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Abstract

The release of BERT revolutionized the development of NLP. Various BERT-based reading
comprehension models have been proposed, thus updating the performance ranking of reading
comprehension tasks. However, the above BERT-based models inherently employ BERT’s com-
bined input method, representing the input question and paragraph as a single packed sequence,
without further modification for reading comprehension. This paper makes an in-depth analysis
of this input method, proposes a problem of this approach. We call it attention deconcentration.
Accordingly, this paper proposes ForceReader, a BERT-based interactive machine reading com-
prehension model. First, ForceReader proposes a novel solution called the Attention Separation
Representation to respond to attention deconcentration. Moreover, starting from the logical nature
of reading comprehension tasks, ForceReader adopts Multi-mode Reading, and Interactive Rea-
soning strategy. For the calculation of attention, ForceReader employs Conditional Background
Attention to solve the lack of the overall context semantic after the separation of attention. As an
integral model, ForceReader shows a significant improvement in reading comprehension tasks
compared to BERT. Moreover, this paper makes detailed visual analyses of the attention and
propose strategies accordingly. This may be another argument to the explanations of the attention.

1 Introduction

Reading comprehension can be used as a comprehensive test task to evaluate machine understanding of
human language(Chen, 2018). Therefore, it has become a primary research topic in natural language pro-
cessing. In the past few years, due to new datasets, algorithms, and computing capabilities, deep learning
technology has evolved rapidly. Driven by deep learning approaches, machine reading comprehension has
made significant breakthroughs.

Hermann et al.(2015) of DeepMind proposed CNN/Daily Mail, which known as one of the first large-
scale supervised training datasets for machine reading comprehension. They also proposed The Attentive
Reader(Hermann et al., 2015), an attention-based Long Short-Term Memory network(Hochreiter and
Schmidhuber, 1997) model for reading comprehension. In order to overcome the shortage of CNN/Daily
Mail dataset, researchers such as Rajpurkar proposed the SQuAD1.0(Rajpurkar et al., 2016) dataset in
2016, and SQuAD2.0(Rajpurkar et al., 2018) dataset in 2019. These two datasets have rapidly driven a
series of studies on deep learning-based machine reading comprehension, resulting in many efficient and
ingenious models. Chen et al.(2016) proposed the Stanford Attentive Reader. This end-to-end reading
comprehension model combines multi granular language knowledge and attentional mechanisms, become
an early representative of neural machine reading comprehension models. Minjoon et al.(2016) proposed a
bidirectional attention flow reading model, BiDAF. Based on the BiLSTM backbone network that inherits
from Stanford Attentive Reader, BiDAF novelly proposes a bi-directional attention interaction, which
is not only from query to context but also from context to query. QANET proposed by Yu et al.(2018)
in 2018, adopting a completely different approach. QANET is no longer base on BiLSTM but uses a
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multi-layer convolution and self-attention mechanism as the encoding blocks, which is similar to the
Transformer(Vaswani et al., 2017) that appeared later.

The introduction of BERT in 2018(Devlin et al., 2019) pushed the whole NLP society to a new height.
The reading comprehension task also achieved a significant breakthrough, reaching the human-level
performance on the SQuAD and other datasets. BERT is entirely based on the self-attention mechanism of
the Transformer stacking structure. However, when dealing with the reading comprehension task, it concat
the question and paragraph into a single sequence. Although very simple and effective, we argue that this
approach may cause attention deconcentration. Despite all the arguments about the interpretability of
attention(Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Serrano and Smith, 2019), we still start
from the visual distribution of attention, propose an interactive reading comprehension model based on
the idea of separate representation of the attention. Specifically, our main contributions in this paper are
as follows.

1. We conduct a detailed analysis of the current use of BERT in machine reading comprehension, and
propose, visualize, and explain the attention deconcentration problem.

2. We propose novel approaches including Attention Separate Representation, Multi-mode Reading,
Conditional Background Attention, and Interactive Reasoning for the attentional deconcentration
problem.

3. We perform detailed experiments and comparisons for the improvements proposed in this paper.
According to the experiment results, our model obtains a significant improvement compared to the
BERT.

4. We also conduct detailed visual analyses. By illustrating the attention of our model, we visually
demonstrated the learning ability of our model. Besides, it is also an example of the Transformer’s
interpretability.

