Related Work

Emotion detection has received increasing attention in recent years. NLP researchers has organized a
number of competitions and published several datasets for emotion detection from different granularities
of text such as documents (Alm et al., 2005), sentences (Li et al., 2015) and short text (Wang et al.,
2012). Besides traditional emotion detection from the static text, conversational emotion detection has
also become a research hotspot and many publicly available datasets have been released (Zahiri and Choi,
2018; Poria et al., 2019). Different from traditional emotion detection, there are two characteristics
that play important roles in conversational emotion detection. First of all, the context information of
the conversation is crucial since speaker’s emotions may change during the conversation. Second, the
emotions of utterances may be influenced by speakers’ personalities sometimes. In the following, we
will give an overview of the methods for EDC in previous work.

In early studies, emotion detection in textual conversations is often addressed via feature engineering
such as lexicon and acoustic features (Forbes-Riley and Litman, 2004; Devillers and Vidrascu, 2006). As
deep learning develops, recent studies begin to treat the EDC task as a sequence labeling problem (Laf-
ferty et al., 2001; Ma and Hovy, 2016) and leverage deep recurrent neural networks (RNNs) to handle
it (Poria et al., 2017; Tzirakis et al., 2017; Majumder et al., 2019; Jiao et al., 2019). Sequence-based ap-
proaches are able to effectively capture contextual utterance information and long-distance dependency
in conversations. Our work also follows this line of work, but employs a more advanced model, namely
the transformer (Vaswani et al., 2017). To our knowledge, there is only one prior work that uses the
transformer for EDC (Zhong et al., 2019). They focus on knowledge enrichment for the transformer,
while we focus on building a context- and speaker-sensitive transformer.

Another line of prior work paid attention to integrate speaker information into the model for EDC,
as speaker information is able to affect EDC in a considerable extent (Hazarika et al., 2018a; Hazarika
et al., 2018b). Majumder et al. (2019) propose an RNN-based EDC model to track both local and
global state dynamically. In addition, graph-based approaches have also been employed for EDC, since
they are capable of modeling context- and speaker-sensitivity (Zhang et al., 2019; Ghosal et al., 2019).
For example, Zhang et al. (2019) build a conversational graph, where the nodes represent utterances
or speakers and the edges represent the dependencies between the speakers and utterances. Then they
leveraged a graph convolutional network (Kipf and Welling, 2017; Zhang et al., 2018) to propagate
context and speaker information among the utterances. In this work, we explore speaker information for
EDC in an alternative way, proposing an auxiliary task to utilize speaker information and improving our
model by multi-task learning (Caruana, 1997; Liu et al., 2017).

3 Approach

First of all, we define the EDC task as below: given a conversation with N consecutive utterances
{u1, u2, · · · , uN} and M speakers {s1, s2, · · · , sM}, the objective of the EDC task is to predict the
emotion label for each utterance, such as Joy and Sadness. Each utterance ui is uttered by one speaker
sj . The high-level architecture of our model HiTrans is shown in Figure 2, which stacks a high-level
transformer on a low-level transformer. The low-level transformer generates local utterance representa-
tions (Section 3.1) and the high-level one further embeds global context information into utterance rep-
resentations (Section 3.2). On top of the model, a biaffine classifier performs pairwise utterance speaker
verification (Section 3.4) as an auxiliary task to facilitate an MLP to do emotion detection (Section 3.3).
We will introduce the details of each part in the following sections.
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Low-level	Transformer	(BERT)

Phoebe!	Rachel!	It's
Monica!	I	wonder	...

Oh	Monica,	we	are	so
sorry.

...

...

(a)

Low-level	Transformer	(BERT) Low-level	Transformer	(BERT)

High-level	Transformer	

Chunk	1 Chunk	2

(b)

Figure 3: (a) Utterance encoding with the low-level transformer. (b) Context encoding with the high-level
transformer.

3.1 Utterance Encoding

As shown in Figure 3(a), we leverage BERT (Devlin et al., 2019) as the low-level transformer to en-
code utterances since it has been demonstrated to be the-state-of-art model for representation learning
in NLP (Wadden et al., 2019; Li et al., 2019). Inspired by Liu and Lapata (2019), we insert the token
CLS at the beginning of each utterance and concatenate several utterances in a conversation together as
the input of BERT. Concretely, given N utterances {u1, u2, · · · , uN}, we insert a token CLSi before the
utterance ui and obtain a sequence {CLS1, u1, CLS2, u2, · · · , CLSN , uN}. Then BERT takes the se-
quence as input and outputs a sequence {tCLS1 ,Tu1 , tCLS2 ,Tu2 , · · · , tCLSN

,TuN }, where tCLSi ∈ Rh

denotes the representation of the token CLSi. Tui ∈ R|ui|×h denotes the representations of all the |ui|
words in the utterance ui. After that, we use the vector tCLSi as the representation of the utterance ui.

