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Abstract

Compositionality is a widely discussed property of natural languages, although its exact def-
inition has been elusive. We focus on the proposal that compositionality can be assessed by
measuring meaning-form correlation. We analyze meaning-form correlation on three sets of lan-
guages: (i) artificial toy languages tailored to be compositional, (ii) a set of English dictionary
definitions, and (iii) a set of English sentences drawn from literature. We find that linguistic phe-
nomena such as synonymy and ungrounded stop-words weigh on MFC measurements, and that
straightforward methods to mitigate their effects have widely varying results depending on the
dataset they are applied to. Data and code are made publicly available.

1 Introduction

Compositionality is one of the core aspects of language: when speaking, we weave complex propositions
out of unanalyzable atoms of meaning. This intricate interplay between symbols and sentences has been
an important point of research in areas ranging from philosophy of language (Frege, 1884) to distribu-
tional semantics (Baroni et al., 2014), and has been held as one of the key characteristic differentiating
human language from animal communication (Hockett, 1960). Compositionality in natural language is
usually captured by the Principle of Compositionality. This principle, often attributed to Frege although
this paternity is debatable (Janssen, 2012), has been worded in different ways; let us quote a classic text-
book (Gamut, 1991, p.26): “the meaning of a composite expression must be wholly determined by the
meanings of its composite parts and of the syntactic rule by means of which it is formed”.

One suggestion, that can be traced back to Kirby (1999), and that was fully operationalized in Kirby et
al. (2008), is that compositionality can be measured as a correlation between meaning and surface form
(i.e., the sequence of tokens). If we consider sentences such as “I saw a black cat” and “I saw a black
crow”, we see that minute changes in the form of a sentence entail that its meaning does not change too
much. Compare these examples to sentences such as “I saw a white crow”, or “He saw a white crow”:
the gradual alteration of the form of a sentence also gradually alters its meaning. Provided that we can
measure similarity between any two sentences forms, and between any two sentences meanings, this
observation can be rephrased as follows: the distance between two sentences meanings should correlate
with the distance between their forms. We refer to this as meaning-form correlation, or MFC for short.

One area where MFC has been employed as a way to both detect and quantify compositionality is the
field of emergent communication (Kirby et al., 2008; Kirby et al., 2015; Spike, 2016; Ren et al., 2020,
a.o.) which studies agents (artificial or human) who have to produce messages in order to express well
defined meanings. To estimate the compositionality of a set of message-meaning pairs, one can compute
a Pearson or Spearman correlation score between textual distances and meaning distances. Additionally,
a permutation test (over random permutation of the message-meaning assignment) can produce a p-value
indicating whether the correlation is statistically significant as well as a z-score that quantifies in number
of standard deviations the difference between the correlation found in the language and the correlation of
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random assignments. This is done among others by Kirby et al. (2015), Gutiérrez et al. (2016), or Spike
(2016) using a Mantel test (Mantel, 1967), which is based on Pearson’s notion of correlation.

To the extent of our knowledge, no study has investigated the validity of this methodology. Is MFC a
coherent method of measuring compositionality, especially when it comes to natural language? Or do
other factors weigh on the measurements and obfuscate the results? If so, can we identify these factors,
and can we control for them? To address this gap, we therefore study how MFC behaves, both in a
controlled setup based on artificial data and in more realistic scenarios involving natural language.1

2 MFC and Artificial Languages

MFC-based assessments of compositionality implicitly assume that any change in form should corre-
spond to some change in meaning. This can however be challenged: for instance, synonyms and para-
phrases will introduce changes in form that should not entail change in meaning. Thus we expect MFC to
be sensitive to such phenomena, and this in turn suggests that factors such as synonymy could overpower
the effect of compositionality that we wish to detect using MFC. To approach this question, we gener-
ate artificial languages containing varying degrees of compositionality as well as potential confounding
factors.

2.1 Methodology
Our experimental protocol consists in generating artificial languages with varying properties, and see how
these properties impact MFC measurements. All of our artificial languages are sets of message-meaning
pairs. We represent meanings as binary vectors of five components, whereas messages are sequences of
symbols. We refer to each of the five semantic dimensions as a concept. In most cases, the value of a
concept will be denoted in a message by a specific symbol, which we call its expression.

