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Abstract

Neural Machine Translation often suffers from an under-translation problem due to its limited
modeling of output sequence lengths. In this work, we propose a novel approach to training
a Transformer model using length constraints based on length-aware positional encoding (PE).
Since length constraints with exact target sentence lengths degrade translation performance, we
add random noise within a certain window size to the length constraints in the PE during the
training. In the inference step, we predict the output lengths using input sequences and a BERT-
based length prediction model. Experimental results in an ASPEC English-to-Japanese transla-
tion showed the proposed method produced translations with lengths close to the reference ones
and outperformed a vanilla Transformer by 3.22 points in BLEU on short sentences within ten
subwords. The average translation results using our length prediction model were also better
than another baseline method using input lengths for the length constraints. The proposed noise
injection improved robustness for length prediction errors, especially within the window size.

1 Introduction

In autoregressive Neural Machine Translation (NMT), a decoder generates one token at a time, and each
output token depends on the output tokens generated so far. The decoder’s prediction of the end of the
sentence determines the length of the output sentence. This prediction is sometimes made too early–
before all of the input information is translated–causing a so-called under-translation.

Transformer has sinusoidal positional encoding to incorporate the token position information in the
sequence into its encoder and decoder (Vaswani et al., 2017). There are some previous studies for control-
ling an output length in Transformer. Takase and Okazaki (2019) proposed two variants of length-aware
positional encodings called length-ratio positional encoding (LRPE) and length-difference positional
encoding (LDPE) to control the output length based on the given length constraints in automatic sum-
marization. Lakew et al. (2019) applied LDPE and LRPE to NMT. They trained an NMT model using
output length constraints based on LDPE and LRPE along with special tokens representing length ratio
classes between input and output sentences, while they used the input sentence length at the inference
time. However, the length of an input sentence is not a reliable estimator of the output length, because
the actual output length varies with the content of the input.

Using length constraints in the decoder is a promising approach to the under-translation problem. We
propose an NMT method based on LRPE and LDPE with a BERT-based output length prediction. The
proposed method adds noise to the output length constraints in training to improve its robustness against
the possible length variances in the translation. In our experiments with an English-to-Japanese dataset,
the BERT-based output length prediction outperformed the use of the input length, and the proposed
method, including noise injection into the training-time length constraints, improved the translation per-
formance in BLEU for short sentences.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Positional encoding for control output length

The following is the sinusoidal positional encoding (PE) proposed by Vaswani et al. (2017):

PE(pos,2i) = sin
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)
, PE(pos,2i+1) = cos
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)
, (1)

where pos is the position in the sequence, 2i and 2i+1 respectively represent even and odd dimensions in
the PE vector, and d is the dimension of the embeddings. Length-ratio positional encoding (LRPE) con-
siders the remaining length to the terminal position, and length-difference positional encoding (LDPE)
considers the ratio of the remaining length to the final position as follows:
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LDPE(pos,len,2i) = sin
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where len is the given output sequence length. LRPE and LDPE are expected to generate sentences of
any length even if sentences of an exact length are not included in the training data. Takase and Okazaki
(2019) used character-based lengths for summarization constraints in the number of characters.

3 Proposed method

The Transformer-based model with LRPE and LDPE generates a sequence that almost matches the given
length. This characteristic is not always appropriate in the problem of machine translation because some
translation variants have different lengths. In this paper, we incorporate random noise to the length
constraints used by LRPE and LDPE during training to improve the robustness for such length variants.
We also propose using an output length prediction based on BERT. Noise injection is expected to improve
the robustness against possible length prediction errors.

3.1 Random noise injection to LRPE/LDPE length constraints
The existing studies that used LRPE and LDPE used the exact output lengths as length constraints (len
in Eqs. 2 and 3) in training. We introduce some random noise into the output lengths in the number of
tokens. The noise is given as a random integer from a uniform distribution within a window, such as
[−2, 2]. For example, we randomly chose an integer from [−2,−1, 0, 1, 2]. Although perhaps the same
positional encoding vectors might appear in a different position when a negative value is applied as noise,
we ignore such cases in this work for simplicity.

3.2 BERT-based output length prediction
We need length estimates when we use LRPE and LDPE in inferences. Instead of using the input lengths
like Lakew et al. (2019), we propose using an output length prediction based on a pre-trained BERT
model in the source language. We used the [CLS] vector in the last layer of the BERT encoder to predict
the output length through an output layer as a regression problem.

