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Abstract

The Variational Autoencoder (VAE) is a popular and powerful model applied to text modelling to
generate diverse sentences. However, an issue known as posterior collapse (or KL loss vanishing)
happens when the VAE is used in text modelling, where the approximate posterior collapses to the
prior, and the model will totally ignore the latent variables and be degraded to a plain language
model during text generation. Such an issue is particularly prevalent when RNN-based VAE
models are employed for text modelling. In this paper, we propose a simple, generic architecture
called Timestep-Wise Regularisation VAE (TWR-VAE), which can effectively avoid posterior
collapse and can be applied to any RNN-based VAE models. The effectiveness and versatility
of our model are demonstrated in different tasks, including language modelling and dialogue
response generation.

1 Introduction

Variational Autoencoders (VAE) (Kingma and Welling, 2014; Rezende et al., 2014), together with
other deep generative models, including Generative Adversarial Networks (Goodfellow et al., 2014) and
autoregressive models (Oord et al., 2018), have attracted a mass of attention in the research community as
they have shown their ability to learn compact representations from complex, high-dimensional unlabelled
data. VAEs have been widely used in many NLP tasks, such as text modelling (Bowman et al., 2016; Yang
et al., 2017; Xu and Durrett, 2018; Fang et al., 2019; Li et al., 2019b), style transfer (Fang et al., 2019),
and response generation (Zhao et al., 2017; Fang et al., 2019). In addition, VAEs are also useful to several
downstream tasks, e.g., classification (Xu et al., 2017; Zhao et al., 2017; Li et al., 2019c; Gururangan et
al., 2019), transfer learning (Higgins et al., 2017), etc.

However, there is a challenging optimisation issue of VAEs known as posterior collapse (a.k.a. KL loss
vanishing), where the variational posterior collapses to the prior and the latent variable is ignored by the
model during generation (Bowman et al., 2016). This is particularly prevalent when employing VAE-RNN
architectures for text modelling. When posterior collapse happens, the decoder will be downgraded to a
simpler language model and the VAE cannot learn good latent representations of data (Sønderby et al.,
2016; Yang et al., 2017). Different strategies have been proposed to address this issue, such as annealing
the KL term in the VAE loss function (Bowman et al., 2016; Sønderby et al., 2016; Fu et al., 2019),
replacing the recurrent decoder with convolutional neural networks (CNNs) (Yang et al., 2017; Semeniuta
et al., 2017), using a sophisticated prior distribution such as the von Mises-Fisher (vMF) distribution (Xu
and Durrett, 2018); and adding mutual information into the VAE objectives (Phuong et al., 2018). While
the aforementioned strategies have shown effectiveness in tackling the posterior collapse issue to some
extent, they either require careful engineering between the reconstruction loss and the KL loss (Bowman et
al., 2016; Sønderby et al., 2016; Fu et al., 2019), or designing more sophisticated model structures (Yang
et al., 2017; Semeniuta et al., 2017; Xu and Durrett, 2018; Phuong et al., 2018).

In this paper, we propose a simple and robust architecture called Timestep-Wise Regularisation VAE
(TWR-VAE), which can effectively alleviate the VAE posterior collapse issue in text modelling. Existing
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VAE-RNN models for text modelling only impose KL regularisation on the latent variable of the RNN
encoder at the final timestep, forcing the latent variable to be close to a Gaussian prior. In contrast, our
TWR-VAE imposes KL regularisation on the latent variables of every timestep of the RNN encoder, which
we dub timestep-wise regularisation. We hypothesise that timestep-wise regularisation is crucial to avoid
posterior collapse and to learn good representations of data, and allows a more robust model learning
process. In addition, the proposed timestep-wise regularisation strategy is generic and in theory can be
applied to any existing VAE-RNN models, e.g., vanilla RNN and GRU-based VAE models. TWR-VAE
shares some similarity with existing VAE-RNN models, where the input to the decoder is the latent variable
sample from the variational posterior at the final timestep of the encoder. While this is a reasonable design
choice, we also explore two model variants of TWR-VAE, namely, TWR-VAEmean and TWR-VAEsum.
At each time step, both model variants sample a latent variable from the timestep dependent variational
posterior of the encoder. TWR-VAEmean averages the sampled latent variables which is then used as input
to the decoder, whereas TWR-VAEsum performs vector addition on the sampled latent variables instead.

To demonstrate the effectiveness of our method, we select a number of strong baseline models and
conduct comprehensive evaluations in two benchmark tasks involving five public datasets. For the
language modelling task, experimental results show that our TWR-VAE model can effectively alleviate
the posterior collapse issue and consistently give better predictive performance than all the baselines as
evidenced by both quantitative (e.g., negative log likelihood and perplexity) and qualitative evaluation. For
the dialogue response generation task, our model yields better or comparable performance to the state-of-
the-art baselines based on three evaluation metrics (i.e. BLEU (Zhao et al., 2017), BOW embedding (Liu
et al., 2016) and Dist (Liu et al., 2016)). Manual examination also shows that the dialogue responses
generated by our model are more diverse and contentful than the baselines, as well as being simpler in
model design. Our two model variants also show comparable performance to the best baseline, although
not as strong as TWR-VAE.

In summary, the contribution of our paper are three-fold: (1) we propose a simple and robust method,
which can effectively alleviate the posterior collapse issue of VAE via timestep-wise regularisation; (2) our
approach is generic which can be applied to any RNN-based VAE models; (3) our approach outperforms
the state-of-art on language modelling and yields better or comparable performance on dialogue response
generation. The code of TWR-VAE is available at: https://github.com/ruizheliUOA/TWR-VAE.