As we are interested in whether MFC accurately captures compositionality, we design languages where
some of the concepts are systematically expressed conjointly by unanalyzable holistic expressions. We
generate languages where the values of the first h concepts are systematically expressed through a single
expression, and the other 5−h are left untouched, with h varying from 1 to 5. When h = 1, the language
is entirely compositional; when h = 5, the language is entirely holistic.

We also consider synonymy as a possible confounding factor: as previously noted, synonyms entail a
variation in form that is not coupled with a variation in meaning. To model this phenomenon, we generate
languages in which any single value of a concept can equally be expressed by s different expressions,
with s ranging from 1 to 3. As a consequence, when s = 1, the language exhibits no synonymy.

Moreover, we expect that MFC measurements might be impacted by the presence of semantically
ungrounded elements—i.e., elements not associated with any concept or combination of concepts. We
therefore generate languages where u specific ungrounded symbols appear once in every message at
randomly chosen positions, with u varying between 0 and 3. In languages where u = 0, the language
contains only semantically grounded expressions.

Finally, we consider the case of paraphrases, sentences of different forms but equivalent meanings.
For a language to contain paraphrases, it must be able to express a single meaning with different mes-
sages. This is the case in our artificial languages that exhibit synonymy or contain semantically un-
grounded elements: the variation they introduce allow distinct messages to have the same semantic. We
thus generate languages for which p messages are produced for each meaning before dropping possible
meaning-message pair duplicates. p ranges from 1 to 3. If p = 1, the language contains no paraphrase.

We test all possible combinations of these four parameters. We also include random baselines where
we assign meanings to random sequences of symbols, either of an arbitrarily fixed length of 5 symbols,
or of a length chosen uniformly between 1 and 10. We generate 50 artificial languages for every combi-
nation of parameters to help us distinguish the stable effects of our parameters from spurious accidents
due to our random generation process. We refer to each of the 50 generation processes as a separate run.
We compute Mantel tests using the Hamming distance between meaning vectors—i.e., the number of
differing components—and the Levenshtein distance over messages, normalized by the maximum length

1Data and code are publicly available at https://github.com/TimotheeMickus/mf-correl.
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(a) Compositionality
NB: No h = 5 is found significant.

(b) Synonymy (c) Ungrounded elements (d) Paraphrase

Figure 1: MFC for artificial languages, grouped by parameter. (significant items only, avg. of 50 runs)

of the two messages. For each language, we study the corresponding p-value and the correlation score.
For every combination of parameters, we study its average p-value and correlation score across all runs.

One limitation of this methodology is that our modeling may not comply fully with natural language—
in particular, the existence of exact synonyms is debatable; likewise, natural function words do possess
some semantic content, whereas our ungrounded symbols do not. Neither do we claim to conduct an
exhaustive study of all relevant phenomena: we leave other likely factors such as multi-word expressions
to future work.

2.2 Results

A visualization of the results for the compositional variation factors is shown in Figure 1. Each subfigure
corresponds to a different factor, and shows the distribution of MFC scores according to the possible
levels for that factor. As expected, random baselines were found to be insignificant (p-value ≥ 0.05).

If we focus on compositionality (Figure 1a), we do see that less compositional languages yield lower
MFC scores. When we consider the correlation values averaged over all 50 runs, we see that no holistic
parameter configuration (where h = 5) is found to be significant, resulting in the missing boxplot in
Figure 1a. 1st, 2nd and 3rd quartiles are found to consistently decrease for higher values of h.2

Synonymy and semantically ungrounded elements are found to be confounding factors (Figures 1b
and 1c). Higher values for the s and u parameters systematically entail that the distribution of MFC

scores (averaged over 50 runs) is globally lower, as 1st, 2nd and 3rd quartiles consistently decrease.
Lastly, for non fully-holistic settings (h < 5), we observe that some combinations of factors fail to

produce significant MFC scores. In 15.2 % of all possible combinations, as this persists even when av-
eraged over all runs, we conclude that this is an actual effect of the interaction of factors. All these
languages are defined with at least one extreme factor: viz. either three synonyms per concept (s = 3),
three ungrounded symbols (u = 3) or four concepts merged into a single expression (h = 4); moreover
all of them (except for two languages defined with h = 4, s = 3 and either u = 2 or u = 3) con-
tained a single message per meaning (p = 1); confirming this trend, we find that all non fully-holistic
languages with up to three messages per meaning (p = 3) were found to have a significant MFC on aver-
age. These shared characteristics can hint at the fact that confounding factors can significantly obfuscate
the compositional structure of the messages. An alternative explanation could be that languages with-

