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Abstract

Existing models for data-to-text tasks generate fluent but sometimes incorrect sentences e.g.,
“Nikkei gains” is generated when “Nikkei drops” is expected. We investigate models trained on
contrastive examples, that is, incorrect sentences or terms, in addition to correct ones to reduce
such errors. We first create rules to produce contrastive examples from correct ones by replacing
frequent crucial terms such as “gain” or “drop”. We then use learning methods with several losses
that exploit contrastive examples. Experiments on the market comment generation task show
that 1) exploiting contrastive examples improves the capability to generate sentences with better
lexical choices, without degrading the fluency, 2) the choice of the loss function is an important
factor because the performances of different metrics depend on the types of loss functions, and 3)
the use of the examples produced by some specific rules further improves performance. Human
evaluation also supports the effectiveness of using contrastive examples.

1 Introduction

We address the task of generating market comments from stock prices as illustrated in Fig. 1. This can
be seen as a data-to-text generation task. Recently, neural data-to-text generation has been studied in a
wide range of domains such as biography (Lebret et al., 2016; Liu et al., 2018), sports recap (Wiseman
et al., 2017; Puduppully et al., 2019a; Puduppully et al., 2019b; Iso et al., 2019; Gong et al., 2019), and
market comments (Murakami et al., 2017; Aoki et al., 2018; Aoki et al., 2019).

These models generate fluent sentences, but we often observed problematic generated sentences in
terms of correctness. As shown in Fig. 1, the word gain is possibly generated, although the word drop
or rebound is expected. The terms that express the fluctuation of stock prices are crucial because such
errors could reverse the meaning of the sentence in the worst case.

Similar issues have been seen in other generation tasks, such as machine translation or summarization.
The known solutions are, for example, the use of alignments between input and output (Sennrich, 2017;
Arthur et al., 2016) or copy mechanisms (See et al., 2017). However, they cannot be directly applied to
our task because ours treat sequences of numerical values as an input.

In this paper, we consider how to alleviate such errors by using contrastive examples, which are iden-
tical to the correct examples except for a single word: Nikkei gained vs. Nikkei dropped. Learning with
such examples provides models direct signals on the words that are not to be generated in addition to
those to be generated. We propose a learning framework to examine how to use such examples from the
viewpoint of loss functions and rules to create contrastive examples.

Recent studies show the effectiveness of learning methods that exploit explicit negative examples in
language modeling. Huang et al. (2018) introduced a margin loss to penalize sentences in a beam,
assuming that the generated sentences are imperfect. Noji and Takamura (2020) used synthesized un-
grammatical sentences in addition to the originals to improve the syntactic ability of language models.

∗The first and second authors equally contributed to this work.
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Gold: Nikkei suddenly drops…
System: Nikkei gains…

Gold: Nikkei suddenly rebounds for…
System: Nikkei continuously gains…

Figure 1: An example of translated gold comments and generated comments by a system. The generated
comments contain an erroneous antonym (drops vs. gains) or a term that does not correctly capture the
movement (rebounds vs. continuously gains).

For generation, Welleck et al. (2020) proposed a model with an unlikelihood loss to alleviate the repeti-
tion problem. Rather, we focus on improving the correctness of generated sentences, which is crucial for
data-to-text tasks.

Experiments show that 1) our models can generate sentences with better lexical choice, without de-
grading fluency, 2) the effectiveness of the loss functions depends on the evaluation metric and we need
to select an appropriate loss function based on the criteria we prioritize, and 3) from the perspective of
rules for producing contrastive examples, it is more effective to replace a word with a relatively closer
meaning than its antonyms. Our implementation is publicly available1.

2 Framework

We introduce our learning framework with several losses that exploit contrastive examples. The main
aim of this study is to investigate whether models can generate crucial terms more correctly if we train
them with contrastive examples.