2 Related Work

Variational autoencoder (Kingma and Welling, 2014; Rezende et al., 2014) yields great performance when
it was applied to image generation (Razavi et al., 2019), facial attribute style transfer (Hou et al., 2017;
Klys et al., 2018; Li et al., 2020), etc. It also has been applied to many natural language processing tasks,
including text generation (Bowman et al., 2016; Fang et al., 2019; Zhu et al., 2020), dialogue response
generation (Serban et al., 2017; Zhao et al., 2017; Park et al., 2018; Gu et al., 2019; Fang et al., 2019),
and style transfer (John et al., 2019; Fang et al., 2019; Xu et al., 2020) For all these applications, there is a
common issue called posterior collapse (or KL loss vanishing) (Bowman et al., 2016).

Several different types of methods were proposed to address this issue. KL annealing is the most
common and basic solution used in almost all works (Bowman et al., 2016; Sønderby et al., 2016;
Semeniuta et al., 2017; He et al., 2019; Fu et al., 2019; Fang et al., 2019). Another type of approaches
attempt to weaken the decoder of VAE to avoid posterior collapse, such as introducing word dropout
and historyless decoding into the decoder (Bowman et al., 2016), replacing the decoder with different
CNNs (Yang et al., 2017; Semeniuta et al., 2017), and adding skip connections in the decoder (Dieng et
al., 2019). Others tried to solve this issue by introducing new regularisers (Zhao et al., 2019; Goyal et al.,
2017; Tolstikhin et al., 2018), using more sophisticated prior distributions (Tomczak and Welling, 2018;
Xu and Durrett, 2018), etc.

More recently, Fu et al. (2019) used a cyclical annealing schedule to alleviate the KL loss vanishing
issue. He et al. (2019) proposed a lagging inference network to update the encoder multiple times before
a single decoder update to address the issue from the perspective of training dynamics. Zhu et al. (2020)
applied the batch normalisation to the parameters of the approximate posterior and ensured that the lower
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Figure 1: Architectures of the proposed TWR-VAE models and the basic VAE-RNN model.

bound of the expectation of the KL is positive to avoid posterior collapse. In contrast, our approach only
imposes the KL regularisation on timestep-wise latent variables in the encoder, which is simpler without
changing the VAE training mode, introducing more complicated posterior distributions or adding a KL
annealing as a warm-up setup.

3 Methodology

In this section, we introduce the proposed Timestep-Wise Regularisation VAE (TWR-VAE) model as well
as its two model variants. We briefly introduce the background of VAE before describing the technical
details of the proposed models.

3.1 Background of VAE
A variational autoencoder is a generative model, which is designed to generate data via a latent variable z.
For a dataset X = {xi}Ni=1 with N i.i.d. data, there are two steps in the data generation process: (1) a
latent variable z is sampled from a prior distribution Pθ(z); (2) a data xi is generated from the conditional
distribution Pθ(xi|z). We need to optimise the marginal likelihood Pθ(xi) =

∫
Pθ(z)Pθ(xi|z)dz using

VAE. However, both of the marginal likelihood Pθ(xi) and the true posterior distribution Pθ(z|xi) =
Pθ(xi|z)Pθ(z)/Pθ(xi) are intractable. In order to train VAE, an encoderQφ(z|xi) is used to approximate
the true posterior Pθ(z|xi). In this way, a data xi is encoded as a distribution of z via the encoderQφ(z|xi)
and the latent code z is fed into the decoder Pθ(xi|z) to decode a distribution over some values of xi.

In general, the VAE is trained to maximise the marginal log likelihood logPθ (x1, . . . ,xN ) =∑N
i=1 logPθ (xi) for the whole training dataset. This is essentially equivalent to maximising the following

evidence lower bound (ELBO)1, which consists of two terms (Kingma and Welling, 2014):

L(θ,φ;xi) = EQφ(z|xi)[logPθ(xi|z)]−DKL (Qφ(z|xi)‖P (z)) . (1)

The first term is the expected reconstruction error indicating how well the model can reconstruct data
given a latent variable. The the second term is the KL-divergence of the approximate posterior from
prior, i.e., a regularisation pushing the learned posterior to be as close to the prior as possible. The basic
VAE-RNN model (Figure 1(a)) follows the aforementioned ELBO (i.e. Eq. 1). As the architecture of the

1See Appendix A for the full derivation.
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encoder is a RNN, a latent variable (denoted as zT ) is sampled from the variational posterior at the final
timestep T , and then zT is used as the input to the decoder. Therefore, the ELBO of a basic VAE-RNN
model becomes:

L(θ,φ;xi)basic = EQφ(zT |xi)[logPθ(xi|zT )]−DKL (Qφ(z
T |xi)‖P (zT )) . (2)

Note that the total number of timestep T is also the length of the input sentence. As discussed, optimising
ELBO (in Eq. 2) is prone to posterior collapsing to the prior (Bowman et al., 2016). This phenomenon
happens when the second term of Eq. 2 would approach to its global minimum whenQφ(z

T |xi) = P (zT ),
which results that x and zT are two independent variables. As a result, the decoder (i.e., the reconstruction
term) no longer depends on zT and it fits the training data as a plain language model.

3.2 Variational Autoendoder with Timestep-Wise Regularisation (TWR-VAE)

In this section, we introduce the proposed Timestep-Wise Regularisation (TWR-VAE) model, a general
architecture which can effectively mitigate the posterior collapse issue frequently observed in the VAE
models with RNN-based backbone.