2 Attention Deconcentration

Machine reading comprehension requires a machine to answer question Q based on a given paragraph
P . BERT handles this task by encoding the Q and P into a single sequence of words as the input. Then,
it performs the classification task only on the output fragment corresponding to the context. Although
BERT shows excellent performance, we argue that there are problems with this approach.

First, based on the common sense of reading comprehension, in order to effectively reason, we need to
have an accurate understanding of the question and paragraph’s semantics. However, BERT’s joint-input
method may let the semantic of one section affected by the words of the other. These interfering words are
often not helpful for understanding. Second, it is difficult for the self-attentive mechanism to accurately
distinguish the question and paragraph pair(< Q,P >) in the joint input sequence when dealing with
question and paragraph interactions, thereby establishing the appropriate bi-directional attention between
words of question and paragraph.

To better understand these problems, we give a brief example of question-paragraph-answer triple for
further discussion as follows.

Q: I want to ask you a question, who is the founder of Microsoft?

P: I know from the book that Bill Gates founded Microsoft.

A: Bill Gates

(1)

In the example1, we can easily tell that when we try to understand the Q, we only need to pay attention
to few words such as who, founder, and Microsoft. Words like I, know, book, in P do not play big roles
in this particular Q&A scenario. Therefore, a basic understanding is that when modeling this particular
< Q,P > pair, the reading comprehension model should pay more attention to the more important words,
while less critical words do not need much attention. However, the self-attention mechanism, finetuned
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from the BERT pre-trained model, will always assign attention to all words in P . For the second problem,
we can see that when reasoning interactively with the < Q,P > pair, word like founder in Q should pay
more attention to the wordsBill, Gates, founded and Microsoft in P , than to the words you, question, is and
the in it’s own section. However, in the present BERT based approaches, attention is always given to these
words. We call this problem attention deconcentration. Compare with the Masked Language Modelling,
and Next Sentence Prediction task in BERT pre-training, the supervised training of the Machine Reading
Comprehension task is extremely insufficient. Hence, we think it is impossible to eliminate attention
deconcentration through adequate training.

2020/6/29 atten_bias

file:///C:/Users/kenje/Downloads/atten_bias (2).html 3/3

In [16]: # np.squeeze(att.asnumpy(), 0).shape

# y_tick = ['[CLS]', 'want', 'question', 'founder', 'microsoft']

y_tick = ['[CLS]', 'question', 'founder', 'microsoft']
plt.figure(figsize=(30, 3))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(prob, cmap=cmap, annot=True, 
           xticklabels=q_tokens, yticklabels=y_tick)
plt.show()

In [ ]:  

['[CLS]', 'i', 'want', 'to', 'ask', 'you', 'a', 'question', ',', 'who', 'is', 'the', 'founder', 'of', 'microsoft', '?', '[SEP]', 
'i', 'know', 'from', 'the', 'book', 'that', 'bill', 'gates', 'founded', 'microsoft', '.', '[SEP]'] 
29 
29 
29 
29 
tensor([[1309.8999], 
        [1275.8000], 
        [1441.5000], 
        [1640.6000]]) 
torch.Size([4, 29]) 

Figure 1: Visualization of the attention deconcentration problem

In Fig.1, we visualize the < Q,P > pair of the example1. We can intuitively see the attention
deconcentration phenomenon we discussed. Besides, through more experiments, we find out the longer
the input sequence, the more attention deconcentration observed.

3 ForceReader Model

We give the overall structure of the ForceReader model, which we proposed, in Fig.2, including Atten-
tion Separate Representation, Multi-mode Reading, Conditional Background Attention, and Interactive
Reasoning.

3.1 Attention Separate Representation
To address the problem caused by attentional deconcentration, we adopt Attention Separate Representation.
In this approach, we input Q and P to BERT, separately. That is, the Transformer model have to compute
attention on Q and P , respectively, without inter-attention. In this way, the overall semantic attention
of the Q will only distribute over its own words, but not distracted by certain perturbed words in the P .
This model makes it easier to capture the semantic core words of a text section, such as who, founder and
Microsoft. Specifically, for a particular word, founder in Q, for example, it is easier to get the relevant
semantic qualifier, Microsoft, so that the semantic richness of the interaction can better be matched in later
interactions.