2.1 Rules for Producing Contrastive Examples

Contrastive examples are divided into two types: contrastive terms and sentences. These are used in the
calculations of the losses. We first select the eight most frequent terms in the training dataset that directly
indicate the fluctuation of the stock price and define them as crucial terms. We extract combinations of
pairs of these eight terms as the rules to produce contrastive terms from a crucial term. We take advantage
of wider applicability by defining crucial words in this simple strategy. We show the rules in Table 1. We
create contrastive sentences by replacing the crucial terms in the dataset. Note that we exclude the rules
that produce ungrammatical sentences. We use a Japanese dataset in the experiments. All the rules in
Table 1 are either single noun-to-noun or adjective-to-adjective conversions, and these terms do not have
plural or inflected forms. Thus, simply replacing the terms by the rules rarely produces ungrammatical
sentences. 77.3% of the sentences (12,589 out of 16,276) in the training dataset contain one or more of
the eight terms.
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Rules
continual rise (続伸) ⇒ {continual fall, rebound, turn down},
continual fall (続落) ⇒ {continual rise, rebound, turn down},
rebound (反発) ⇒ {continual rise, continual fall, turn down},
turn down (反落) ⇒ {continual rise, continual fall, rebound},
gain (上げ幅) ⇒ {loss},
loss (下げ幅) ⇒ {gain},
high (高) ⇒ {low},
low (安) ⇒ {high}

Table 1: The rules to produce contrastive examples. The terms in brackets are the originals in Japanese.

12167.29 12127.09 … 12168.30
Short-term Sequence

12190.31 12168.30 … 12018.12
Long-term Sequence

27982.46 27982.99 … 27983.11
Short-term Sequence

27995.60 28032.38 … 27288.18
Long-term Sequence

・
・

・

Nikkei

Dow Jones Index (DJI)

M
LP

C
oncat

LSTM-decoder

Gold Sentence: Nikkei gained…

Contrastive Example: Nikkei dropped…

Final loss

Calc Cross-entropy loss

Calc Proposed loss
(UNLIKE, SENT, TOKEN)

Figure 2: Learning methods that exploit contrastive examples in addition to gold sentences. We compare
three different losses that take into account contrastive examples.

2.2 Learning Methods
In this subsection, we introduce our learning methods, which exploit contrastive examples, in addition
to a baseline model, which does not use contrastive examples. The overview of our method is shown
in Fig. 2.

2.2.1 Baseline with Cross-entropy Loss (BASE)
We use Aoki et al. (2018)’s model as a base model. This is an encoder-decoder, in which the encoder
separately encodes 10 indices such as the Nikkei or Dow Jones Industrial Average, and then the LSTM-
based decoder generates a market comment as a sequence of words. Each index has prices that are
tracked every five minutes and is represented as two different sequences of numerical values; short-term
and long-term. A short-term sequence consists of previous N prices in a day. A long-term sequence
consists of the closing prices of M preceding trading days. These sequences are converted to fixed-
length vectors by using three layers of Multi-Layer Perceptron (MLP). The concatenated vector of all the
vectors is then fed into the decoder to generate a market comment. We train this baseline by using the
cross-entropy loss. We propose to apply three different losses that take into account contrastive examples,
as explained in the following.

2.2.2 Unlikelihood Loss (UNLIKE)
This is recently proposed by Welleck et al. (2020) for reducing repetitions in generation tasks. They used
this loss to penalize choosing words generated before. Instead, we use this loss to penalize choosing
contrastive terms to improve correctness. Given a sentence x, we calculate the unlikelihood loss as:∑

xi∈x
− log p(xi|x1:i−1) +

∑
x∗
i∈con(xi)

g(x∗i ), (1)

1https://github.com/aistairc/contrastive_data2text
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g(x∗i ) = −α log(1− p(x∗i |x1:i−1)), (2)

where con(xi) returns contrastive terms of xi by using the rules in Table 1. α balances the importance
between the two terms, where the first term learns the language model from the correct tokens, while the
second term penalizes the contrastive terms. We finetuned α on the validation dataset.