Our model design is motivated by one noticeable defect shared by the VAE-RNN based models in
previous works (Bowman et al., 2016; Yang et al., 2017; Xu and Durrett, 2018; Dieng et al., 2019).
That is, the general architecture of all these models, as shown in Figure 1(a), only impose a standard
normal distribution prior on the last hidden state of the RNN encoder, which potentially leads to learning
a suboptimal representation of the latent variable. In addition, to avoid posterior collapsing, it is important
to learn good latent representations of data at the early stage of decoder training, so that the decoder can
easily adopt them to generate controllable observations (Fu et al., 2019). Our hypothesis is that to learn
a good representation of data, it is crucial to impose the standard normal prior on the hidden states of
all timesteps of the RNN-based encoder, which will allow a better regularisation of the model learning
process especially during the early stages.

The architecture of the proposed TWR-VAE model is shown in Figure 1(b), which is implemented
using a one-layer LSTM for both the encoder and decoder. For each timestep t, we feed the hidden
state ht into two linear transformation layers for estimating µt and Σt, which are parameters of the
variational posterior, i.e., a normal distribution corresponding to the ht. We then impose KL regularisation
on all timestep-wise variational posteriors rather than posterior of the last timestep. Formally, given input
X = {xi}Ni=1, the ELBO of our model for each data pint xi is defined as:

L(θ,φ;xi)TWR = EQφ(zT |xi)[logPθ(xi|zT )]−
1

T

T∑
t=1

DKL(Qφ(z
t|x1:t

i )‖P (zt)) , (3)

where T is the length of the input sentence, θ and φ are the parameters for the decoder and the encoder,
respectively. Note that TWR-VAE is similar to existing VAE-RNN models (Xu and Durrett, 2018; Fu et
al., 2019; He et al., 2019), which passes a single zT at the final timestep to the decoder. However, there is
a crucial difference that while existing models only impose KL regularisation on the last timestep, TWR-
VAE imposes timestep-Wise KL regularisation and average the KL loss over all timesteps, i.e., the second
term of Eq. 3. Such a strategy allows more robust model learning and can effectively mitigate posterior
collapse (see §4 Experiment for detailed discussion). Compared to the HR-VAE of Li et al., (2019b),
our model does not concatenate the cell state of the encoder at each timestep and the dimension of the
latent variable of TWR-VAE is only 32, whereas for HR-VAE the dimension is 512 which is much larger.
This enables the proposed TWR-VAE model to have fewer parameters than the HR-VAE. In addition, the
training speed of the TWR-VAE is six times faster than the HR-VAE by paralleling the timestep-wise KL
regularisation.

Following Kingma and Welling (2014), a reparameterisation trick is used to enable the timestep-wise
latent variable sampling differentiable. During the gradients optimisation of θ and φ, we use Monte Carlo
method (Metropolis and Ulam, 1949) to construct a Monte Carlo estimator, which can obtain unbiased
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Dataset Train Dev. Test Vocab.
PTB 42,068 3,370 3,761 9.95K
Yelp15 100,000 10,000 10,000 19.76K
Yahoo 100,000 10,000 10,000 19.73K
SW 2,316 60 62 20K
DD 11,118 1,000 1,000 22K

Table 1: The statistics of the PTB, Yelp 2015, Yahoo, SW and DD datasets.

gradients of θ and φ (see Appendices B and C for the detailed derivation):

∇θ,φL(θ,φ;xi)TWR '
1

M

M∑
m=1

∇θ,φ

(
logPθ(xi|zTm)−

1

T

T∑
t=1

log
Qφ(z

t
m|x1:t

i )

P (ztm)

)
where ztm = Qφ(z

t
m|x1:t

i ) , (4)

Here M indicates the total number of times that we randomly sample ztm (m ∈ [1 : M ]) from the
Qφ(z

t
m|x1:t

i ) for approximation.

3.3 TWR-VAEmean and TWR-VAEsum

In TWR-VAE, the input to the decoder is the latent variable sample from the variational posterior at the
final timestep of the encoder. While this is a reasonable design choice, we also explore two model variants
of TWR-VAE, namely, TWR-VAEmean and TWR-VAEsum (see Figure 1(c)). At each time step, both
model variants sample a latent variable from the timestep dependent variational posterior of the encoder.

For TWR-VAEmean, the timestep-wise latent variables {zt}Tt=1 are sampled first and then they are
averaged before feeding to the decoder. This leads to a different reconstruction loss of TWR-VAEmean
compared to TWR-VAE (Eq. 3):

E[logPθ(xi|
1

T

T∑
t=1

zt)] where zt ∼ Qφ(z
t|x1:t

i ) (5)

For TWR-VAEsum, it performs vector addition on the sampled latent variables {zt}Tt=1 instead and the
corresponding reconstruction loss is:

E[logPθ(xi|
T∑
t=1

zt)] where zt ∼ Qφ(z
t|x1:t

i ) (6)

For both TWR-VAEmean and TWR-VAEsum, their KL loss term is the same as TWR-VAE, i.e.,
− 1
T

∑T
t=1DKL(Qφ(z

t|x1:t
i )‖P (zt)).

4 Experiment

4.1 Language Modelling
We evaluate our TWR-VAE model on three public benchmark datasets, namely, Penn Treebank
(PTB) (Marcus and Marcinkiewicz, 1993), Yelp15 (Yang et al., 2017), and Yahoo (Zhang et al., 2015),
which have been widely used in previous work for text modelling (Bowman et al., 2016; Kim et al., 2018;
Fu et al., 2019; He et al., 2019; Zhu et al., 2020). The statistics of the datasets are summarised in Table 1.
We represent input data with 512-dimensional word2vec embeddings (Mikolov et al., 2013) and set the
dimension of the hidden layers of both one-layer encoder and decoder to 256. Appendix D shows more
details.