Since BERT has a length limitation (512 tokens) for input, it is infeasible to handle all the utterances in
a conversation simultaneously if the total length of all the utterances exceeds the limitation. To solve this
problem, we split the utterances in an overlong conversation into chunks whose lengths are less than 512
tokens, as shown in Figure 3(b). Then each chunk is fed into BERT to obtain the representation for each
utterance in this chunk. For example, assuming that there are 3 utterances, {u1, u2, u3}, in a conversation.
The length of u1 and u2 is no more than 512, but the length will exceed if adding u3. Therefore, we will
take u1 and u2 as a chunk and input it into BERT first, and then take u3 as another chunk. In this way,
we can obtain the representations t[CLS]1 , t[CLS]2 and t[CLS]3 for u1, u2 and u3 respectively. However,
the representation t[CLS]3 of the utterance u3 has no sense about t[CLS]2 and t[CLS]3 since they are input
into BERT separately. Thus, the global context information in the conversation is not able to be captured.
We will explain how to solve this problem in the next section.

3.2 Context Encoding

To capture the global context information in a conversation, we stack another transformer on
top of BERT as shown in Figure 3(b). The high-level transformer takes the representations
{t[CLS]1 , t[CLS]2 , · · · , t[CLS]N } of all the utterances {u1, u2, · · · , uN} as input. Following the stan-
dard transformer (Vaswani et al., 2017), we also add position embeddings to the utterance representa-
tions to model the relative positions of the utterances in the conversation. If the outputs of this trans-
former are denoted as {r1, r2, · · · , rN}, they can be considered as the representations of the utterances
{u1, u2, · · · , uN} and meanwhile, they capture the global context information in the conversation and
long-distance dependency among the utterances, due to the help of self-attention in the transformer.

3.3 Emotion Detection in Conversations (EDC)

When the final representation ri for an utterance ui are ready, we can calculate the probabilities pEDC

of all candidate emotion labels such as Joy, Sadness and Neutral by an MLP:

pEDC = softmax(MLPEDC(ri)). (1)
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3.4 Pairwise Utterance Speaker Verification (PUSV)

The objective of PUSV is to classify whether two utterances ui and uj in a conversation are from the
same speaker. The objective of PUSV is to classify whether two utterances ui and uj in a conversation
are from the same speaker. Inspired by Dozat and Manning (2017), we apply a biaffine classifier to
perform the PUSV task. In addition, we adopt an MLP before feeding the representations ri and rj of
ui and uj into the biaffine classifier, formalized as:

hi = MLPPUSV (ri)

hj = MLPPUSV (rj)

pPUSV = softmax(h>i W1hj +W2(hi ⊕ hj) + b)

(2)

where W1 and W2 respectively denote the weight matrix of the bi-linear and the linear terms and b is
the bias item in the biaffine classifier, ⊕ denotes the concatenation operation, and pPUSV indicates the
probabilities that two utterances ui and uj belong to the same speaker or not.

3.5 Training

We optimize the model by minimizing the cross-entropy losses of both the EDC and PUSV tasks. For a
single conversation, the objective function of the EDC task is defined as follows:

LEDC = − 1

N

N∑
i=1

log pEDC
yi , (3)

where N is the number of utterances in the conversation and yi is the gold emotion label for the i-th
utterance. For the PUSV task, the objective function is defined as below:

LPUSV = − 1

C2
N

N∑
i=1

N∑
j=1,j<i

log pPUSV
yi,j , (4)

where C2
N is the pairwise-utterance combination number in the conversation, and yi,j is the ground-truth

answer about whether two utterances ui and uj come from the same speaker. Finally, we employ multi-
task learning (Caruana, 1997; Liu et al., 2017) between the EDC and PUSV tasks to train our model.
Instead of using constant weights for the losses of these tasks, we employ dynamic weights during the
training stage following the method of homoscedastic uncertainty (Kendall et al., 2018). The final loss
is formalized as:

L =
1

2σ21
LEDC +

1

2σ22
LPUSV + log σ1σ2, (5)

where σ1 and σ2 are the standard deviations of the EDC and PUSV losses from the training instances in
the conversation, respectively.

