Leveraging WordNet Paths for Neural Hypernym Prediction
Yejin Cho*! Juan Diego Rodriguez*? Yifan Gao® Katrin Erk!

!Department of Linguistics 2Applied Research Laboratories *Department of Mathematics
The University of Texas at Austin
{ycho, yifan233, katrin.erk}@utexas.edu
juan.rodriguez@arlut.utexas.edu

Abstract

We formulate the problem of hypernym prediction as a sequence generation task, where the se-
quences are taxonomy paths in WordNet. Our experiments with encoder-decoder models show
that training to generate taxonomy paths can improve the performance of direct hypernym pre-
diction. As a simple but powerful model, the hypo2path model achieves state-of-the-art perfor-
mance, outperforming the best benchmark by 4.11 points in hit-at-one (H@1).

1 Introduction

Hypernymy, or the IS-A relation, is one of the most important lexical relations. It is used to create tax-
onomies of terms and it is the main organizational criterion of nouns and verbs in WordNet (Fellbaum,
1998). Learning hypernymy is also important in practice, as knowing a word’s hypernyms gives an ap-
proximation of its meaning, and enables inferences in downstream tasks such as question answering and
reading comprehension. Predicting hypernymy is still a challenging task for word embeddings (Pinter
and Eisenstein, 2018; Bernier-Colborne and Barriere, 2018; Nickel and Kiela, 2018) and previous stud-
ies have shown that it is more difficult to predict hypernymy than other lexical relations (Balazevié et al.,
2019; Allen et al., 2019).

Hypernymy prediction is often evaluated against a given taxonomy, typically WordNet (Fellbaum,
1998). The main hypothesis that we pursue in this paper is that knowledge of this taxonomy, in particular
of taxonomy paths, will be helpful for hypernymy prediction. So we introduce two simple encoder-
decoder based models for hypernym prediction that make use of information in the full taxonomy paths.

There has been much recent work on modeling lexical relations based on distributed representations
(Pinter and Eisenstein, 2018; Bernier-Colborne and Barriere, 2018; Nickel and Kiela, 2018). However,
the task formulations and evaluation datasets have differed widely, making it hard to compare different
approaches. We focus on evaluating on hypernymy, rather than jointly on many relations, which can mask
strong performance differences across relations. We evaluate our encoder-decoder models against several
previous models that have not been evaluated in the same setting before. Like many other approaches,
we use WordNet as the basis for our experiments. We formulate the task as the task of finding the
correct point to attach a new node (synset) to the WordNet taxonomy. We build on the existing WN18RR
dataset (Dettmers et al., 2018), but filter its hypernymy pairs to produce WNISRR-hp, a subset that is
leak-free with respect to approaches that use taxonomy paths during training, as we do.

We find that one of our new models, hyper2path, achieves state-of-the-art performance on hypernym
prediction on WN18RR-hp, exceeding the best performance of benchmark models by 4.11 points in
accuracy of the highest-ranked prediction (hit-at-one, H@1). In particular, we observe the greatest per-
formance gain in noun hypernym prediction, where it improves over the best benchmark by 5.17 H@1
points.

* Equal contribution.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

3007

Proceedings of the 28th International Conference on Computational Linguistics, pages 3007-3018
Barcelona, Spain (Online), December 8-13, 2020

Hyponym Generated hypernym path Gold hypernym
v | pizza.n.01l dish.n.02 — nutriment.n.01 — food.n.01 — ... — entity.n.01 dish.n.02
v | alps.n.0l range.n.04 — geological formation.n.01 — ... — entity.n.01 range.n.04
v/ | whisper.v.01 talk.v.02 — communicate.v.02 — interact.v.01 — act.v.01 talk.v.02
X | proletarian.n.01 *worker.n.01 — person.n.01 — causal_agent.n.01 — ... — entity.n.01 commoner.n.01
X | austerity.n.01 *punishment.n.01 — social_control.n.01 — ... — entity.n.01 self-discipline.n.01
X | compulsive.n.01 | *sick_person.n.01 — unfortunate.n.01 — person.n.01 — ... — entity.n.01 | person.n.01

Table 1: We frame hypernym prediction as a sequence generation problem. Given a query hyponym (e.g., pizza.n.0I), the
hypo2path rev model generates its taxonomy path, from its direct hypernym (dish.n.02) to the root node (entity.n.01). v and
X indicate a correct and an incorrect prediction, respectively. In each example, an underlined synset corresponds to what the
model predicted as a direct hypernym.

2 Hypernym Prediction

Several tasks related to hypernymy have been proposed under different names: extracting is-a relations
from text (hypernym discovery) (Hearst, 1992; Snow et al., 2005; Camacho-Collados et al., 2018), binary
classification of whether two given words are in a hypernym relation (hypernym detection) (Weeds et al.,
2014; Shwartz et al., 2016; Roller et al., 2018), and constructing or extending a taxonomy (taxonomy
induction) (Snow et al., 2006; Jurgens and Pilehvar, 2016). Another recently introduced task is hierarchi-
cal path completion (Alsuhaibani et al., 2019), where, given a hypernym path of length 4 from WordNet,
the task is to predict the correct hyponym(s).