We compare our TWR-VAE model with five strong baselines2: VAE-LSTM: A VAE with LSTM
and with KL annealing for tackling the posterior collapse issue (Bowman et al., 2016); (2) SA-VAE: A

2VAE-LSTM: https://github.com/timbmg/Sentence-VAE; SA-VAE: https://github.com/harvardnlp/sa-vae; Cyclical VAE:
https://github.com/haofuml/cyclical annealing; Lagging VAE: https://github.com/jxhe/vae-lagging-encoder; BN-VAE: https:
//github.com/valdersoul/bn-vae
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Model PTB Yelp15 Yahoo
NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL

VAE-LSTM 101.2 101.4 0.0 0.0 357.9 40.6 0.0 0.0 328.6 61.2 0.0 0.0
SA-VAE 101.0 100.7 0.8 1.3 355.9 39.7 2.8 1.7 327.2 60.2 2.7 5.2
Cyc-VAE 102.8 109.0 1.3 1.4 359.5 41.3 1.0 2.0 330.6 65.3 2.0 2.1
Lag-VAE 100.9 99.8 0.8 0.9 355.9 39.7 2.4 3.8 326.7 59.8 2.9 5.7
BN-VAE (0.7) 100.2 96.9 5.5 7.2 355.9 39.7 7.4 9.1 327.4 60.2 7.4 8.8

TWR-VAEsum 96.7 63.2 3.7 5.9 378.3 47.4 3.8 3.9 345.6 71.1 3.7 3.8
TWR-VAEmean 95.6 60.4 3.9 4.9 361.7 40.0 3.9 3.5 324.8 55.0 4.1 4.8
TWR-VAE 86.6 40.9 4.1 5.0 344.3 33.5 4.1 3.1 317.3 50.2 4.1 3.3

Table 2: Language modelling results of all baselines and our models on the PTB, Yelp15 and Yahoo test
datasets. The results of all baselines are reported based on (Li et al., 2019a; Zhu et al., 2020). ↓ denotes
lower the better and ↑ higher the better.

VAE using stochastic variational inference to refine the variational parameters initialised by Amortized
variational inference (Kim et al., 2018); (3) Cyclical VAE: A VAE employing cyclical annealing to
alleviate the posterior collapse issue (Fu et al., 2019); (4) Lagging VAE: A VAE updating the encoder
more times than updating the decoder (He et al., 2019); (5) BN-VAE: A VAE utilising Batch Normalisation
for the KL distribution (Zhu et al., 2020).

We report the performance on four metrics: negative log likelihood (NLL), perplexity (PPL), KL-
divergence which measures the distance between two probability distributions, and the mutual information
of the input x and the latent variable z, which measures how much information of x is obtained by z.
Following Dieng et al. (2019) and He et al. (2019), the mutual information is formulated as I(x, z) =
Ex[DKL (Qφ(z

T |x)‖P (zT ))] − DKL(Qφ(z
T )‖P (zT )), where Qφ(zT ) is an aggregated posterior and

DKL(Qφ(z
T )‖P (zT )) is the KL divergence between the aggregated posterior and the prior estimated by

Monte Carlo estimators (see Appendix E for the whole derivation).
Results. As depicted in Table 2, our TWR-VAE outperforms all baselines on all datasets. Compared
to the strongest baseline BN-VAE, our model reduces NLL by 11.8 and PPL by 24.1 on average across
three datasets, showing superior performance in reconstructing input sentences. As shown in Table 2, the
two variants of TWR-VAE also yields better performance to the baselines. For instance, TWR-VAEmean
outperforms all baselines on PTB and Yahoo datasets and yield comparable results to BN-VAE on Yelp.
This shows the effectiveness of our strategy of regularising timestep-wise variational posteriors.
Model generalisability and Ablation studies. We also evaluate the model’s generalisability by looking at
how well our timestep-wise regularisor works in different RNN architectures. To this end, we tested Basic-
VAERNN and Basic-VAEGRU (i.e., vanilla RNN and GRU model with KL annealing ), as well as TWR-
VAERNN and TWR-VAEGRU (vanilla RNN and GRU with the timestep-wise regularisor). Experimental
results in Table 3 show that our TWR models outperform the corresponding basic models on all evaluation
metrics, regardless the encoder architecture. This shows the generalisability of our proposed architecture.

In addition, to understand how the proportion of timesteps that are imposed with KL regularisation
impacts the performance of our model, we run a battery of experiments with varying proportion settings.
Concretely, we impose KL regularisation on the last 25%, 50%, and 75% timesteps of the encoder of
TWR-VAE, respectively. (NB: the KL regularisation is imposed on the final timestep for all model
variants). The results in Table 3 show that TWR-VAELSTM-last25 has the lowest performance on NLL and
PPL and the performance goes up along with higher proportion of timesteps being imposed with KL
regularisation. In addition, when comparing these three model variants with the baseline VAE-LSTM
(which only imposes the KL regularisation on the final timestep), our models can effectively mitigate
posterior collapse. This observation embodies that imposing the KL regularisation on earlier timesteps is
an effective strategy for mitigating posterior collapse. Moreover, the more timesteps we impose the KL
regularisation on, the better performance the model can yield (in terms of NLL and PPL).
Latent representation interpolation. We perform latent representation interpolation to assess how well
the latent space (z) can be learned by TWR-VAE comparing to the strongest baseline BN-VAE. Given a
pair of sentences x1 and x2, we sample their latent codes zT1 and zT2 from the encoder, and interpolate
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Model Yelp15 Yahoo
NLL↓ PPL↓ MI↑ KL NLL↓ PPL↓ MI↑ KL