4 Experiments

To investigate the performance of our proposed method, we conducted English-to-Japanese translation
experiments between a vanilla Transformer and its variants with LRPE and LDPE, implemented using
OpenNMT (Klein et al., 2017).

4.1 Setup
Datasets We used the Japanese-English portion of the ASPEC corpus (Nakazawa et al., 2016), which
consists of 3 million parallel sentences for training, 1,790 sentences for development, 1,784 sentences
for the devtest, and 1,812 sentences for the test. All the sentences were tokenized into subwords using a
SentencePiece model (Kudo and Richardson, 2018) with a shared subword vocabulary of 16,000 entries,
which were trained with 2M English and Japanese sentences that included the first set of the training
sentences pairs (train-1). Throughout the experiments, we used subword-based lengths.



3582

Hyperparameters Our hyperparameter settings came from OpenNMT-py FAQ1 and are used com-
monly for all the compared methods described later in this section. We conducted five independent
training runs with different random seeds and chose the best runs and training epochs in the devtest set
to determine the models for the final evaluation.

Evaluation We used BLEU (Papineni et al., 2002) for our evaluation metric given by
multi-bleu.perl and also investigated the length ratio (LR) of the input and output sen-
tences (LR = tgt len/ref len). BLEU was calculated on translation results re-tokenized by MeCab
(Kudo, 2005) after merging the subwords. We also calculated the variance of the length difference
between the translation results and the references (VAR) to investigate the effects of the output length
constraints, following Takase and Okazaki (2019). The variance of the length differences on a test set
consisting of n sentences is given by:

V AR =
1

n

n∑
i=1

|li − ref leni|2 (4)

4.2 Compared methods

In addition to a vanilla Transformer (Vaswani et al., 2017), we compared three different windows for the
length noise that was applied to LRPE and LDPE during training: the use of target lengths without noise,
and the random noise within two different windows ([−2, 2], [−4, 4]) from a uniform distribution over
the integers in the window. We compared two inference-time length constraints: the proposed BERT-
based length prediction (BERT pred) and using the input length (src len). We also tested the reference
lengths (ref len) to investigate the upper-bound performance by the proposed method.

4.3 Results

Table 1 shows the results of the BLEU, length ratio, and variance by the compared methods.

BLEU The proposed method with the BERT-based length prediction (BERT pred) and an LDPE
with a length noise window of [−4, 4] resulted in a slightly better BLEU score (38.80) than the baseline
Transformer (38.42), but the difference was not statistically significant by the bootstrap resampling test.
On the other hand, the simple application of LDPE and LRPE resulted in a much lower BLEU score even
with the correct reference lengths. This result suggests that the proposed training framework with some
noise in the length constraints improved the robustness for length variances. The use of input length
(src len) instead of the output length prediction significantly decreased BLEU in most cases, although
the random noise injection provided some improvements and even competitive performance, as shown
in the bottom row. The oracle results with reference lengths (ref len) were better than the baseline and
the proposed method, but the BLEU differences were not significant.

Length ratio The length ratios by LDPE and LRPE with reference lengths clearly show that the length
constraints induced more extended outputs than the vanilla Transformer, and the noise injection slightly
shortened the outputs. Using the BERT-based output length prediction resulted in shorter outputs than
the reference length due to the length prediction errors, as discussed below. On the other hand, the
input lengths (src len) induced 20% longer outputs than the references without noise injection. Such
over-translation was reduced by the noise injection, although it remained longer in all the cases.

Variance The length error variances showed that LDPE and LRPE induced outputs in closer lengths
to the references than the vanilla Transformer. A wider noise window increased the variances, as shown
in the rightmost column (ref len), although such differences became smaller when we used length
prediction (BERT pred), possibly due to the length prediction errors. Using the input lengths resulted
in much more significant variances due to relatively weak correlations between the input and output
sentences.