While hypernymy has long been studied in computational lexical semantics, another thread of recent
research on hypernymy comes from the literature on knowledge base completion (Bordes et al., 2013;
Nickel and Kiela, 2017; Pinter and Eisenstein, 2018; Dettmers et al., 2018). Here, hypernymy is consid-
ered as one of multiple different semantic relations between two nodes in a graph. Extending from this
line of research, we also consider the relation prediction task in a semantic graph, but only focus on one
relation of interest, hypernymy.

Like previous work in knowledge base completion (Bordes et al., 2013; Nickel and Kiela, 2017; Pinter
and Eisenstein, 2018; Balazevi¢ et al., 2019), we take WordNet as our experimental space, so we learn
hypernymy between synsets rather than raw lemmas. A synset is a basic lexical unit in WordNet, defined
as a set of lemmas that are synonymous to each other. A synset thus also functions as one of the senses for
each of the lemmas in the set. For example, the synset mark.n.01 (a number or letter indicating quality)
consists of the three lemmas mark, grade, and score. Given a new synset, which we call the source
node, our task is to predict its direct hypernym or target node from among the synsets in WordNet. For
example, for the source node woolly_daisy.n.01, the model should identify wildflower.n.01 as the target
node in the graph.

While some previous approaches have predicted indirect hypernyms using the transitive closure of
WordNet (Vendrov et al., 2016; Li et al., 2019), we focus on predicting direct hypernyms. Datasets for
indirect hypernymy often include hypernyms that are too generic and not informative enough, where
some semantically distant concepts are trivially mapped to the root node (entity.n.01) or a high-level
hypernym near the root. We also restrict ourselves to modeling hypernym relations specifically, unlike
much work on WN18RR which learns hypernymy as one of 11 lexical relations (Bordes et al., 2013; Pin-
ter and Eisenstein, 2018; BalaZevic¢ et al., 2019). As we discuss in Section 5, we observe that hypernymy
is more effectively learned when trained on its own.

3 Models

In this section we introduce our two new path-based models, hypo2path and Path Encoder', along with
the four benchmark models.

3.1 Path Generators: hypo2path and hypo2hyper

In our first model, we treat hypernym prediction as a sequence generation task: given a hyponym, the goal
is to generate the entire path in the WordNet taxonomy starting from the root node (entity.n.0l for nouns)

'Code and data are available at https://github.com/scarletcho/hypernym-path-generation.

3008

and ending with the direct hypernym. For example, flock.n.02 should be mapped to its hypernym path by
generating entity.n.0l — abstraction.n.06 — group.n.0l — biological_group.n.0l — animal_group.n.O1.
So the model is tasked to translate source synsets to target synset sequences. We denote this model as
hypo2path. Our intuition behind this model is that training with a more difficult objective (i.e., entire
hypernym path prediction rather than direct hypernym prediction) may result in a stronger model.

We use a standard LSTM-based sequence-to-sequence model (Sutskever et al., 2014) with Luong-style
attention (Luong et al., 2015). This encodes a synset embedding of a hyponym into a hidden state, which
is taken as the initial state of the LSTM decoder. The decoder generates synsets sequentially, conditioned
on previously generated synsets. While the attention mechanism assigns weights to the source tokens,
here we only have a single source token (i.e., a query hyponym). In our task, the attention mechanism
serves as a way to avoid “forgetting” the source hyponym while decoding long paths?.

Reversing the order of the source or target sequences can the improve performance of encoder-decoder
models, since the encoded hidden state is closer to the first target token (Sutskever et al., 2014; Gillick
et al., 2016). Motivated by this, we experiment with a model variant called hypo2path rev in which we
reverse the target path to generate a sequence of hypernyms starting from the direct hypernym of the
source. This frames every generation step as direct hypernym prediction, which the decoder may more
easily learn. Examples of generated reversed paths are shown in Table 1.

In order to determine whether generating an entire hypernym path as an auxiliary task helps to accu-
rately predict a synset’s direct hypernym, or whether generating only the direct hypernym is enough, we
also perform experiments with hypo2hyper, a variant of hypo2path. Here the encoder-decoder model is
trained to only generate a direct hypernym (i.e., both the source and target sequences are of length 1).?

3.2 Path Encoder

We also examine the reverse approach: training an LSTM encoder that learns vector representations of
hypernym paths. Given a query hyponym, we construct an embedding of a hypernym path (from the root
node down), and the model is tasked to distinguish the gold path (which ends at its direct hypernym)
from distractor paths. We construct path embeddings using a bidirectional LSTM followed by a fully-
connected layer. The output corresponding to the last hidden state is the encoded path vector. We denote
this model as Path Encoder.

Given the training set S consisting of pairs (x, p) of a hyponym and a path,* we train the model by
minimizing the Euclidean distance of encoded path vectors V), and the embedding vectors of the hyponym
V2. In addition, the model is trained to maximize the distance of V}, and V,, from the negative examples
{(p,2")|(*,2") € S} which are generated by randomly pairing a hyponym with a random path. The
model is optimized with the following ranking loss function:

L = max{0, ||V, — Vill2 — [|Vp — Vrll2 + 7}

where 7 is a positive margin hyperparameter.