2.2.3 Sentence-level Margin Loss (SENT)
This attempts to guarantee a certain margin of log-likelihoods between a sentence x and its contrastive
sentence x∗ as follows:

max(0, δ − (log p(x)− log p(x∗))), (3)

where δ is the margin between the log-likelihoods of x and x∗. This was originally proposed for an-
alyzing the syntactic abilities of language models (Noji and Takamura, 2020). This loss is useful for
developing better language models. However, the token-level supervision is missing, which may provide
a more direct signal to learn a clear contrast between correct and contrastive terms. Regarding the train-
ing, we also use cross-entropy loss. For each batch, we first use only the original sentences to optimize
the parameters by minimizing the cross-entropy loss. We then generate a set of contrastive sentences
from the original sentences that contain at least one crucial term. If a single sentence contains multiple
crucial terms, we randomly select one of them. We sample a certain number of pairs to further update
the parameters by using the averaged sentence-level margin loss over the pairs in the batch. We set the
number to half the size of the batch in our experiments.

2.2.4 Token-level Margin Loss (TOKEN)
Noji and Takamura (2020) also use a combination of the previous two by replacing g(x∗i ) in Eq. (1) as:

g(x∗i ) = max(0, δ − (log p(xi|x1:i−1)− log p(x∗i |x1:i−1))).

This loss attempts to take advantage of both the sentence-level margin loss in terms of language mod-
elling and the unlikelihood loss in terms of strong token-level supervision for contrastive terms.

3 Experiments

In this section, we describe the dataset used for our experiments, the ways to finetune hyperparameters
and metrics for automatic evaluation in addition to manual evaluation by a human judge.

3.1 Dataset
We use the dataset preprocessed by Aoki et al. (2018). The dataset consists of 10 market indices2 and
Nikkei and corresponding market comments extracted from Nikkei Quick News. Specifically, these nu-
merical sequences are seven stock market indices retrieved from the ThomsonReutersDataScopeSelect3

(see Aoki et al. (2018) and their publicly available implementation4 for details). The statistics of the
dataset are shown on Table 2. We follow the task proposed by Aoki et al. (2018) to generate market com-
ments forthe Nikkei, using the numerical sequences of the Nikkei and the other nine additional indices.

3.2 Parameters
We finetuned the margin δ for SENT and TOKEN and the parameter α of UNLIKE that balances the
term for language modeling and that for penalizing contrastive terms on the validation dataset. These
are selected from {0.01, 0.1, 1.0, 10, 100}. We selected the models that achieve the best in terms of the
different evaluation criteria explained in the next subsection.

We set N = 62 for short-term sequences, and M = 7 for long-term sequences. Regarding the
training, the mini-batch size is set to 50. We trained the models for 100 epochs and saved the parameters

2Specifically, the indices are Nikkei (N225), N225 Forward Transaction Index, Tokyo Stock Price Index (TOPX), S&P 500
(SPX), Dow Jones Industrial Average (DJI), FTSE 100 Index (FTSE), Hong Kong Hang Seng Index (HSI), the exchange rate
of Japanese yen and the US dollar (JPYUSD), the exchange rate of Euro and Japanese yen (EURJPY), and JNIc1.

3https://hosted.datascope.reuters.com/DataScope/
4https://github.com/aistairc/market-reporter
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Train Valid Test
# of sentences 16,276 1,866 1,951
# of sentences with crucial terms 12,589 1,583 1,615
# of crucial terms 19,005 2,592 2,634
average # of tokens 13.17 12.77 12.69

Table 2: The statistics of the dataset.

every epoch, then selected the best model on validation dataset. We used Adam (Kingma and Ba, 2015)
optimizer with the initial learning rate 0.001. Each index was converted to a 32-dimensional vector. The
dimensions for the hidden layer in the encoder and the decoder were set to 256. We used 128 for the
dimensions of word embeddigns. We report the averaged values of three trials with different random
seeds for automatic evaluation.

3.3 Automatic Evaluation

Since we aim to improve correctness, only using BLEU (Papineni et al., 2002) is not sufficient. It is ideal
to evaluate the effect of the use of contrastive pairs from various perspectives. We propose four metrics
to capture how well models exploit contrastive examples and generate crucial terms.