2Some languages with h = 5, which are fully holistic, were found to yield significant MFC. Most of these also included
multiple ungrounded symbols (u ≥ 1). This can be explained by the effects of paraphrases: in holistic languages with mul-
tiple messages per meaning containing ungrounded symbols, paraphrastic messages for a given meaning differ only by their
ungrounded symbols, whereas messages for different meanings will also differ by their grounded symbols—leading to nonzero
correlation. However, on average over all 50 runs, the p-value for any of these settings is below our threshold.
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Coeffs. Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.402 781 0.001 936 208.07 < 2 · 10−16

h = 2 −0.016 909 0.001 577 −10.72 < 2 · 10−16

h = 3 −0.057 501 0.001 577 −36.46 < 2 · 10−16

h = 4 −0.113 547 0.001 577 −72.00 < 2 · 10−16

h = 5 −0.197 191 0.001 734 −113.75 < 2 · 10−16

s = 2 −0.096 726 0.001 748 −55.34 < 2 · 10−16

s = 3 −0.137 808 0.001 748 −78.85 < 2 · 10−16

u = 1 −0.099 435 0.001 524 −65.26 < 2 · 10−16

u = 2 −0.126 905 0.001 524 −83.29 < 2 · 10−16

u = 3 −0.145 707 0.001 524 −95.63 < 2 · 10−16

p = 2 0.031 989 0.001 354 23.63 < 2 · 10−16

p = 3 0.041 219 0.001 354 30.45 < 2 · 10−16

Table 1: Linear model of correlation with parameters as predictors. Intercept: h = 1, s = 1, u = 0, p = 1.

out paraphrases (p = 1) contain fewer messages and thus yield higher p-values, whereas paraphrases
additionally entail that very low textual distances map to zero meaning distances.

2.3 Discussion & Conclusions

We observed that synonymy (Figure 1b) and ungrounded elements (Figure 1c) seemed detrimental to
MFC scores, whereas the effects of paraphrases were found to be more subtle (Figure 1d). We quantify
this by computing a simple linear model in R (R Core Team, 2018) where the correlation score is the
dependent variable and the values of the four parameters are the predictors; data points correspond to
specific runs. Results are reported in Table 1. While h = 5 was found to be the predictor with the
strongest negative effect on MFC scores, we found that factors s = 3, u = 3 and u = 2 had stronger
effects than h = 4. In short, the model shows that factors such as synonymy impact MFC measurements—
sometimes to a greater extent than compositionality as shown by t-value scores. It also stresses that
paraphrases positively impact MFC scores: in languages where p > 1, any single unreliable message is
less likely to whittle down scores.

In all, our experiment suggests that taking MFC as an indicator for compositionality comes with sig-
nificant challenges. Factors that we expect from natural language, such as ungrounded symbols and
synonyms, obfuscate the clear relationship between compositionality and MFC scores. At times, these
factors can even annihilate MFC scores of compositionally generated languages. Yet compositionality
does impact measurements: therefore, while MFC scores in and of themselves may not be sufficient to
establish or reject the compositionality of a given set of messages, they can serve as a diagnosis tool.

3 MFC and Natural Language: Definitions

The experiments we conducted in Section 2 have revealed that confounding factors can impact MFC

scores on artificial languages. This raises the question of how MFC behaves on natural instances of
compositionality: can the same confounding variables be observed? Is it possible to control for them? In
short, we now aim to translate our results derived from artificial data to natural language data.

Computing Mantel tests for natural examples of composition requires us to select a set of natural lan-
guage expressions for which we can compute semantic distances between any pair. Taking inspiration
from Hill et al. (2016), we use dictionary definitions. Indeed, in dictionaries, the meaning of the word
being defined (or “definiendum”; pl. “definienda”) is arguably also the meaning of the definition gloss.
Hence, we can equate the semantic distance between two glosses to the semantic distance between the
corresponding definienda. Distributional semantics models (Lenci, 2018) allow us to conveniently com-
pute the latter: they represent words as vectors in a space over which we can use metrics such as cosine
similarity or Euclidean distance, and have moreover been found to match human intuitions (Mandera et
al., 2017).
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Figure 2: Meaning distance metrics evaluated on the MEN dataset. (Spearman correlation)

3.1 Methodology

We select definitions from the dataset distributed by Noraset et al. (2017). We restrict ourselves to
definitions of nouns collected from the GCIDE, where the definiendum is among the 100–10 000 most
frequent words of the English Gutenberg corpus.3 This yields 4 123 distinct definienda and 20 109
definitions. We repeat this process five times for all subsequent measurements before averaging results.