During prediction, the model first encodes all hypernym paths {p|(p,*) € S}. Then for each query
hyponym x the path that minimizes ||V}, — V|2 is returned as the predicted hypernym path. From this
path, we take the predicted direct hypernym of z for evaluation, just as we do for hypo2path.’

3.3 Benchmark Models

TransE In the TransE model (Bordes et al., 2013), a semantic relationship is interpreted as a vector
translation in embedding space. Given a triplet (s, r, f) of a source node s, a relation r, and a target node
t, the model learns embeddings for the nodes and relation such that the target vector ¢ is near s + 7.

2 Attention improved the performance of hypo2path on nouns by about 3 points in H@1 (averaged over 5 runs).

3We also experimented with settings in-between hypo2path and hypo2hyper, where the model is trained to predict only
truncated hypernym paths of maximum length 2 (for verbs) or 5 (for nouns and instance nouns). We do not report these results,
since performance was similar to training with the full path.

“When multiple paths for a given hyponym exist in the graph, each of these paths is paired with its hyponym x.

5 As with the hiypo2path experiments, we also tried encoding truncated paths of length 2 and 5. We omit these results, since
they were similar to encoding the full path.

3009

M3GM Max-Margin Markov Graph Models (M3GM) (Pinter and Eisenstein, 2018) exploit graph mo-
tif properties in WordNet (e.g., number of cycles of length 2 or 3) to predict different semantic relations.
As a global feature model, M3GM reranks the top N candidates predicted by a local distributional feature
model such as TransE (Bordes et al., 2013).

CRIM Bernier-Colborne and Barriere (2018) proposed a hybrid system which exploits both unsuper-
vised pattern-based hypernym discovery and supervised projection learning (Ustalov et al., 2017). The
core idea of the supervised algorithm is to learn multiple projection matrices which map a query em-
bedding to a target hypernym. Their system ranked first on the three subtasks in SemEval-2018 Task 9
(Camacho-Collados et al., 2018).

Text2edges The approach most similar to ours is (Prokhorov et al., 2019), which represents each hy-
ponym using its textual definition from WordNet and maps it to its taxonomy path from the root to its
parent node. Given the definition of a query hyponym, a bidirectional LSTM encoder-decoder with at-
tention is used to generate the taxonomic path starting from the root node. For example, the definition of
swift (“a small bird that resembles a swallow and is noted for its rapid flight”) is mapped to the sequence
‘animal, chordate, vertebrate, bird, apodiform bird’. Their best system, text2edges with pre-trained Con-
ceptNet numberbatch embeddings (Speer et al., 2017), uses a reduced set of artificial edge label symbols
rather than the original node labels.

Similar to our approach, text2edges uses a sequence-to-sequence model with an attention mechanism.
However, there are several important differences. First, it encodes the definition of an input hyponym,
while our prediction conditions only on the vector representation of the synsets themselves without look-
ing at their definitions. Obtaining a definition of an unknown word is not always feasible, especially for
domain-specific jargon and neologisms that are frequently used but seldom defined in dictionaries. On
the other hand, computing their embeddings is a less challenging task when using approaches such as
fastText (Bojanowski et al., 2017), which also works for words seen only once because it interpolates
from embeddings of each word piece.® Another key difference is that it can only apply to rooted tree
graphs with a single root. For this reason, it cannot be trained on the verb taxonomy in WordNet, which
has more than one root.

3.4 Other Path Encoding Approaches

We next discuss some related path encoding approaches which we do not compare in our experiments.
First, Das et al. (2017) proposed a model for link prediction that is similar to Path Encoder. Given a multi-
relational knowledge base, their task is to assign the correct relation to those entity pairs linked by an
entity-relation path but without a direct relation between them. Here, sequences of entities and relations
are encoded with an LSTM and the relation whose vector is closest to the encoded path is returned. In
our task, however, concepts are linked by only one relation (hypernymy or instance hypernymy). This
prevents us from drawing additional information from other relation paths between synsets.

Alsuhaibani et al. (2019) also use a path-based model, but predict hyponyms rather than hypernyms
in WordNet. Their model learns hierarchical embeddings over the taxonomy, where each leaf node is
represented as the sum of the embeddings of its first four hypernyms (i.e., one direct and three indirect
hypernyms in the taxonomy path). The model predicts the hyponym of a given path by maximizing
the distance between the sum of the hypernym vectors and candidate hyponym vectors. However, this
approach cannot be used for hyponyms that never appear in the taxonomy.

4 Experimental Setup

4.1 Dataset: WN18RR-hp

WNI18RR (Dettmers et al., 2018) is a filtered version of the WN18 dataset (Bordes et al., 2014), a subset
of WordNet 3.0 which only contains synsets with at least fifteen connections to other synsets. WN18RR

8The obtained embedding of an undefined word can be trivially identified as a synset embedding with a single lemma (i.e.,

without any other synonyms), obviously because there are no other known synonyms. Single-lemma synsets are commonly
observed in WordNet (33.6% of nouns, 32.6% of instance nouns, and 41.7% of verbs in our dataset (WN18RR-hp)).