3.2 Multi-mode Reading
When people do reading comprehension tasks, they tend to have different modes. Somebody may read the
question before reading the paragraph and then find the answer from the paragraph with the background
knowledge of the question, which we call it the Q2P mode. Other people may read the paragraph before
reading the question and then answer the question with a memory of the paragraph. We call it the P2Q
mode. Another way to use paragraphs and questions is to read them together and to perform comparative
reasoning. We name it the QCP mode. The Q2P mode has a hierarchical structure in the paragraph.
When the answer to a question is in a particular paragraph of the paragraph, the knowledge required for
the answer is better located. The P2Q mode makes the question to be better understand. It is suitable for
the complicated questions which need paragraph as the context to understand. The QCP mode is for the
cases that require reasoning from multiple parts of the paragraph to grasp the central idea of the entire
paragraph. In summary, the three modes of solving reading comprehension are different and can be used
to unique advantage in different problem contexts. Therefore, our model will combine these three reading
modes, enabling knowledge to be acquired through multiple modes to address reading comprehension in
different contexts.

Before performing the Multi-mode Reading, we first follow the Attention Separate Representation to
get the vector representation of the Q and the P , which areHQ and HP . In the Q2P mode, for each
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Figure 2: ForceReader overall model structure

word wQi in the Q, we compute it with the attention in the pre-generated paragraph sequence HP . And
then, fuse the representation HP in the paragraphs through attention. At last, we add H̃Qi back to the
hQi to finally get the represent wQi , as shown below.

αi,j =
exp(HPjHQi

T )∑lp
j exp(HPjHQi

T )

H̃Qi =

lp∑
j

αi,jHP

HQi = HQi + H̃Qi

(2)

Similarly, in the P2Q mode, for each word wPi in the P , we compute it with the attention in the
per-recipient paragraph sequence HQ, fuse the representation HQ in the problem through attention and
add it with hPi to represent wPi . The equations are the similar to Q2P ’s.

In the QCP mode, P and Q should pay attention to each other. Other than designing a new bi-
directional attention flow, we consider the original BERT with a combined input of P and Q. It is also
the most commonly used method for machine reading comprehension. However, unlike P2Q mode
and Q2P mode, after encoding the P,Q pair with BERT, we just get the [CLS] as the overall semantic
representation hQCP .
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3.3 Conditional Background Attention

The feature fusion methods commonly used in neural networks are addition, concatenation, and projection.
All of these modalities are post-fusion mechanisms. However, in order to perform more interactive
reasoning in reading comprehension tasks, we want to do feature fusion as early as possible. Therefore,
these modalities can benefit from the results of the other modalities. In particular, for the QCP model, as
we mentioned above, we use only [CLS] as the holistic semantic encoding of hQCP , but not the encoding
of the whole input sequence. There are two reasons for this. First, we think that holistic semantics has
essential benefits for the interaction of questions and paragraphs. Second, we need to avoid the effects of
the attention deconcentration problem we addressed before.

We take hQCP , the result of the QCP mode, as the conditional background semantics. Integrate it in
the calculation of the attention distribution α of Q2P and P2Q . Since the attention score of these modes
is calculated based on the conditional background semantics of QCP , we call it Conditional Background
Attention. Take Q2P as an example. The calculation process of αij is shown as follows.

αij = Attention((HP ,HQi)|hQCP )

=
exp((HPj + hQCP )HQi

T )∑lp
j exp((HPj + hQCP )HQi

T )

(3)

The same is true for the P2Q model of attention distribution. The design of Q2P and P2Q not only
covers the common-sense models of reading comprehension but also effectively addresses the second
problem of attention deconcentration by reducing the influence of single lyrics affected by irrelevant verbs.
The present of conditional attention further brings the results of the QCP mode to the computation of
two other modes of attention, so that these modes no longer lack knowledge of overall semantics.

3.4 Interactive Reasoning

After modelling Multi-mode Reading and Conditional Background Attention, we can obtain semantic
tensor HP and HQcorresponding to P and Q . People generally use HP to classify answers directly
word by word, as in AttentiveReader, by predicting the start and end index of the answer sequence.
However, we believe that the interaction between the question and the paragraph is a better way to
represent the underlying patterns in the reading comprehension task. There are always various patterns
between the P and Q, such as synonyms or word overlap. Take example1 as an example, founder in P
and founded in Q have similar semantics, and both P and Q share the same Microsoft words.