1https://opennmt.net/OpenNMT-py/FAQ.html#how-do-i-use-the-transformer-model
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Baseline BLEU LR VAR
Transformer 38.42 0.916 29.51
Length-Constrained BERT pred src len ref len

BLEU LR VAR BLEU LR VAR BLEU LR VAR
LDPE (no noise) 35.87 0.938 19.91 29.70 1.226 71.83 37.19 1.000 0
LRPE (no noise) 36.54 0.929 21.71 30.96 1.198 59.65 37.78 0.987 1.497
Proposed
LDPE [−2, 2] 38.50 0.927 20.11 32.81 1.162 55.85 38.72 0.972 2.411

[−4, 4] 38.80 0.921 21.15 35.28 1.091 48.25 39.09 0.951 6.429
LRPE [−2, 2] 38.61 0.911 23.87 36.34 1.075 35.18 39.28 0.943 7.502

[−4, 4] 38.44 0.911 25.12 38.40 1.015 28.06 38.78 0.931 12.506

Table 1: BLEU, length ratio (LR), and variance (VAR) results with different models and inference-time
length constraints: BLEU values in bold outperformed baseline.

AVG Error VAR Corr AVG Error VAR Corr
src-ref predicted-ref

Train 7.51 99.43 0.86
Dev 7.06 97.00 0.84
Test 6.55 72.45 0.90 3.00 19.92 0.93

Table 2: Average error, variance and the Pearson correlation coefficient between the input and reference
lengths, and between the predicted and reference lengths (in the number of tokens) in ASPEC dataset

Output length prediction We compared the differences of our length prediction (BERT pred) and
the input lengths (src len) with the corresponding reference length (ref len) in the mean absolute error
and error variances. The mean absolute error by the proposed method was 3.00, and the variance was
19.92, suggesting the BERT-based length prediction sometimes made serious length prediction errors,
although it worked well in most cases. The proposed noise injection covered these relatively small errors
tested in the experiments. On the other hand, the mean absolute error and variance by the substituted use
of the input length were much more significant: 6.55 and 72.45, respectively. Such differences negatively
affect translation results.

Table 2 shows the average and variance of the length prediction errors by the use of the input sentence
length, together with the Pearson correlation coefficient. Moreover, Table 2 shows those results by the
proposed BERT-based length prediction. They clearly show the use of the input length as a proxy for the
output length constraints was not suitable in this experiment.

Analysis in length groups We scrutinized the results with different length groups to investigate the
effects of the length noise injection, because the length constraints probably have more significant impact
on shorter sentences and vice versa. Note that we excluded the longest length group that exceeded 80
tokens because it includes three sentences and serious length errors. In Table 3, the proposed method
with LDPE with a noise window of [−2, 2] significantly outperformed the vanilla Transformer by 3.22
points (50.81 vs. 47.59) in BLEU in the shortest length group with one to ten tokens. The other setups
showed better BLEU results than the vanilla Transformer, although the differences were not statistically
significant. Another clear finding is that the vanilla Transformer generated very short translation results
for long sentences, as shown in the rightmost column; LDPE and LRPE created longer outputs. This
finding is helpful for avoiding under-translation problems in NMT.

5 Conclusion

We proposed an NMT method using length-aware positional encodings with a training-time length noise
injection and a BERT-based inference-time length prediction. The length noise injection improved the
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Model BLEU (LR)
Length range in number of tokens

1 ∼ 10 11 ∼ 20 21 ∼ 40 41 ∼ 80
(118 sentences) (636 sentences) (890 sentences) (165 sentences)

Transformer (Baseline) 47.59 (1.004) 41.24 (0.951) 38.87 (0.920) 31.88 (0.862)
LDPE (no noise) 40.30 (1.089) 38.10 (0.992) 36.43 (0.926) 30.12 (0.900)
LRPE (no noise) 45.36 (1.018) 39.26 (0.975) 36.62 (0.923) 31.53 (0.889)
LDPE [−2, 2] *50.81 (0.997) 41.77 (0.966) 39.08 (0.971) 31.99 (0.976)

[−4, 4] 48.05 (0.985) 42.38 (0.945) 39.46 (0.949) 32.54 (0.960)
LRPE [−2, 2] 49.80 (0.980) 42.06 (0.940) 39.71 (0.950) 32.98 (0.924)

[−4, 4] 49.19 (0.995) 42.50 (0.941) 38.90 (0.934) 32.12 (0.908)

Table 3: Detailed results in different length ranges in number of tokens in reference sentences: BLEU
values in bold outperformed baseline and * shows statistically significant difference from baseline Trans-
former.

robustness for translation length variations, including length prediction errors, especially for those within
the noise window size. The experimental results show the effectiveness of the proposed method in short
sentences. Our future work will pursue a more effective output length prediction to suppress over-
translations because we also found some over-translations in the test set, possibly caused by the length
constraints.
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