3010

removed seven inverse relations (such as hyponymy) from WN18 that caused a test leakage problem.

For this work, we only use two relations in WN18RR: hypernymy and instance hypernymy. Instance
hypernymy can be thought of as a special type of hypernymy; it only holds between an instance that is
a terminal node (e.g., specific persons, countries, and geographic entities) and its hypernym (common
noun). Also, we evaluate verb and noun hypernymy separately because verb hypernymy (troponymy) in
WordNet is conceptually distinct from noun hypernymy, as it expresses a manner relation rather than an
IS-A relation (Fellbaum, 2002).

To avoid giving an unfair advantage to the path-based models, we filtered both validation and test sets
to only include hyponym queries that are unseen anywhere in the full taxonomy paths of the training
data. By eliminating the queries observed during path training, we made sure that all evaluated queries
are equally new to both path-based models (e.g., hypo2path) and non-path models (e.g., hypo2hyper).
We also exclude hyponyms from the test and validation sets which appear as hyponyms in the training
set’ to prevent the models from merely copying. We denote this subset as WN18RR-hp.

In sum, we use three different types of hypernym relation sets (noun, instance noun, verb) in our
experiments. The number of examples in WN18RR-hp is shown in Table 2.

Number of pairs | Train ~ Valid Test
Noun 27946 647 676
Instance noun 2921 76 79

Verb 6849 187 206

Table 2: Data statistics of hyponym-hypernym pairs in WN18RR-hp.

The WordNet taxonomy is a directed acyclic graph where many hypernyms have multiple paths to
the root. When training path models (i.e., hypo2path, Path Encoder, and text2edges), we included every
existing path to a query’s parent as individual target instance(s).

4.2 Evaluation Metrics

We use two different measures that represent the accuracy of model predictions: a hard accuracy measure
(hit at one, H@1) and a “ballpark match” (soft accuracy) measure (WuP).

H@1 score As one of the most commonly used evaluation metrics for the relation prediction task, the
hits-at-k (H@k) is the proportion of correct predictions (hits) within the top k ranked predictions. As
the most intuitive and practical measure of each model’s performance, we only consider the top first
prediction accuracy (H@1), and not others with larger k (e.g., H@10).

Wu & Palmer similarity (WuP) The Wu and Palmer score (Wu and Palmer, 1994) is a similarity
measure between two nodes in a taxonomy that ranges between 0 and 1. To quantify how close they are,
it considers how deep the two nodes and their closest common ancestor are in a taxonomy. For instance,
the WuP score for orange.n.0l and lemon.n.01 is 0.75, while it is only 0.35 for orange.n.01 and car.n.01.
To assess how close a prediction is to the gold hypernym, we compute the WuP score between them
using NLTK’s implementation.® We report an averaged WuP score of each system.

4.3 Synset Embeddings

Averaged Lemma Vectors Following Pinter and Eisenstein (2018)°, we computed an embedding for
each synset by averaging the pretrained fastText embeddings (Bojanowski et al., 2017)'? of its synonyms

"These cases exist because some queries have multiple hypernyms. WN18RR allows such queries with multiple gold targets
to appear in train and evaluation sets.

8When two nodes are identical, NLTK’s implementation of WuP score does not necessarily return 1.0. We added an ad-hoc
check to make sure we get 1.0 WuP score in such cases.

“We used embed_from_words . py released by the first author at https://github.com/yuvalpinter/m3gm

"nttps://fasttext.cc/docs/en/pretrained-vectors.html

3011

(lemmas). If a synset contained any multi-word lemma, the words within the lemma were averaged. We
used these synset embeddings for all our reported experiments.!!

4.4 Model Details

Baselines We include two simple baselines, closest vector and closest co-hyponym, in order to gauge
reasonable lower bounds for our metrics. The closest vector baseline is obtained by predicting the hy-
pernym whose vector is closest (using the Euclidean norm) to the given synset, choosing from among all
the hypernyms in the training set. On the other hand, closest co-hyponym is obtained by predicting the
hypernym of the closest hyponym in the training set, i.e., under the assumption that nearby vectors are
co-hyponyms.

TransE, M3GM, CRIM, and text2edges Our replications of the benchmark models are based on the
original source code!? keeping the default hyperparameters except for a few things: For TransE and
CRIM, we tuned for the best number of training epochs. We increased the early stopping threshold to
five epochs for TransE, as the model stopped too early with the default setting. Also, we only trained the
supervised part of CRIM, since the unsupervised part of CRIM requires an external corpus for training.
All models except text2edges used fastText embeddings to compute synset embeddings. For text2edges,
we replicated their best system which takes the pretrained ConceptNet numberbatch embeddings to rep-
resent words in node definitions.

For all models except M3GM, we trained a separate model for each relation of WN18RR-hp (noun,
instance noun, verb). On the other hand, we trained all three relations in a single M3GM model, as it
employs graph motif features of different relations. We trained this multi-relational M3GM model as a
re-ranker of TransE that was also trained on all three relations.!> We did not run a post-hoc tuning for
graph score weights in M3GM.