For interactive reasoning, we believe that the literal similarity between questions and paragraphs is
crucial underlying information. Therefore, we use Cosine Similarity and L1 distance to characterize this
similarity and stack the results of both measures together to obtain the interaction tensor S.

Scos =
HPHQ

T

‖HP ‖‖HQ‖
SL1 = ||HP −HQ||
S = Stack(Scos,SL1)

(4)

where S ∈ R2×lp×lq .
By now, the interaction tensor S contains only literal information such as predicates, word overlaps,

distance metrics. The combination of these literal features is also essential for the inference of the answer.
For example < Q,P >, we need not only to directly word interactions but also to be able to interact

with phrase fragments such as founder of Microsoft and founded Microsof, who is the founder and Bill
Gates founded. In many cases, this can intuitively drive the model to the answer. Therefore, we should
further extract the combinatorial features from the interaction tensor S as follows.
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for i in range(n) :

S = PointWiseConv(S)

S = DeepWiseConv(S)

(5)

We also need our model to combine multiple layers of abstraction based on word interactions to capture
the information interaction between different window segments. The great success of convolutional neural
networks in the field of image processing is precisely due to the ability to perform local feature detection
and then employ multi-channel modeling to extract more abstract and rich combined features. Similarly,
convolutional neural networks can also produce good results on text classification(Kim, 2014). Inspired
by this, we use a multi-channel separable convolutional neural network (Separable CNN) (Chollet, 2017;
Kaiser et al., 2017) for the extraction of multiple interactive features. First, we perform point-by-point
convolutional operations on each channel with different receptor eye sizes. Then we perform 1×1 channel
convolutional operations in order to fuse information between channels. After multi-layer separable
convolutional operations, we perform global maximum pooling and transposition on the lq dimension to
obtain the output.

H = GlobalMaxPool(S, axis = lq)
T (6)

where H ∈ Rlp×c, c is the number of output channels in the last convolutional layer.

3.5 Answer Prediction
Like most models, we can make stepwise classifications on H ∈ Rlp×c, to predict the beginning and end
of the answer in the paragraph. During the training, we use the cross-entropy loss function as follows.

L(θ) = −
∑

(logP sys + logP eye) (7)

where θ is the set of parameters in the entire model that can be learned by training, P s, P e represents the
probability of beginning and ending predictions, and ys, ye represents the index of where the ground-truth
answer begins and ends.

4 Experiment

4.1 Dataset
We run our experiments on both SQuAD1.1 and SQuAD2.0. Stanford Question Answering Dataset
(SQuAD) is a reading comprehension dataset consisting of a set of questions in Wikipedia articles.
The answer to every question is a segment of text corresponding to the reading paragraph. SQuAD
1.1(Rajpurkar et al., 2016) is an early version of the SQuAD dataset and contains 100,000+ question-
answer pairs on more than 500 articles. SQuAD2.0(Rajpurkar et al., 2018) combines 100,000 questions
in SQuAD1.1 with more than 50,000 unanswerable questions. In order to achieve excellent results on
SQuAD2.0, the system must not only answer questions when possible but also must determine when the
paragraph does not support any answers.

4.2 Experiment models
We employ BERT-Large as our baseline model. Then, we perform a series of improvements according to
section 3.1, 3.2, 3.3 and 3.4 over the BERT-Large base model. First, we use BERT to encode Q and P
separately, thereby achieving Attention Separate Representation. Then perform an AttentiveReader like
approach to get the final answer. We name this model as SepBERTReader. Next, we add multi-mode
modeling to the SepBERTReader to verify the Multi-mode Reading strategy discussed in section 3.2.
The second model is called MultiModeReader. Furthermore, we include the Conditional Background
Attention to the MultiModeReader, then get a new model called CondAttentionReader. Finally, we
add the interaction module to CondAttentionReader, which constitutes our model that covers all the
improvement schemes mentioned in this paper. The final model is called ForceReader.
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We use a progressive top-to-bottom experiment that corresponds to the proposed improvements. In the
experiment results, we can intuitively compare the contribution of each improvement strategy.