4 Experiments

4.1 Datasets

We evaluate our model on three benchmark datasets, namely MELD (Zahiri and Choi, 2018),
EmoryNLP (Zahiri and Choi, 2018) and IEMOCAP (Busso et al., 2008), following previous
work (Ghosal et al., 2019; Majumder et al., 2019; Zhong et al., 2019). Table 1 shows the statistics
of the three datasets. MELD (Poria et al., 2019) is a multi-modal dataset collected from a famous TV
show named “Friends”. There are seven emotion labels in the dataset, including anger, sadness, disgust,
surprise, fear, joy and neutral. EmoryNLP (Zahiri and Choi, 2018) is also collected from the TV show
scripts of “Friends”. The difference lies in emotion labels, which include neutral, happiness, sadness,
anger, frustrated and excited. Different from the above datasets, IEMOCAP (Busso et al., 2008) consists
of two-party conversations of ten speakers. Eight of them only appear in the train set, and the remaining
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Dataset
Conversations Utterances Speakers/Conv Utterances/Conv

train val test train val test train val test train val test
EmoryNLP 659 89 79 7,551 954 984 3.5 3.1 3.4 11.5 10.7 12.5
MELD 1,028 114 280 9,989 1,109 2,610 2.7 3.0 2.7 9.7 9.7 9.3
IEMOCAP 120 - 31 5,810 - 1,623 2.0 - 2.0 48.4 - 52.4

Table 1: Statistics of the datasets. The last two columns denote the average speaker number and utterance
number in a conversation.

Dataset b lr w
Low-level Transformer High-level Transformer
h hd ff l h hd ff l

EmoryNLP 8 2e-5 1e-5 768 12 3072 12 768 4 768 1
MELD 8 2e-5 1e-5 768 12 3072 12 768 4 768 1
IEMOCAP 4 2e-5 1e-5 768 12 3072 12 768 6 1024 2

Table 2: Hyper-parameter settings. b: batch size, lr: learning rate, w: weight decay rate, h: hidden size,
hd: the number of self-attention heads, ff : feed-forward size, l: the number of layers.

two speakers appear in the test set. IEMOCAP contains video, audio and text transcriptions. The utter-
ances in the dataset are annotated with one of six emotion labels: happy, sad, excited, frustrated, angry
and excited. Since there is no validation set in IEMOCAP, we split a subset from the training dialogues
as the validation set.

4.2 Hyper-parameter Settings and Evaluation Metrics

We use PyTorch1 to implement our model2. We tune the hyper-parameters using the validation sets of
the datasets. The best value is listed in Table 2. We adopt the Adam optimizer with the batch size 8 or 4,
the learning rate 2e−5 and the weight decay rate 1e−5 throughout all the experiments. Since we use the
“bert-base-uncased” version3 as our low-level transformer, all the settings are the same with BERT. For
the high-level transformer, we set the hidden size, the number of self-attention heads, the feed-forward
size and the number of layers as 768, 4, 768 and 1 for the model using in the EmoryNLP and MELD
datasets, and 768, 6, 1024 and 2 for the model using in the IEMOCAP dataset. In terms of evaluation
metrics, we exploit the standard weighted macro F1-score following previous work (Ghosal et al., 2019;
Majumder et al., 2019; Zhong et al., 2019).

4.3 Baselines

We compare our model with the previous state-of-the-art models for emotion detection in conversations,
which are listed as below: (1) TextCNN (Kim, 2014), a convolutional neural network for utterance-
level classification without using contextual information in the conversation. (2) c-LSTM (Poria et al.,
2017), a hierarchical LSTM model, where both contextual and utterance-level information are adopted.
(3) DialogueRNN (Majumder et al., 2019), a sequence-based model that is composed of three GRUs
to track the states of speakers, global contexts and historical emotions respectively. (4) KET (Zhong
et al., 2019), a transformer-based model which exploits external commonsense knowledge to enhance
contextual utterance representations. (5) DialogueGCN (Ghosal et al., 2019), a graph-based model
where the nodes represent individual utterances and the edges represent the dependency between the
speakers of the utterances. (6) ConGCN (Zhang et al., 2019), a graph-based model which exploits the
GCN to propagate the information between utterance nodes and speaker nodes.