Basic-VAERNN 399.2 58.7 0.0 0.0 363.9 89.1 0.0 0.1
TWR-VAERNN 395.4 56.4 3.9 0.5 363.0 88.2 4.1 0.6
Basic-VAEGRU 389.6 53.2 0.6 0.6 355.0 79.9 2.3 2.6
TWR-VAEGRU 360.9 39.7 4.2 3.3 336.9 63.9 4.2 3.7

TWR-VAELSTM-last25 360.4 39.5 4.1 8.3 338.2 64.9 4.2 8.4
TWR-VAELSTM-last50 356.2 37.9 4.1 5.1 331.7 59.9 4.2 5.3
TWR-VAELSTM-last75 352.6 36.5 4.1 3.7 321.0 52.5 4.1 4.1
TWR-VAE 344.3 33.5 4.1 3.1 317.3 50.2 4.1 3.3

Table 3: Ablation study results of all variants of our model on the Yelp15 and Yahoo test datasets.

Yelp15 Input 1 this is the worst restaurant experience i ’ve ever had ! not only is this place super slow in service but
the food was not fresh !

Input 2 i went to this place last month with my best friend and the food was good i love the coffee designs
and the service was friendly .

B
N

-V
A

E

α = 0 this place the worst restaurant i i have ever had . i only was the restaurant a overpriced , the , the
food is not good and i

α = 0.2 this place joke ! the food was ok the was horrible . i ask for drink and came back to me . i will go
back .

α = 0.4 this place joke ! the food was good horrible . i ask for a drink and check on me . i ask for a drink and
check on me .

α = 0.6 i was try this place. disappointed . the food was not good it was just ok . the service was good the
food was not price .

α = 0.8 i went lunch and the chicken and waffles . the food was good the service was horrible . i will go
back .

α = 1 i went here this place for night and my family friend and i food was great . had the atmosphere and
and the service was great . i

T
W

R
-V

A
E

α = 0 this is the worst restaurant i ’ve ever been ! service only was we restaurant was slow service but the
food was not fresh !

α = 0.2 i love this place the food was very slow ! service is always slow and the food is not a good value so
this was not my first choice .

α = 0.4 i have never been in this restaurant before the food was just ok and the service is very slow ! i will
not continue to go back to this place .

α = 0.6 i have been here a few times now and the food was good ! ! ! the food is good and i would
recommend to and return

α = 0.8 i went here this past weekend to see how good the food was and my husband had the same thing i
would recommend for the price .

α = 1 i went to this place for night and my family friend and the food was good and would the service and
the service was friendly .

Table 4: An example of interpolating the latent representation of two input sentences using BN-VAE and
TWR-VAE in Yelp15 testset (see the example of Yahoo testset in appendix G).

them with zTα = zT1 · (1− α) + zT2 · α. Table 4 shows an example outputs by varying mixture weight α. It
can be observed that our model learns representations which are more smooth than BN-VAE, where the
sentences generated based on continuous samples from the latent code space preserve more consistent
topical information in the neighbourhood of the path. There are less UNK tokens occurring in generated
sentences of our model, which implies that the quality of representations learned in our model is better
than ones in BN-VAE. In addition to qualitative evaluation, we also evaluate the outputs quantitatively with
ROUGE (Lin, 2004), which compares the generated sentences against the human references. Concretely,
for each sentence pair, we compute the ROUGE-1, ROUGE-2 and ROUGE-L F1 scores between two
input sentences (i.e., references) and each interpolation sentence. The averaged ROUGE scores over all
sentence pairs in the test set versus different α settings are sketched in Figure 2. It can observed that as the
mixture weight α increases, the ROUGE values of our model smoothly decrease w.r.t. the first reference
and increase for the second one, showing a smooth transition of sentence interpolation. One can also note
that our model has higher ROUGE scores than BN-VAE at α = 0 for reference one and at α = 1 for
reference two, showing that our model is able to better learning latent representations and reconstructing
the input sentences.
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Figure 2: The average ROUGE-1, ROUGE-2 and ROUGE-L F1 scores between two input references and
11 interpolations of each group using BN-VAE and TWR-VAE on Yelp15 test dataset (Appendix G shows
the results on Yahoo dataset).

4.2 Dialogue Response Generation

In addition to language modelling, we further evaluate how well our proposed architecture could help
alleviating the problem of “generic response” in Dialogue Systems (Huang et al., 2020; Wang et al.,
2020). Dialogue systems that are built upon the sequence-to-sequence (seq2seq) model were found tend to
generate generic and dull responses, such as “I don’t know” or “thank you” (Li et al., 2016). One effective
solution is using a more flexible intermediate representation between the encoder and the decoder of a
seq2seq model with the help of a VAE, which models dialogue as a one-to-many problem and, therefore,
can generate less generic responses. Such VAE-based dialogue response generators, similar to Shen et
al. (2018), also face the problem of posterior collapse. Zhao et al. (2017) first addressed this issue by
proposing the conditional VAE (CVAE) model which utilises KL annealing and Bag-of-Word loss. To test
TWR-VAE on the dialogue response generation task, we extend TWR-VAE following the architecture of
CVAE.