4.3 Model setups

For the BERT encoder of all these models, we load the parameters from Google’s pre-trained BERT-Large.
For the non-BERT layer, we randomly initialized its parameters. The BERT layer only needs to perform
fine-tuning learning according to specific downstream tasks. If the learning rate is too large in fine-tuning
learning, it will affect the pre-trained model’s stability. Therefore, we set the learning rate to 3e-5 in the
BERT layer of the model. For the non-BERT layer, we set the learning rate to 1e-4, which can accelerate
the parameter update in the gradient descent algorithm. We used AdamW (Loshchilov and Hutter, 2017)
as the optimizer, and the learning rate adjustment strategy adopted Warmup(Vaswani et al., 2017; You et
al., 2017; Gotmare et al., 2018) with a batch size of 12 for a total of 16000 iterations. To alleviate the
problem of overfitting, a combination of L2 regularization(Cortes et al., 2012) and dropout(Hinton et al.,
2012) was used. By using L2 regularization, the loss function of the model is as follows.

Lreg(θ) = L(θ) + λ
∑
||θ|| (8)

where θ represents parameters of the model,
∑
||θ|| represents the sum of L2 paradigms of all model

parameters, λ is the penalty term coefficient, which we set to 1e-4.

4.4 Results

According to the settings and parameters described above, we conducted experiments on SQUAD1.1 and
SQUAD2.0, respectively. The experiment results are shown in Table1.

Table 1: Comparison of experiment results on the SQuAD

Model SQuAD1.1 SQuAD2.0
EM F1 EM F1

Human 80.3 90.5 86.3 89.0
Stanford Attentive Reader 69.5 78.8 - -
BiDAF 67.7 77.3 - -
QANET 73.6 82.7 - -
BERT-Large(Google’s) 84.1 90.9 - -
BERT-Large(Ours) 83.3 90.5 78.7 82.0
SepBERTReader 84.1 90.8 79.9 82.9
MultiMode Reader 86.4 91.6 81.1 85.2
Cond Attention Reader 87.3 92.2 82.3 86.6
ForceReader 88.1 93.4 84.7 88.1

For BERT-Large, we report the official Google results as well as our results. We attempt to reproduce
the BERT-Large results over the Dev set according to the configuration provided by Google. However,
the results of the two are still slightly different. Although we believe that such a small difference will
not affect any conclusion, but in order to compare under the same conditions, the following comparative
analysis will be based on the results of our implementation on the Dev set. Besides, we also listed the
performance of Stanford Attentive Reader, BiDAF, QANET, and humans on these data as a performance
comparison.

5 Analysis

5.1 Analysis of Results

In Table1, we report the results on the SQuAD datasets. For SepBERTReader, we found that compared
with the baseline model, the improvement is relatively small. EM / F1 of SQuAD1.1 and SQuAD2.0
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increased by about 1%. However, each indicator has indeed improved. Therefore, we believe that
the strategy of Attention Separate Representation has played a certain role in improvement. Since the
upper layer of SepBERTReader only adopts a simple inference mode, the effect of Attention Separate
Representation is not significant. Observing MultiModeReader, we found that EM / F1 increased by 3.1%
and 1.1% on SQUAD1.1, and EM / F1 increased by 2.4% and 3.2% on SQuAD2.0. The improvement is
noticeable, which proves that based on the Attention Separate Representation, combining with the multi-
mode reading scheme can significantly improve the model’s understanding and reasoning ability. This
also explains that SepBERTReader’s insufficient interactive ability is the main reason for its insignificant
performance improvement. Regarding CondAttentionReader, we found that EM / F1 increased by 4%
and 1.7% on SQUAD1.1, and 3.6% and 4.6% on SQuAD2.0. The result shows that the model’s attention
calculation is more accurate in the context of the question-paragraph combination, which can help the
model to extract answer fragments better. Finally, observing ForceReader, we found that EM / F1 increased
by 4.8% and 2.9% on SQUAD1.1, and EM / F1 increased by 6% and 6.1% on SQuAD2.0, respectively.
ForceReader contains all the strategies we have proposed so far. Each indicator has significantly improved
on the two datasets. Compared with CondAttentionReader, the improvement of this model is also very
significant. We can conclude that upper-layer interactive reasoning and convolutional networks are
of great help to the model. Due to the interactive reasoning, the model can learn better patterns and
correlations between question and paragraph. Besides, the results show that our model has surpassed
human performance on SQuAD1.1. It is also close to human performance on SQuAD2.0.