One could arguably compute MFC on the basis of human-annotated semantic similarity ratings.
Datasets of such ratings exist (Marelli et al., 2014; Cer et al., 2017, e.g.), but they do not provide a
(dis)similarity between every pair of items as is required to perform a Mantel test. Instead, as mentioned
above, we use distributional semantics models as proxy for meaning representations and use a distance
between word vectors. We consider four sets of pre-trained word embeddings: fastText (Bojanowski et
al., 2017), GloVe 6B and GloVe 840B (Pennington et al., 2014), and word2vec (Mikolov et al., 2013).

We first verify that the semantic distances over these semantic spaces properly anti-correlate to human
similarity ratings: words that humans judge to be highly similar in meaning should not be far from
one another in the embedding spaces. We therefore assess the four sets of word embeddings on a word
semantic similarity benchmark, the MEN dataset (Bruni et al., 2014); for all models, we test the Euclidean
distance and the cosine distance as a distance over vectors. Results in Figure 2 highlight that while all
semantic metrics properly anti-correlate, cosine distance yields higher correlations with human similarity
judgments than Euclidean distance, for all embedding spaces.

While it is most standard to build on cosine (the most common semantic vector similarity metric)
and Levenshtein distance (consistently with artificial language studies), we also consider alternative se-
tups with Euclidean distance, tree-based form metrics and distance normalization. Unlike the artificial
languages we devised earlier, natural language has a rich syntax. It therefore makes sense to assess the
textual similarity of these sentences using syntactically-informed metrics. Thus, in addition to the Leven-
shtein distance over words, we study the Tree Edit Distance (TED) computed with the AP-TED algorithm
(Pawlik and Augsten, 2015) over the corresponding parse trees obtained with the Reconciled Span Parser
(Joshi et al., 2018). As textual distances should arguably not be sensitive to the size of the sentences, we
also consider normalizing them so that the maximum distance between any two definitions is 1.4

To check whether synonymy, ungrounded symbols and paraphrases also impact natural language ex-
amples, we perform simple modifications of our original process. To control for synonymy, we replace
every word by the first lemma of its first synset in WordNet (Fellbaum, 1998), if any such lemma can be
found. To control for ungrounded symbols, we remove stop-words from our definitions; as this results
in definitions that greatly differ from the parser’s training examples, we do not compute TED-based MFC

scores in this case. To control for paraphrases, we redo the selection process, and this time randomly
sample 4 123 items out of the total 20 109 definitions, without the constraint of having only one definition
per definiendum: hence these samples only contain on average 2 507 distinct definienda (standard devi-
ation: ±14.53). We duly note that different definitions correspond to distinct senses of the definiendum
and thus are not strictly speaking paraphrases. However, Arora et al. (2018) show that the embedding

3The GNU Collaborative International Dictionary of English (GCIDE): https://gcide.gnu.org.ua/.
4We normalize Levenshtein distance by the length of the longest of the two items. We normalize TED between F and G by

#F +#G −min
(
h(F), h(G)

)
, where #T corresponds to the size of tree T and h(T ) to its height.
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(d) Controlling for paraphrases

Figure 3: MFC scores for natural language definitions.

of a polysemous word corresponds to a weighted sum of underlying meaning embeddings; thus a word
embedding ought to be matched to the entire set of definitions for the corresponding token. In any event,
we expect these methods to indicate a consistent trend in MFC scores, despite their crudeness.

3.2 Results
We summarize our findings in Figure 3. Figure 3a corresponds to results in the case where no supple-
mentary control is applied. Figures 3b, 3c and 3d highlight the effects of controlling for stop-words,
synonyms, and multiple definitions respectively. Statistically insignificant MFC scores are not displayed.
Standard deviations of MFC scores across the five runs remain below 0.008 and often around 0.005, with
the exception of a few setups when controlling for paraphrases.5

While our crude control methods often produce inconsistent measures, they do suggest that the iden-
tified MFC confounds are noticeably at play in natural language.