We represent each dialogue conversation as a combination of the dialogue context c (context window
size J), the response utterance x (the J + 1th utterance), and a latent representation z which encodes the
information of the context and captures a latent distribution of valid responses. The dialogue response
generation can then be defined as Pθ(x|c) =

∫
Pθ(x|z, c)Pθ(z|c)dz. Here, a vatiational posterior

Qφ(z|x, c) is used to approximate the true prior Pθ(z|c). The ELBO of TWR-VAE can then be written
as:

L(θ,φ;xi)TWR = EQφ(zJ |xi,c)[logPθ(xi|zJ , c)]−
1

J

J∑
j=1

DKL(Qφ(z
j |xi, c)‖Pθ(z

j |c)) . (7)

Setup. We conducted experiment based on two popular benchmark datasets, namely, Switchboard
(SW) (Godfrey and Holliman, 1997) and Dailydialog (DD) (Li et al., 2017b). For dataset statistics, please
refer to Table 1. Following the implementation of CVAE, we pair each response with 10 context utterances
(i.e. J = 10) from both speakers. The utterance encoder is a one-layer bidirectional GRU with 300 hidden
size; both the context encoder and the decoder use a one-layer GRU with 300 hidden size. The dimension
of the latent variable is 200. Appendix F shows more details.

Apart from comparing TWR-VAE to CVAE and iVAE, we further report the results of two other
competitive models for dialogue response generation3, i.e., SeqGAN (Li et al., 2017a) and a conditional

3SeqGAN:https://github.com/jiweil/Neural-Dialogue-Generation; CVAE:https://github.com/snakeztc/NeuralDialog-CVAE;
WAE:https://github.com/guxd/DialogWAE; iVAE:https://github.com/fangleai/Implicit-LVM



2389

Metrics Switchboard Dailydialog
SeqGAN CVAE WAE iVAE TWR-VAE SeqGAN CVAE WAE iVAE TWR-VAE

BLEU-R↑ 0.282 0.295 0.394 0.427 0.395 0.270 0.265 0.341 0.355 0.407
BLEU-P↑ 0.282 0.258 0.254 0.254 0.258 0.270 0.222 0.278 0.239 0.281
BLEU-F1↑ 0.282 0.275 0.309 0.319 0.312 0.270 0.242 0.306 0.285 0.333
BOW-A↑ 0.817 0.836 0.897 0.930 0.921 0.918 0.923 0.948 0.951 0.952
BOW-E↑ 0.515 0.572 0.627 0.670 0.654 0.495 0.543 0.578 0.609 0.603
BOW-G↑ 0.748 0.846 0.887 0.900 0.900 0.774 0.811 0.846 0.872 0.865
Intra-dist1↑ 0.705 0.803 0.713 0.828 0.860 0.747 0.938 0.830 0.897 0.921
Intra-dist2↑ 0.521 0.415 0.651 0.692 0.849 0.806 0.973 0.940 0.975 0.990
Inter-dist1↑ 0.070 0.112 0.245 0.391 0.470 0.075 0.177 0.327 0.501 0.497
Inter-dist2↑ 0.052 0.102 0.413 0.668 0.766 0.081 0.222 0.583 0.868 0.817

Table 5: Dialogue response generation results of baselines and our model on SW and DD datasets.

Example 1: Topic: Care for the elderly Context: to have the responsibility of putting someone in a nursing home whose mind
was not good and could not tell you if they were being < unk > or something it just would all be so different Target: uh - huh
iVAE TWR-VAE
1. yeah uh - huh 1. uh - huh
2. yeah and then go back up and go back and 2. i see yeah and they have to go back to work and it’s really sad
forth and go back again
3. right oh that makes 3. oh gosh they don’t have to worry about
4. she’s not 4. hm how do you feel
Example 2: Topic: Relationship Context: what happened , john ? Target: nothing .
iVAE TWR-VAE
1. oh , i am . 1. i can’t sleep well .
2. what can we do for you ? 2. working overtime . i have been working on the weekend for a long time .

i was terrified of getting a lot of headaches and i had a terrible hangover .
3. oh what’s wrong ? i didn’t know anyone . 3. oh , i am sorry . i had a terrible pain in the morning . i was so nervous .

i couldn ’ t find a chance to memorize the class . i was hoping to see you
4. i have to get my phone . 4. well , i am not sure of it .

Table 6: Four sample responses generated by iVAE and our model on SW (top) and DD (bottom) datasets,
given context as input. Corresponding topic and target response (gold standard) are also listed. The
generated utterances are different possible responses from two models. We only show the last utterance of
the dialogue context here due to space limit (the actual context window is 10).