Path Generators: hypo2path and hypo2hyper We implemented a sequence-to-sequence model with
Luong attention in Keras, which we used for the hypo2path and hypo2hyper experiments. We used a
single-layer unidirectional LSTM with 256 hidden units and a dropout rate of 0.3 for both the encoder
and the decoder. We trained the network with teacher forcing and used the Adam optimizer with a
learning rate of 0.001 and batch size of 256. The embedding layer was frozen during training. Synsets
without pretrained embeddings were assigned random vectors with elements sampled uniformly from
[—.25,.25]. Greedy decoding was used to generate sequences.'* We did not perform any hyperparameter
tuning for these models.

Path Encoder The Path Encoder model was implemented in PyTorch, using a single-layer bidirec-
tional LSTM to encode the path and a fully-connected layer to map the output to the target embedding
space. The dimension of the LSTM cell was 1024 for nouns and instance nouns and 512 for verbs.

The learning rates in {0.01, 0.001} and margins in {0.1,0.3, 0.5, 0.7} were tuned differently for noun,
instance noun, and verb experiments. We used the same dropout rate, batch size and choice of optimizer
as in the hypo2path experiments.

5 Results and Discussion

Results Overall, hypo2path rev shows the highest aggregate (micro-averaged) H@1 (dev: 24.43, test:
25.59) across the three hypernymy relations (nouns, instance nouns, and verbs), while CRIM has the best
aggregate ballpark correctness (WuP) scores that are closely followed by hypo2path rev (Table 6).

""We also trained hypo2path with randomly initialized embeddings (trained with the rest of the network), and observed a
large drop in H@1. This suggests there is information in the embeddings which cannot be learned solely from the hypernym
generation task, in line with observations of Pinter and Eisenstein (2018).

2TransE and M3GM: https://github.com/yuvalpinter/m3gm/

CRIM: https://github.com/gbcolborne/hypernym discovery/

text2edges: https://github.com/VictorProkhorov/Text2Path/
3This multi-relational TransE model is different from the single-relational TransE models reported in the results section.
'*Preliminary experiments on nouns showed no improvement when using beam search (with beam widths up to 6).

3012

Validation Test Validation Test

H@1 WuP H@1 WuP H@1 WuP H@1 WuP
Closest vector 9.74 5436 || 10.50 54.65 Closest vector 29.87 57.70 || 20.25 59.25
Closest co-hyponym || 17.62 60.34 || 18.64 59.92 Closest co-hyponym || 50.00 74.41 || 4937 7747
TransE 1391 6150 || 11.69 61.36 TransE 54.55 81.02 || 5443 83.34
M3GM 1824 61.66 || 1820 61.73 M3GM 48.05 7842 || 58.23 81.09
CRIM 2241 6532 19.53 65.29 CRIM 66.23 86.12 || 67.09 86.67
text2edges 1731 67.67 || 1642 66.41 text2edges 69.74 88.05 || 72.15 88.53
Path Encoder 20.56 63.84 || 22.63 63.59 Path Encoder 6234 82.88 || 49.37 75.96
hypo2hyper 22.87 6455 || 23.82 64.47 hypo2hyper 70.13 86.78 || 7342 87.75
hypo2path 2226 65.79 || 23.82 66.53 hypo2path 66.23 85.00 || 72.15 86.24
hypo2path rev 23.65 6532 || 2470 65.98 hypo2path rev 70.13 87.23 || 7342 87.18

Table 3: Scores for nouns. Table 4: Scores for instance nouns.
Validation Test Validation Test

H@l WuP || Hel WuP H@1 WuP H@1l WuP
Closest vector 321 34779 1.94 30.58 Closest vector 10.08 50.62 9.56 50.09
Closest co-hyponym 8.02 39.21 534 36.24 Closest co-hyponym || 18.35 57.17 || 18.47 56.52
TransE 321 3571 340 35.65 TransE 15.11 57.83 || 13.56 57.91
M3GM 321 3195 243 3047 M3GM 17.64 56.95 183 56.92
CRIM 12.30 46.25 || 9.71 43.66 CRIM 2399 63.14 || 2148 62.63
Path Encoder 642 3645 5.34 35.60 Path Encoder 21.14 59.80 || 21.31 58.87
hypo2hyper 10.16 4165 || 728 3923 hypo2hyper 2421 617 || 2456 6123
hypo2path 749 37.82 || 825 39.07 hypo2path 229 61.65 || 24.66 62.53
hypo2path rev 8.56 41.01 9.22 39.66 hypo2path rev 2443 62.15 || 25.59 6234

Table 5: Scores for verbs. Table 6: Aggregated scores across all three groups.

For both nouns (Table 3) and instance nouns (Table 4), hypo2path rev'> is a clear winner in terms of
H@]1. Despite being a simple model, it achieves the best H@1 with notable improvements over more
complex benchmarks. We observe large gains (5.17 points) on nouns over CRIM and some gains (1.27
points) on instance nouns over text2edges. With respect to the ballpark accuracy (WuP), hypo2path
shows similar performance to CRIM and text2edges on nouns, while text2edges does slightly better on
instance nouns.