As with artificial language experiments above, controlling for stop-words improved MFC measure-
ments in most setups (Figure 3b), yet scores decrease for fastText and word2vec when using cosine and
Levenshtein distances setups. Controlling for synonymy brought very small suggestive MFC increases in
the most standard setup (cosine and non-normalized Levenshtein) but observations across other setups
are not consistent (Figure 3c). Controlling for paraphrases produces consistent and pronounced MFC

improvements on the most standard setup but quite diverse effects elsewhere (Figure 3d).
We also make two general unexpected observations about alternative setups. First, as seen e.g., from

the controlless scenario in Figure 3a, normalizing textual metrics can be surprisingly detrimental. For
instance, Euclidean distance between GloVe 6B vectors, when paired with Levenshtein distance, goes
from the highest measured MFC score to statistical insignificance—in fact, only 2 out of the 8 MFC

using normalized Levenshtein distance are significant. When controlling for confounding variables,
normalization can even induce anti-correlations. Second, cosine distance also yields lower MFC scores
than Euclidean distance, despite it being more in line with human ratings (Figure 2): Euclidean distance

5In detail, 4 setups yield a standard deviation between 0.01 and 0.015; they all involve Euclidean distance and non-
normalized form distances, using either fastText or GloVe 840B.



3743

yields in many occasions correlation scores of 0.1 and higher, more than twice what we observe for
cosine distance.

3.3 Discussion & Conclusions

Overall, this experiment highlights that demonstrating the role of confounding factors that we expect
to be detrimental to MFC, such as ungrounded elements, is in principle possible for natural language;
though we have employed blunt methods of control, effects could be perceived. On the other hand,
our observations underscore how sensitive MFC is to the choice of distance functions: considerations
such as normalizing metrics between 0 and 1 or choosing Euclidean vs. cosine distance can impact
results significantly. These observations raise two questions: (i) why does normalizing textual distances
degrade MFC scores? and (ii) do these results support that MFC captures compositionality in natural
language? To answer both, we study more closely which items are detrimental to MFC, as they may shed
light on what MFC measurements capture, and how normalization affects it. We consider items where
measurements are mismatched: sentences with a relatively low meaning distance but a relatively high
form distance—or vice versa—drive the MFC score down. We convert distance measurements into rank
values, and consider the 100 pairs of sentences that yield maximal rank difference for a given setup.
These pairs will be referred to as problematic below.

For the sake of clarity, we focus on GloVe 6B-based measurements, using Levenshtein distance (either
raw or normalized) and compute all our measurements from the same random selection of 4 123 defini-
tions. In the controlless scenario, the 100 most problematic items for non-normalized Levenshtein-based
setups all involved two synonym-based definitions (e.g., “pilot: a steersman”). As synonym-based def-
initions can be identified to holistic messages, this evaluation suggests that our dataset contains a high
number of non-compositional examples that this textual metric is not fit to handle. That these items are
reliably deemed problematic is coherent with the hypothesis that MFC captures compositionality.

All problematic pairs were found to have a high semantic distance (involving two unrelated definienda)
but a low textual distance (both definitions are very short, usually composed of an article and a noun,
which entails few edit operations). This suggests that normalizing the textual distance might be crucial to
get reliable MFC. However, while normalizing Levenshtein distance does reduce the number of pairs of
synonymy-based definitions in the problematic pairs, they remain very frequent (98/100 for Euclidean
distance, 88/100 for cosine distance), due to the fact that a common article usually means that half of the
tokens in the two definitions are the same. Removing stop-words further reduces synonymy-based defi-
nitions in problematic pairs to a handful, but reveals other artifacts: many pairs share a common pattern
such as “sneer: the act of sneering”/“wade: the act of wading”. Moreover, the MCF obtained in these
settings are lower than with raw Levenshtein distance, suggesting that such patterns are frequent and that
length is (counter-intuitively) a relevant factor. We conjecture that short definitions are responsible for a
large part of these artifacts, in which case a solution would be to filter them out. Alternatively, a more
complex textual distance could allow us to get rid of these artifacts. We leave this subject for future work.

In summary, this experiment suggests that MFC can detect compositionality in natural language, but
that the exact setup employed is crucial. Distance normalization appears to annihilate MFC scores and
the effects of controlling for confounding factors vary from distances to distances.