1https://pytorch.org
2The code is available at https://github.com/ljynlp/HiTrans
3https://github.com/huggingface/Transformers
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Method EmoryNLP MELD IEMOCAP

TextCNN (Kim, 2014) 32.59 55.02 48.18
c-LSTM (Poria et al., 2017) 32.89 56.44 54.95
DialogueRNN (Majumder et al., 2019) 31.70 57.03 62.75
DialogueGCN (Ghosal et al., 2019) – 58.10 64.18
KET (Zhong et al., 2019) 34.39 58.18 59.56
ConGCN (Zhang et al., 2019) – 59.40 –

HiTrans∗ 36.60 61.66 63.81
HiTrans 36.75 61.94 64.50

Table 3: The F1s (%) on the test sets of the EmoryNLP, MELD and IEMOCAP datasets. Result with ∗

is based on the fixed-weight loss (0.5LEDC + 0.5LPUSV ) compared with Equation 5.

Method EmoryNLP MELD IEMOCAP

HiTrans 36.75 61.94 64.50
HiTrans-PUSV 35.19 (-1.56) 61.12 (-0.82) 63.39 (-1.11)
HiTrans-PUSV+SE 36.45 (-0.30) 61.84 (-0.10) 60.89 (-3.61)

Table 4: Investigation for the effect of the PUSV task. The numbers in the brackets denote the decreases
compared with the first row.

5 Results and Analyses

5.1 Comparisons with Previous SOTA Models
Table 3 shows the results of the test sets for the EmoryNLP, MELD and IEMOCAP datasets. As seen, our
model achieves better performance than the previous state-of-the-art systems and outperforms the KET
by 2.36% in the EmoryNLP dataset, the ConGCN by 2.54% in the MELD dataset and the DialogueGCN
by 0.32% in the IEMOCAP dataset. From Table 3, we also observe that graph-based models (Ghosal et
al., 2019; Zhang et al., 2019) generally perform better than sequence-based models (Kim, 2014; Poria et
al., 2017; Majumder et al., 2019). This demonstrates that conversational emotion detection may benefit
from context and speaker information. Therefore, our model that utilizes both kinds of information will
mitigate the shortages of sequence-based models. Moreover, a noticeable observation is that our model
performs better than the knowledge-enriched model, KET, even without using any external knowledge.
On the other hand, this suggests that there is still a certain space to improve our model with the help of
external knowledge. Finally, using the dynamic weights instead of static weights for the loss function
gives 0.15% increase on EmoryNLP, 0.28% on MELD and 0.69% on IEMOCAP.

5.2 Investigation for the Effect of the PUSV task
To demonstrate the effectiveness of the PUSV task, we build two baselines by ourselves, namely
HiTrans-PUSV and HiTrans-PUSV+SE. In HiTrans-PUSV, we remove the modules that are related
to the PUSV task. In HiTrans-PUSV+SE, we employ the same hierarchical transformer architecture for
modeling utterances and conversations, but replace the modules related to the PUSV task with speaker
embeddings. Concretely, we design a speaker embedding (SE) for every speaker and add the speaker
embedding to every utterance representation in order to allow our model to be speaker-sensitive.

As shown in Table 4, HiTrans-PUSV+SE achieves better performance on EmoryNLP and MELD
compared with HiTrans-PUSV. On these two datasets, the F1 improvements are 1.26% and 0.72%, re-
spectively. Note that HiTrans-PUSV+SE attains a lower F1 on the IEMOCAP dataset, which may be
because the speakers in the test set do not appear in the train set. Thus, untrained speaker embeddings
in the test set become noise and are apt to influence the performance. By contrast, HiTrans outperforms
HiTrans-PUSV by 1.56%, 0.82% and 1.11%, and surpasses HiTrans-PUSV+SE by 0.30%, 0.10% and
3.61% in the three datasets. This demonstrates the advantages of the PUSV task since it only needs
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Figure 4: (a) Effect of the speaker number. (b) Effect of the utterance number. (c) Performance of each
emotion category. The results come from the experiments in the MELD dataset.

Low-level	Transformer	(BERT) Low-level	Transformer	(BERT)

High-level	Transformer	

Chunk	1 Chunk	2

High-level	Transformer	

(a)

Figure 3(b) Figure 5(a)
57.5
57.6
57.7
57.8
57.9
58.0
58.1
58.2

F1

(b)

Figure 5: Performance comparison between the strategy of context encoding in Figure 3(b) and the
strategy in Figure 5(a).

the information of speakers but does not need to train the representations of speakers. Therefore, it still
works well for the situation that speakers do not occur in the training set.