Wasserstein autoencoder called WAE (Gu et al., 2019). Following prior works (Gu et al., 2019; Fang et al.,
2019), we report performance on three evaluation metrics including: (1) BLEU scores proposed by Zhao
et al. (2017), which evaluates how many n-grams multiple generated responses match the references.
Zhao et al. (2017) defined BLUE precision (BLEU-P) and recall (BLEU-R) as the average and maximum
BLUE score, respectively, and define BLEU-F as combination of BLEU-P and BLEU-R. n < 4 is used in
our evaluation; (2) BOW embedding (Liu et al., 2016), a cosine similarity of bag-of-words embeddings
between the generated response and the reference. Three different variants of BOW embedding were
tested: (1) Greedy: the average cosine similarities between word embeddings of the two utterances which
are greedily matched (Rus and Lintean, 2012); (2) Average: the cosine similarity between the averaged
word embeddings in the two utterances (Mitchell and Lapata, 2008); (3) Extreme: the cosine similarity
between the largest extreme values in the word embeddings of the two utterances (Pennington et al.,
2014); (3) Dist (Gu et al., 2019), which measures the diversity of the generated dialogue responses by
calculating the ratio of unique n-grams (n=1,2) over all n-grams in the generated dialogue responses.
Two types of dist (intra-dist and inter-dist) were tested, which are calculated within a single sampled
response and between different responses, respectively. For each context in the testset, we generate 10
responses with each model and calculate aforementioned metrics averaged over all responses.
Experiment Results. As shown in Table 5, our model yields a stable improvement over most evaluation
metrics compared to baselines. Specially, there is a significant improvement on Dist for SW and the BLEU
for DD, respectively, indicating that our model can generate relevant, contentful and diverse dialogue
responses. There are some metrics where our model does not outperform the state-of-art baselines, but the
difference is small. We also show in Table 6 two example responses generated by TWR-VAE and the best
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baseline iVAE. In the first example, our model can generate more topical relevant responses compared to
the responses by iVAE, which implies that the latent variable of TWR-VAE can capture a hidden topic
information in the dialogue conversation. In the second example, the generated responses of TWR-VAE
are more diverse and contentful than the baseline, and the content of those responses can also provide
more topics and facilitate the continuation of the conversation.

5 Conclusion

In this paper, in order to solve posterior collapse issue of VAE in text modelling, we propose a simple and
generic model called Timestep-Wise Regularisation VAE, which imposes the KL regularisation on the
latent variables of every timestep of the encoder. Empirical results in language modelling show that our
model can give better performance than all baselines while avoiding posterior collapse. Ablation studies
show that the timestep-wise regularisation can be easily applied into different RNN-based VAE models
and improve their performance. In addition, we evaluate the timestep-wise regularisation in dialogue
response generation task, and the results suggest that our model yields better or comparable performance
to the state-of-the-art and can generate relevant, contentful and diverse responses.
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A The derivation of the ELBO (Eq. 1)

The ELBO can be directly derivated from the marginal log likelihood logPθ(xi):

logPθ(xi) =EQφ(z|xi) [logPθ(xi)] (8)

=EQφ(z|xi)
[
log

[
Pθ(xi, z)

Pθ(z|xi)

]]
(9)

=EQφ(z|xi)
[
log

[
Pθ(xi, z)

Qφ(z|xi)
Qφ(z|xi)
Pθ(z|xi)

]]
(10)

=EQφ(z|xi)

[
log

[
Pθ(xi, z)

Qφ(z|xi)

]
︸ ︷︷ ︸

=L(θ,φ;xi)
(ELBO)

+EQφ(z|xi)

[
log

[
Qφ(z|xi)
Pθ(z|xi)

]]
︸ ︷︷ ︸

=DKL(Qφ(z|xi)‖Pθ(z|xi))

, (11)

B The reparameterisation trick for our timestep-wise latent variables

If TWR-VAE directly samples zt from the Qφ(z
t|x1:t

i ), this sampling behaviour is undifferentiable. A
reparameterisation trick was proposed by Kingma and Welling (2014) to solve this issue. Nevertheless,
our TWR-VAE samples multiple zt at different timesteps, and we modify the form of each Qφ(z

t|x1:t
i ),

where the mean and covariance do not directly depend on zt−1. After using the reparameterisation trick
with εt ∼ N (0, I), zt can be sampled as:

zt =Qφ(z
t|x1:t

i )

=gφ(h
t, εt|x1:t

i )

=Σφ(h
t|x1:t

i )1/2εt + µφ(h
t|x1:t

i ) , (12)

where εt ∼ N (0, I), and ht is the hidden state of the LSTM at t timestep. The mean and covariance are
calculated via two linear transformation layers with the ht.

C The derivation of the gradients optimisation of θ and φ (Eq. 4)

When optimising the θ and the φ, we use Monte Carlo method (Metropolis and Ulam, 1949) in order to
construct a Monte Carlo estimator, which can obtain unbiased gradients of θ and φ:

∇θL(θ,φ;xi)

= ∇θ

(
EQφ(zT |xi) [logPθ(xi|zT )]−

1

T

T∑
t=1

DKL
(
Qφ(z

t|x1:t
i )‖P (zt)

))
(13)

= ∇θ

(
EQφ(zT |xi)

[
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

])
(14)

= EQφ(zT |xi)

[
∇θ

(
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

)]
(15)

' 1

M

M∑
m=1

∇θ

(
logPθ(xi|zTm)−

1

T

T∑
t=1

log
Qφ(z

t
m|x1:t

i )

P (ztm)

)
where zTm ∼ Qφ(z

T |xi) (16)

=
1

M

M∑
m=1

∇θ (logPθ(xi|zTm)) where zTm ∼ Qφ(z
T |xi) , (17)

which is an unbiased Monte Carlo gradient estimator to approximate the expectation (Eq. 13), and M
indicates the total number of times that we randomly sample zTm from the Qφ(z

T
m|x1:t

i ) for approximation.
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When applying the similar method to obtain the unbiased gradients of φ, there is an obstacle to finishing
the gradients:

∇φL(θ,φ;xi) = ∇φ

(
EQφ(zT |xi)

[
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

])
(18)

6= EQφ(zT |xi)

[
∇φ

(
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

)]
, (19)

However, we can tackle this issue by using the reparameterisation trick proposed by (Kingma and Welling,
2014). Normally, we choose a differentiable and invertible function gφ(z, ε) with the random variable ε
to replace Qφ(z|xi), namely z = gφ(x, ε), where ε ∼ P (ε) (see Eq. 12). We choose N (0, I) as P (ε)
and we can use the Monte Carlo estimator approximate Eq. 18:
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and εm ∼ N (0, I) (23)