4 MFC and Natural Language: Sentence Encoders

The results in Section 3 suggest that MFC scores on natural language reflect its compositionality but also
confounding structural factors that obfuscate semantic transparency. However, the findings also raise
questions about the peculiarity of the dataset, since dictionary definitions do not form a representative
sample of language use by any standards. Is it possible to replicate the methodology on more natural-
istic text data? The main difficulty lies in finding a relevant and practical notion of semantic distance
for arbitrary sentences, since human judgments can prove arduous to collect. As an attractive potential
strategy, one could use vector distances over semantic representations produced by models of semantic
composition called sentence encoders. Do these models provide good enough approximations for sen-
tence meaning similarity? If so, we expect to be able to reproduce the effects of confounding factors



3744

Cosine Euclidean

-1.00

-.80

-.60

-.40

-.20

0.00

−
0
.0
4

−
0
.2
2

−
0
.7
7

−
0
.7
7

−
0
.4
3

−
0
.4
2

−
0
.6
4

−
0
.6
6

−
0
.4
9

−
0
.4
9

C
or

re
la

tio
n

random Transf.
USE

random LSTM

Infersent
Skip-Thought

Figure 4: Meaning distance metrics evaluated on the SICK dataset. (Spearman correlation)
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Figure 5: MFC scores for natural language sentences.

on MFC as predicted by representations derived from sentence encoders. To answer these questions, we
replicate our previous experiment on a set of common sentences, rather than definitions.

4.1 Methodology

The semantic distances used in this section rely on sentence encoders, computational models that convert
sequences of tokens into vector representations. They can be trained on a variety of tasks, from predicting
the entailment relation between a pair of sentences (Conneau et al., 2017) to reconstructing the context
of a passage (Kiros et al., 2015). These tasks require capturing the meaning of the corresponding texts.

We first assess whether sentence encoders yield coherent representations of meaning by computing the
Spearman correlation between the human ratings present in the SICK benchmark (Marelli et al., 2014)
and the cosine and Euclidean distances between the two corresponding sentence embeddings; as with
word embedding spaces in Section 3, we expect a significant anti-correlation between the two. Figure 4
summarizes correlation scores for Skip-Thought (Kiros et al., 2015), Infersent (Conneau et al., 2017)
and the Universal Sentence Encoder (Cer et al., 2018, USE for short), along with a randomly initialized
(and untrained) Transformer (Vaswani et al., 2017) for perspective. We observe that USE yields the most
consistent semantic representations and thus decide to focus in the following on this particular model.

We randomly sample 4 123 sentences from the Toronto BookCorpus (Zhu et al., 2015)—a collection
of English books of various genres—for computing Mantel tests using Levenshtein distance, both raw
and normalized, as the textual distance. We repeat the procedure 5 times before averaging results. We
use the same operations as previously to control for synonyms and stop-words; i.e., we test whether
removing stop-words altogether and normalizing words based on their WordNet synsets improve MFC.

4.2 Results

Results are presented in Figure 5: Figure 5a corresponds to the controlless scenario; Figures 5b and 5c
present the effects of controlling for stop-words and synonyms respectively. Results are consistent across
all five random samples of sentences: standard deviation of MFC scores is systematically below 0.016,
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and often below 0.005.6

Most striking are the very high correlations and anti-correlations that are yielded by the random base-
line: the anti-correlations and correlations derived from non-normalized Levenshtein distance have a
greater magnitude than what we observe for USE (which is also based on the Transformer architecture).
In the case of Euclidean distance, this magnitude can partly be explained by the architecture itself, which
computes a vector that is not meaningful but that is still computed in a very compositional way, although
the corresponding notion of composition is not linguistically justified. The simple sum used to derive the
sentence embeddings from the hidden states at each timestep7 entails that the norm of every sentence rep-
resentation grows proportionally to the number of words it contains; moreover the residual connections
used in Transformers entail that the hidden state for a given timestep bears some trace of the input word
at this timestep, thus sentences with words in common will tend to be nearer in the Euclidean space.

Turning to the MFC for USE, we observe that normalizing Levenshtein distance leads to higher scores—
opposite to what we found for definitions. On the other hand, cosine-based setups overall are found to
decrease scores by a low margin, of 0.005 at most—which is consistent with what was observed for def-
initions, but much less pronounced. Removing stop-words lowers the correlation for USE embeddings,
which is also contrary to what we observed for definitions: scores in Figure 5b are found to be lower
than those without any form of control by a margin ranging from 0.02 to 0.04. Lastly, while we techni-
cally observe a higher MFC when controlling for synonyms (Figure 5c), the effect is again very subtle:
correlation increases by no more than 0.005.