For nouns, the reversed hypo2path model (‘hypo2path rev’) achieved the best performance on H@1,
while the non-reversed and reversed versions performed similarly in terms of WuP scores. Without
reversing the path, the model’s H@1 slightly degraded, and is closer to hypo2hyper’s results. The per-
formances of Path Encoder followed closely after the proposed three encoder-decoder models.

On instance nouns, performances of different models are overall much higher than on nouns. The best
results are observed from the hypo2hyper, hypo2path rev, and text2edges models. That Aypo2hyper and
hypo2path rev perform similarly is not surprising: instance hypernymy is less likely to be learned from
path generation, as it is a special type of hypernymy that only holds between a leaf and its parent node.

On the other hand, none of the models'® does well on verb hypernymy (Table 5). CRIM achieved
the highest scores overall for verbs. Consistent with the experiments on nouns and instance nouns,
hypo2path rev had relatively strong performance, with 9.22 H@1 on the test set, which is comparable
to the best H@1 (9.71). However, the best H@1 is still below 10% and the best WuP score is not much
higher than the closest co-hyponym baseline.

Discussion Despite being trained with about ten times less data, scores for instance hypernymy are
generally much higher than for noun hypernymy. Our finding that it is easier to predict hypernyms
for individual entities than for common nouns is consistent with previous work (Boleda et al., 2017;
Camacho-Collados et al., 2018; BalaZevi¢ et al., 2019; Nguyen et al., 2019).

On the other hand, scores for hypernymy amongst verbs are very low, despite having about twice
as much training data as instance hypernyms. This could be due both to the fact that verbs have more

SWe ran experiments across five different random seeds for hypo2path rev and found the standard deviation to be very low

(noun: [0.824eyv, 0.97cs], instance noun: [2.52ey, 2.08est], verb: [0.29¢ev, 1.17es]) indicating that the model is quite stable.
1text2edges is not included since it cannot run on the verb data.

3013

Error type Examples %
Query hyponym Gold hypernym Prediction Confounding hyponym
Indirect hypernym chant.n.01 religious_song.n.01 music.n.01 14.4
folk _singer.n.01 singer.n.01 musician.n.01
Co-hyponym tart.n.03 pastry.n.02 pie.n.01 3.6
knitwear.n.01 clothing.n.01 apparel.n.01
Polysemy nut.n.03 [nut] block.n.01 seed.n.01 nut.n.01 [nut] 17.4
(Shared lemmas) chest.n.02 [chest] box.n.01 external_body_part.n.01 breast.n.01 [breast, chest]
Multi-word lemmas || night_porter.n.01 doorkeeper.n.03 evening.n.01 guest_night.n.01 15.4
with shared words [night porter] [guest night]
carpet_beater.n.01 beater.n.02 cleaning_implement.n.01 carpet_sweeper.n.01
[carpet beater, rug beater] [carpet sweeper, sweeper]

Table 7: Four typical error patterns and examples observed from hypoZ2path rev evaluated on nouns
(validation set). Altogether, they account for 50.8% of the total errors. Words within square brackets
after a synset are the set of lemmas of the synset. The boldfaced are the shared lemmas/words.

complex semantics than nouns and to the structure of the WordNet verb hierarchy; while the noun sub-
graph is a single tree rooted at entity.n.01, the verb subgraph consists of 599 shallow trees. The WordNet
verb hierarchy also has a number of annotation errors described in Richens (2008). In addition, verbs
are more polysemous than nouns (Fellbaum, 1990), and the hypernym relation for verbs (troponymy)
encompasses a diverse set of heterogeneous subsumption relations (Fellbaum, 2002; Richens, 2008).

Our results also suggest that it may be more effective to learn hypernymy separately from other lexical
relations, rather than in a multi-relational setup. For example, M3GM trained with all 11 relations of
WNI18RR achieved a high aggregate validation H@1 of 39.88 in our replication , but a much lower H@ 1
for hypernymy (1.19) and instance hypernymy (3.74). These were evaluated on the original WN18RR,
following Pinter and Eisenstein (2018), so these scores are not comparable to Tables 3, 4, 5, 6. Unlike
Pinter and Eisenstein (2018), we evaluated M3GM in one direction (i.e., only hypernym prediction, rather
than both hyponym and hypernym prediction).!” These results are in line with the H@ 10 scores reported
by Nguyen et al. (2019) and Balazevi€ et al. (2019), which are substantially lower for hypernymy than
for the other lexical relations in WN18RR.

6 Error Analysis

Here we examine the predictions of the best performing model, hypo2path rev, on the validation set for
nouns in WN18RR-hp (647 synsets).

Path Validity Regardless of whether the predicted direct hypernym was correct or not, we observe that
every generated path, from each predicted hypernym to the root, is actually a valid path in WordNet.
This is not surprising, since all such paths appear in the training data. While the model always correctly
generated valid paths in the graph, they did not necessarily start at the correct node (i.e., failing to predict
the gold direct hypernym).