Overall, the gradients of θ and φ of the ELBO can be re-formed as:

∇θ,φL(θ,φ;xi)

= ∇θ,φ

(
EP (ε)

[
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

])
(24)

= EP (ε)

[
∇θ,φ

(
logPθ(xi|zT )−

1

T

T∑
t=1

log
Qφ(z

t|x1:t
i )

P (zt)

)]
(25)

' 1

M

M∑
m=1

∇θ,φ

(
logPθ(xi|zTm)−

1

T

T∑
t=1

log
Qφ(z

t
m|x1:t

i )

P (ztm)

)
where ztm = gtφ

(
εm,x

1:t
i

)
and εm ∼ N (0, I) , (26)

D Training Details for Language Modelling

We represent input data with 512-dimensional word2vec embeddings (Mikolov et al., 2013) and set the
dimension of the hidden layers of both 1-layer encoder and decoder to 256. The dimension of the latent
variable is 32. There is no gradient clipped during training. The Adam optimiser (Kingma and Ba, 2015)
is used for training with an initial learning rate of 1e-4 and a weight decay of 1e-5. Each sentence in a
mini-batch is padded to the maximum length for that batch, and the maximum batch-size allowed is 64.



2396

Yahoo Input 1 wher can i find a poem called “ in flight ” ? it has something to do with death dunno
Input 2 where can i find dinosaur books for my 3 yr old son ? just check with your local library .

B
N

-V
A

E
α = 0 can can i find a list about “ UNK the ” ? i is to to do with the . .
α = 0.2 can tell me what is the name of the song on the UNK and the UNK ? i think it is a UNK song .
α = 0.4 where can i find a list of all the UNK in the world ? i need to find a list of the UNK and UNK of the UNK .
α = 0.6 where can i find a list of all the UNK in the world ? i need to find a list of the UNK and UNK of the UNK .
α = 0.8 where can i find a list of all the UNK in the world ? i need to find a list of the UNK and UNK of the UNK .
α = 1 where can i find a UNK ? free son year old son ? i go out the local library . they

T
W

R
-V

A
E

α = 0 where can i find a pic in “ in touch attendant ? it has been to do with someone and what
α = 0.2 in my opinion what can be done ? it ’s a poem for me on myspace .com and some people have no clue
α = 0.4 where can i find an old testament to find out how old it was ? i ’m looking at a photograph of albert einstein .
α = 0.6 where can i find an old book for someone who has an old son ? i need to know how to do it ! !
α = 0.8 where can i find info on my research for an anatomy book ? try these links to your local newspaper . good luck
α = 1 where can i find info for my son year old son ? try be out your local library . good

Table 7: The example of interpolating the latent representation of two input sentences using BN-VAE and
TWR-VAE in Yahoo test dataset.

E The derivation of I(x, z)

Ex[DKL (Qφ(z
T |x)‖P (zT ))] (27)

= Ex[EQφ(zT |x)[logQφ(z
T |x)]]− Ex[EQφ(zT |x)[logP (z

T )]] (28)

= −H(Qφ(z
T |x))− EQφ(zT )[logP (z

T )] (29)

= −H(Qφ(z
T |x)) +H(Qφ(z

T ))−H(Qφ(z
T ))− EQφ(zT )[logP (z

T )] (30)

= I(x, zT ) + EQφ(zT )[logQφ(z
T )]− EQφ(zT )[logP (z

T )] (31)

= I(x, zT ) +DKL(Qφ(z
T )‖P (zT )) , (32)

Therefore:

I(x, zT ) = Ex[DKL (Qφ(z
T |x)‖P (zT ))]−DKL(Qφ(z

T )‖P (zT )) , (33)

F Training Details for Dialogue Response Generation

Our model follows the implementation details of the CVAE (Zhao et al., 2017). The size of word
embedding is 200 and it is initialised from a pre-trained Glove embedding on Twitter (Pennington et al.,
2014). The utterance encoder is a one-layer bidirectional GRU with 300 hidden size, and both of the
context encoder and the decoder use a one-layer GRU with 300 hidden size. The recognition network is
1-layer feed-forward network and prior network is 2-layer feed-forward network plus a tanh non-linearity
for Gaussian prior sampling. The dimension of the latent variable is 200. The context window size J is
10. The initial weights for recognition and prior networks are sampled from a uniform distribution [-0.02,
0.02]. The vocabulary size is 10,000 and all out-of-vocabulary words are defined as “< unk >” token. A
greedy decoding mode is used to sample dialogue responses in order to ensure that the randomness comes
from the latent variables. The entire model is trained using Adam optimiser with an initial learning rate of
1e-4 and a weight decay of 1e-5. Gradient clipping is not used.

G Examples of the latent representation interpolation on the Yahoo test dataset

There are less UNK tokens and repeated words occurring in the interpolated sentences generated by our
model compared to BN-VAE, as shown in Table 7. Figure 3 shows that our model has higher ROUGE
scores than BN-VAE at α = 0 for reference one and at α = 1 for reference two. Moreover, the ROUGE-L
scores of our model are even higher than the ROUGE-1 scores of BN-VAE at α = {0.1, 0.2, 0.3} for
reference one and at α = {0.7, 0.8, 0.9} for reference two.
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Figure 3: The average ROUGE-1, ROUGE-2 and ROUGE-L F1 scores between two input references and
11 interpolations of each group using BN-VAE and TWR-VAE on Yahoo test dataset.