4.3 Discussion & Conclusions
This last experiment is first a reminder of the fact that the use of sentence encoders to compute MFC

only makes sense under the assumption that they accurately represent the semantic of their input. While
this assumption is obviously not satisfied for a random model, it is defensible for USE given its training
procedure and the high anti-correlation observed above in Figure 4.

Second, if we accept the relevance of using this latter model, the results for USE highlight the fact
that the issues we encountered with the definition dataset of Section 3, in particular related to distance
normalization, are not systematically present. This suggests that the counter-intuitive behavior observed
on definitions might be due to particular artifacts from this dataset, in contrast to the more natural and
varied dataset used in the present section.

5 Related Works

The core of this work draws upon previous research on MFC (Kirby et al., 2008; Kirby et al., 2015; Spike,
2016; Ren et al., 2020, a.o.). This concept finds its roots in works such as the ones of Kirby (1999),
Kirby (2001) or Brighton and Kirby (2006), which suggest that while compositionality in language
relies on syntactic structures, it could still be measured using surface form. Other implementations of
MFC include studies centered on correlations between form and meaning at the word or sub-morphemic
level—conflicting with the assumption of arbitrariness of the sign—such as the work of Gutiérrez et al.
(2016), Kutuzov (2017), Dautriche et al. (2017) or Pimentel et al. (2019).

More broadly, compositionality has proven to be a fruitful field of research; see for example the
overview edited by Hinzen et al. (2012). The NLP community has produced models of compositional
semantics (Baroni et al., 2014; Marelli and Baroni, 2015; Conneau et al., 2017) and significant efforts
have been made to assess how well they capture human intuitions (Dinu and Baroni, 2014; Marelli et
al., 2014; Cer et al., 2017; Wang et al., 2018, a.o.) and to analyze their behavior (Liska et al., 2018;
Baroni, 2020, e.g.). It is worth stressing that assessing the degree of compositionality within a corpus or
a model, as do these works, is a distinct enterprise from quantifying the degree of similarity between two
sentences (Papineni et al., 2002; Lin, 2004; Clark et al., 2019, e.g.)—more precisely, the methodology
of MFC employs the latter to estimate the former.

6Only the randomly initialized Transformer when using Euclidean distance and non-normalized Levenshtein distance yields
standard deviations above 0.01 (in all three scenarios). Standard deviations for USE embeddings are all below 0.003, with the
exception of the two setups involving normalized Levenshtein distance and controlling for stop-words (around 0.007).

7Like Cer et al. (2018), we divided the sentence embedding by the square root of the length of sentence.
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Lastly, another related topic of research concerns the use of dictionaries as meaning inventories in NLP.
For instance, Chodorow et al. (1985), Gaume et al. (2004), Tissier et al. (2017) and Bosc and Vincent
(2018), all employ dictionary entries for purposes ranging from word-sense disambiguation to ontology
population and to embedding computation. Directly relevant here is the work of Hill et al. (2016), who
leverage the compositional aspect of definitions to compute sentence meaning representations.

6 Conclusions

In this work, we have empirically assessed the validity of meaning-form correlation as a methodology
for studying compositionality, both in artificial and natural languages. In all, the relationship between
meaning-form correlation and compositionality is not straightforward; experimental setups that would
employ the former to represent the latter ought to proceed with caution. Confounding factors that we
can expect from natural language can also weigh on meaning-form correlation in artificial languages,
and their effects are not straightforward to control for. Other issues such as the architecture employed to
derive meaning representations weigh on the relevance or interpretation of correlation scores. Meaning-
form correlation is very dependent on the actual metrics and dataset under consideration. On the other
hand, meaning-form correlation was also shown to be able to detect compositionality, both in controlled
artificial setups and with natural language data, suggesting that this methodology can be used to study
compositionality as long as due attention is paid to confounding factors.

While we have focused on modeling a small number of confounding factors, others can obviously be
tested using our methodology. For instance, preliminary experiments suggest that factors such as du-
ality of patterning—i.e., using non-atomic expressions (Hockett, 1960)—reinforce correlations to some
extent, whereas aspects such as free ordering of constituents seem detrimental. This limited study has
also focused on a specific implementation of meaning-form correlation, based on Mantel tests—however
other related setups exist, for example based on mutual information (Pimentel et al., 2019). We leave
them to future studies. Another limitation of the present work is that we have focused solely on English:
we intend in future experiments to experiment with typologically diverse languages, ranging the full
isolating-synthetic spectrum.
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