5.3 Investigation for the Effect of the Speaker, Utterance Number and Emotion
In this section, we investigate the effect of the number of speakers and utterances for emotion detection
in conversations. Figure 4(a) shows the F1 change trend as the number of speakers increases. As seen,
if the number of speakers increases, the F1 generally decreases, which demonstrates that more speakers
bring more challenges for the model to correctly detect emotions in conversations.

In addition, we also investigate the effect of the utterance number for EDC, and the results are shown
in Figure 4(b). As seen, the F1 declines as the number of utterances in a conversation goes up. This
indicates that it is more difficult for the model to detect emotions correctly if there are more utterances in
a conversation. Overall, the observations in Figure 4 are consistent with human intuitions that the more
the numbers of speakers or utterances are, the harder emotion detection becomes.

Moreover, we show the performance of each emotion category for the MELD dataset in Figure 4(c).
Especially, our model achieves low performances on the Fear and Disgust emotions, which may be due
to imbalanced data, since there are only 2.68% and 2.71% instances labeled with Fear and Disgust on
the train set.

5.4 Comparing the Strategies for Context Encoding
Recall that in Section 3.1 and 3.2, we split the utterance sequence whose length exceeds 512 into chunks.
Then each chunk is input into BERT to obtain the representations of the utterances in this chunk. After-
wards, we use another high-level transformer to encode the representations of all the utterances again, in
order to make them be aware of each other. Therefore, the whole context information can be learnt by
this way.

To show the importance of the whole context information and the effectiveness of our method. We
build another strategy, as shown in Figure 5(a). In this strategy, the representations of the utterances in
different chunks are input into the high-level transformer separately. Thus, the utterances in a chunk are
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Chandler:	Well,	we’re	really	not	that	close.	Okay,	so
Guess	this	is	uh,	good-bye	then.

Janice:	Oh	no!	No!	It’s	not	good-bye,	I’m	not
leaving	until	you	get	on	the	plane.

Janice:	Y’know	?

Janice:	Oh	please.

Janice:	Every	moment	is	precious.

Janice:	Besides,	somebody	had	to	ride	in	that	other
taxi	with	your		luggage,	and	...

Chandler:	Y’know,	you	really	didn’t	have	to	take
me	to	the	airport.

PUSVEDC

neutral

neutral

sadness

neutral

sadness

neutral

neutral

Figure 6: Case study for the predictions of the EDC and PUSV tasks. The label in red denotes the
incorrect emotion label predicted by our model. The edges in the PUSV predictions represent our model
predicts two utterances belong to the same speaker.

agnostic to the ones in other chunks. As a result, the whole context information cannot be embedded into
the utterance representations. Here we study the performance gap between two strategies on the MELD
dataset. As shown in Figure 5(b), the F1 of the strategy in Figure 3(b) is about 0.3% higher than the one
in Figure 5(a), which demonstrates that the whole context information is helpful for the model to detect
emotions in conversations.

5.5 Case Study for the Predictions of the EDC and PUSV Tasks
For better understanding the interaction between the EDC and PUSV tasks, we select a case from the
MELD dataset and visualize the predictions for both tasks. As shown in Figure 6, our model predicts
the 2nd, 3rd, 4th and 5th utterances belong to the same speaker “Janice”, and predicts the 1st, 6th and
7th utterances belong to the same speaker “Chandler”. Therefore, our model links the 7th utterance to
the incorrect speaker “Chandler”. As a result, it is influenced by such prediction when doing the EDC
prediction. As seen, the emotion label of the 7th utterance is predicted as “neutral” rather than the correct
one “sadness”. This may be because the speaker “Chandler” generally expresses the “neutral” emotion
in this conversation. If our model is able to link the 7th utterance to the correct speaker “Janice”, it may
perform a valid prediction since the speaker “Janice” has expressed the emotion “sadness” before.

6 Conclusion

In this work, we propose a transformer-based context- and speaker-sensitive model for emotion detection
in conversations. We evaluate our model on three benchmark datasets and demonstrate its effectiveness
compared with previous state-of-the-art models. Through experiments and analyses, we find that our
model is able to effectively capture the whole context information of conversations and the speaker
information. The multi-task learning between the EDC and PUSV tasks indeed helps our model to
improve the performance. In the future, we will explore how to integrate our model with graph-based
models to better emotion detection in conversations.
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