Nearby Nodes For noun hypernymy, 14.4% of the errors are due to predicting an indirect hypernym
(Table 7). The remaining incorrect predictions are not on the path from the hyponym to the root: these
include co-hyponyms (“siblings”, or nodes that share the same parent), and “cousins” (nodes that share
the same non-parent ancestor). 3.6% of incorrect predictions are co-hyponyms (also in Table 7). About
half of all predicted cousins had a common ancestor with the query hyponym that was within four steps.

Similar Synset Embeddings Some synsets were similar enough to mislead the model: polysemous
lemmas were shared across different synsets (17.4% of the total errors) and some multi-word lemmas
had shared words (15.4%) (Table 7). In these cases, the model incorrectly returned a hypernym of a
“confounding hyponym” that has a similar representation to the query. This type of error is attributable

"When evaluated on the both directions, we obtained 42.95 aggregate validation H@1, which is close to their reported

performance, 43.26. Interestingly, their hyponym prediction validation H@1s are overall much higher (hypernymy: 16.18,
instance hypernymy: 41.12) than those of hypernym prediction.

3014

to the way synset embeddings are computed (i.e., averaging lemma vectors) which we adopted from
Pinter & Eisenstein (2018).

Lemma Overlap and Polysemy Although none of the queries (synsets) are shared between the train-
ing and evaluation (validation/test) sets, some lemma-level overlaps exist (5.4% of training set overlaps
with the validation set). We checked whether our model is taking advantage of any lemma overlap by
computing the correlation between prediction correctness and lemma overlap rate (i.e., how many lem-
mas of a query hyponym synset are already seen anywhere in the training set) of each predicted pair in
the validation set. If the correlation is positive, this indicates that the the model did get some hints from
lemmas seen from training set.

However, we observed a significant negative correlation (-0.228; p-value<0.001). This is related to
the point on polysemy discussed above. In nearly half of the validation instances where a query had
a lemma overlap with the training set, the model incorrectly predicted the hypernym of a confounding
hypernym.

Rare Synsets Is hypernym prediction more difficult for infrequent synsets (i.e., synsets whose lemmas
rarely appear in the corpus from which the word vectors were derived)? We define a synset’s frequency
as the average of the frequencies of its lemmas. '8

We find that the 164 synsets with frequency under 2,000 have an H@1 score of 15.2 (an 8.4 point drop).
To further quantify the effect of synset frequency on performance, we ranked and binned every predic-
tion by synset frequency (Figure 1). There is a clear upward trend, suggesting that methods designed
to learn better embeddings with sparse data (Herbelot and Baroni, 2017) could improve performance
substantially.

5.1 7.8 9.8 11.2 12.0 14.9
Average synset frequency (log scale)

Figure 1: H@1 for hyponyms of different frequency within equal-sized bins of size 108.

7 Conclusion and Future Work

In this paper we have considered the hypernym prediction task, the task of identifying the correct direct
hypernym in a taxonomy of a synset given its embedding. In terms of evaluation, we have focused on
both “exact match” (H@1) and “ballpark match” (WuP) metrics, and we have for the first time provided
a comparison of existing models that had not previously been evaluated with the same metrics or on the
same datasets.

We have introduced two simple encoder-decoder based models for hypernym prediction that make use
of information in the full taxonomy paths, finding that in particular hypo2path rev shows state-of-the-art
performance on the WN18RR-hp dataset. For nouns, it achieves improvements of 5.17 test H@1 over
the best benchmark model. For verbs, we find that no model achieves a high performance. Instance

8We extracted the frequency statistics of the English Wikipedia (wiki.en.bin) fastText word vectors using function
get_words from https://github.com/facebookresearch/fastText (v. 0.9.1).

3015

nouns, on the other hand, are the easiest to predict. Encouragingly, we find that “ballpark match” (WuP)
for instance nouns is at over 87 points.

There are several directions for future work. Encoding lemmas separately and with attention, rather
than with a single embedding, could allow the attention mechanism to assign lower weights to less
informative, misleading, or polysemous lemma names (which were related to over a third of all errors).
One potential way to handle polysemy could involve encoding both synsets and glosses, using either
classical word embeddings or contextualized word embeddings. Another extension of this work is to
use multi-task learning with multiple decoders and different tasks, similar to Luong et al. (2016). For
example, in addition to learning to decode a path of hypernyms leading to a given synset, a model could
also generate the synset’s co-hyponyms or its hypernym’s lexname'®.

Our results suggest that hypernym prediction is challenging for words which occur less frequently in
the corpus used to compute embeddings. Methods are needed which can learn more effectively from
low-frequency data, where the “unknown word” does not appear very often (Herbelot and Baroni, 2017;
Kabbach et al., 2019).

Acknowledgments

This work was supported by the ARL:UT Independent Research and Development Program. The authors
acknowledge the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for
providing computing resources used to obtain the results in the paper. We thank Jessy Junyi Li and
anonymous reviewers for providing helpful comments and feedback for this work.

References

Carl Allen, Ivana Balazevic, and Timothy M Hospedales. 2019. On understanding knowledge graph representa-
tion. arXiv preprint arXiv:1909.11611.