5.2 Visualization of Attention Enhancement Strategies

To increase the interpretability of the model and explore the learning capabilities of the strategies we
proposed in this paper, we visualized the attention of the ForceReader model. Through visualization, we
try to display the knowledge learned by the model in an intuitive way and analyze the reason behind the
effectiveness of these solutions.

In section 3.1, we adopted the Attention Separate Representation to encode the semantics of the question
and the paragraph separately to solve the problem of attention deconcentration. Therefore, we used the
separate encoding of the model to encode the examples in 1. We select the core words to visualize their
attention weight in the entire question sequence.

Our encoder Transformer has 24 layers, and each layer has 16 attention heads. In the process of
multi-layer coding, some studies believe that the lower layers may have more syntactic and grammatical
features. In contrast, the upper layers may have more overall abstract semantic features(Peters et al.,
2018). Therefore, we choose the attention value of the last layer for visual analysis. For the convenience
of visualization, we average the attention weights of the 16 attention heads to represent the final attention
distribution, as shown in Fig.3.

Figure 3: Attention Visualization of Core Words in Question

We chose [CLS], question, founder and microsoft as the core words of the question. Comparing with
Fig.1, the attentions in the Fig.3 are very consistent with language cognition. For example, the word
question pays more attention to a, who and founder, while it pays less attention to words such as i and
want. Similarly, the word founder pays more attention to who, of, microsoft and itself, and less attention to
other unrelated words. Such attention distribution can intuitively allow the model to learn the combination
semantics of founder of microsoft, which is of great help in understanding the problem. For the overall
semantics of the question, [CLS]’s attention distribution is also very reasonable, so we can have the
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conclusion that the Attention Separate Representation can help the model better understand the meaning of
the question. The same is true for the paragraph. Due to space limitations, we will not present additional
examples in detail.

Reading comprehension is an interactive process. Hence, after Attention Separate Representation, we
propose Multi-mode Reading, Conditional Background Attention, and Interactive Reasoning, to allow
the question and the paragraph to interact with each other. To visualize the knowledge learned in these
interactions, we select the core words in the question and show the attention of these words relative to the
paragraph words in Fig.4.

Figure 4: Question Words Attention to Paragraph Sequence

We choose question, who, founder and microsoft as the core words of the question. We can see from
Fig.4 that these words all have more attention to [CLS] and [SEP] of the paragraph. We think this is
because these two symbols can represent the overall semantics of the paragraph sequence. What is more
interesting is that the question has better attention to know. This result shows that the model has somehow
learned context syntactic knowledge and, thus, the ability of reference resolution. Intuitively, word who
pays the most attention to that, bill and gates, which seems to be able to directly answer the question of
who. In addition, founder and microsoft also has greater attention on bill, gates, founded and microsoft. In
summary, the attention distribution of these core words can significantly help the question get answers in
the paragraph.

Figure 5: Paragraph Words Attention to Question Sequence

These attentions is shown in Fig.5. We can see that all these words also have more attention to [CLS]
and [SEP] of the paragraph sequence. This result is consistent with the previous explanation. In addition
to pay more attention to founder, microsoft and question, these core words of paragraph also have a
higher attention of the word who, which largely demonstrates the model’s understanding of the question.
Regarding the result of non-core word i, since it is not very helpful for the overall semantic of the
question-answering, its attention is relatively scattered, which is consistent with our expectation.

6 Conclusion

In this paper, we analyzed the use of BERT in machine reading comprehension. We proposed the attention
deconcentration problem and conducted a detailed analysis of the impact on reading comprehension. In
response to this problem, we have proposed an efficient and straightforward model that integrates Atten-
tion Separate Representation, Multi-mode Reading, Conditional Background Attention, and Interactive
Reasoning. Attention separate representation effectively solves the problem of attention deconcentration.
Multi-mode Reading, Conditional Background Attention, and Interactive Reasoning can make the model
better adapt to the high interaction of reading comprehension. The experimental results proved the contri-
bution of each improvement. Besides, we visually analyzed the attention and intuitively demonstrated
the learning ability and interpretability of our model. This work is a new approach for machine reading
comprehension and provides a new argument for the interpretability of the Transformer model.
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