Mohammed Alsuhaibani, Takanori Maehara, and Danushka Bollegala. 2019. Joint learning of hierarchical word
embeddings from a corpus and a taxonomy. In The Conference of Automatic Knowledge Base Construction.

Ivana Balazevié, Carl Allen, and Timothy Hospedales. 2019. Multi-relational poincaré graph embeddings. In
Advances in Neural Information Processing Systems, pages 4465-4475.

Gabriel Bernier-Colborne and Caroline Barriere. 2018. CRIM at SemEval-2018 task 9: A hybrid approach to
hypernym discovery. In Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-
2018), pages 725-731.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135-146.

Gemma Boleda, Abhijeet Gupta, and Sebastian Pad6. 2017. Instances and concepts in distributional space. In
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 79-85.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Trans-
lating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems,
pages 2787-2795.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2014. A semantic matching energy function
for learning with multi-relational data. Machine Learning, 94(2):233-259.

Jose Camacho-Collados, Claudio Delli Bovi, Luis Espinosa-Anke, Sergio Oramas, Tommaso Pasini, Enrico San-
tus, Vered Shwartz, Roberto Navigli, and Horacio Saggion. 2018. Semeval-2018 task 9: Hypernym discovery.
In Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018); 2018 Jun 5-6;
New Orleans, LA. Stroudsburg (PA): ACL; 2018. p. 712-24. ACL (Association for Computational Linguistics).

Every synset in WordNet is assigned a category label from a list of 45 semantic fields called lexnames (Miller et al., 1990).
These are high-level concepts such as event, feeling, location for nouns and change, creation, cognition for verbs.

3016

Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. 2017. Chains of reasoning over
entities, relations, and text using recurrent neural networks. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 132—-141.
Association for Computational Linguistics.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2d knowledge
graph embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence.

Christiane Fellbaum. 1990. English verbs as a semantic net. International Journal of Lexicography, 3(4):278-301.
Christiane Fellbaum, editor. 1998. WordNet: An Electronic Lexical Database. MIT press.

Christiane Fellbaum. 2002. On the semantics of troponymy. In The Semantics of Relationships, pages 23-34.
Springer.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. 2016. Multilingual language processing
from bytes. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1296—1306.

Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th
conference on Computational linguistics-Volume 2, pages 539-545. Association for Computational Linguistics.

Aurélie Herbelot and Marco Baroni. 2017. High-risk learning: acquiring new word vectors from tiny data. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 304-309.

David Jurgens and Mohammad Taher Pilehvar. 2016. Semeval-2016 task 14: Semantic taxonomy enrichment. In
Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pages 1092—-1102.

Alexandre Kabbach, Kristina Gulordava, and Aurélie Herbelot. 2019. Towards incremental learning of word
embeddings using context informativeness. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Workshop, pages 162—168.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. 2019. Smoothing the geometry
of probabilistic box embeddings. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412-1421.

Minh-Thang Luong, Quoc Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. 2016. Multi-task sequence to
sequence learning. In Proceedings of the 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J Miller. 1990. Introduction
to WordNet: An on-line lexical database. International journal of lexicography, 3(4):235-244.

Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. 2019. A capsule network-
based embedding model for knowledge graph completion and search personalization. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 2180-2189.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré embeddings for learning hierarchical representations. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages 6341-6350. Curran Associates, Inc.

Maximillian Nickel and Douwe Kiela. 2018. Learning continuous hierarchies in the Lorentz model of hyperbolic
geometry. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmdssan, Stockholm, Sweden, July 10-15, 2018, pages 3776-3785.

Yuval Pinter and Jacob Eisenstein. 2018. Predicting semantic relations using global graph properties. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1741-1751.

Victor Prokhorov, Mohammad Taher Pilehvar, and Nigel Collier. 2019. Generating knowledge graph paths from
textual definitions using sequence-to-sequence models. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1968—1976.

3017

Tom Richens. 2008. Anomalies in the WordNet verb hierarchy. In Proceedings of the 22nd International Confer-
ence on Computational Linguistics, pages 729-736.

Stephen Roller, Douwe Kiela, and Maximilian Nickel. 2018. Hearst patterns revisited: Automatic hypernym de-
tection from large text corpora. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 358-363.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016. Improving hypernymy detection with an integrated path-
based and distributional method. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 2389-2398.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2005. Learning syntactic patterns for automatic hypernym
discovery. In Advances in neural information processing systems, pages 1297-1304.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2006. Semantic taxonomy induction from heterogenous evidence.
In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, pages 801-808. Association for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An open multilingual graph of general
knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA, pages 4444-4451.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, pages 3104-3112.

Dmitry Ustalov, Nikolay Arefyev, Chris Biemann, and Alexander Panchenko. 2017. Negative sampling improves
hypernymy extraction based on projection learning. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 543-550, Valencia,
Spain. Association for Computational Linguistics.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. 2016. Order-embeddings of images and language.
In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir, and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of the 25th International Conference on Computational Linguistics:
Technical Papers, pages 2249-2259. Dublin City University and Association for Computational Linguistics.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics and lexical selection. In Proceedings of the 32nd an-
nual meeting on Association for Computational Linguistics, pages 133—-138. Association for Computational
Linguistics.

3018