3.3.1 Accuracy
We expect the trained model should correctly distinguish the difference between reference sentences and
their contrastive sentences i.e., assign a higher probability to the reference sentences than its contrastive
sentences as a direct effect of the learning with the losses that take into account contrastive examples.
Therefore, following the work by Sennrich et al. (2017), we compare the likelihood of each reference
sentence and those of its contrastive sentences. The winning ratio of reference sentences, which is
referred to as accuracy. We denote it by Afluc.

In contrast to the training setup, we use all possible contrastive sentences for this evaluation. A refer-
ence sentence wins when its likelihood is higher than those of all possible contrastive sentences.

3.4 Precision and Recall

As we explained in Sec. 2.1, the terms in Table 1 are crucial, in that these terms directly express the
fluctuation of the stock price and the incorrect generation of such terms would reverse the meaning of
the sentence. We therefore evaluate how accurately the models generate these terms. In particular, we
calculate the precision and the recall for crucial terms. We define the recall (Rfluc) as the number of
the correctly generated crucial terms divided by the number of crucial terms in the reference sentences.
Similarly, we define the precision (Pfluc).

3.5 Error rate

Recall and precision defined above are not completely ideal automatic evaluation criteria because the
same meaning can be expressed by other terms that are not frequent and are not listed in Table 1. We
therefore propose criteria that directly capture the extent to which the model fails to generate crucial
words. We define error rate (Efluc) as the ratio of the number of sentence pairs for which the reference
sentence contains one or more crucial terms in Table 1, but the generated sentence contains one or more
of its contrastive terms.

Note that when calculating the scores Rfluc, Pfluc, and Efluc, we exclude sentence pairs whose refer-
ence sentence contains both a crucial term and its contrastive terms.

3.6 Human Evaluation

Human evaluation is essential to verify the effectiveness of contrastive examples. We create two datasets
for human evaluation. WHOLE is a dataset that contains 100 randomly sampled instances from the test
data. CRUCIAL is a dataset that contains 40 randomly sampled instances of which BASE and TOKEN
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BLEU Accuracy (Afluc) Recall (Rfluc) Precision (Pfluc) Error rate (Efluc)
BASE 26.01 90.04 74.78 62.27 7.69
Our models tuned on BLEU
UNLIKE 25.54 91.17 75.17 63.10 6.79
SENT 26.56 90.26 75.82 62.44 7.56
TOKEN 25.90 91.10 75.01 63.25 6.91
Our models tuned on Afluc

UNLIKE 23.26 93.02 72.48 61.24 6.83
SENT 23.93 91.19 78.86 55.39 8.69
TOKEN 25.90 91.74 75.67 63.54 6.08
Our models tuned on Rfluc

UNLIKE 25.98 91.17 75.30 63.10 6.79
SENT 23.93 91.19 78.86 55.39 8.69
TOKEN 26.07 91.46 75.67 61.95 7.05
Our models tuned on Pfluc

UNLIKE 25.54 90.84 75.30 63.05 6.15
SENT 26.69 92.51 76.65 63.62 6.65
TOKEN 25.90 91.74 75.67 63.54 6.08
Our models tuned on Efluc

UNLIKE 25.54 92.51 75.30 63.05 6.16∗
SENT 25.37 89.45 75.63 63.34 7.15∗
TOKEN 25.90 91.74 75.67 63.54 6.08∗

Table 3: The automatic evaluation results. ∗ means that the reduction in Efluc from that of BASE was
statistically significant by sign test (p < 0.05). Scores are in bold if they are better than BASE and for
the metric tuned on. Ffluc is the harmonic mean of Rfluc and Pfluc. Higher values are better except for
Efluc.

generate different crucial terms. The latter enables us to directly evaluate the improvements for the
crucial parts where our models attempt to reduce errors.

An expert in finance domain was asked to rank the sentences in terms of two criteria: correctness
and fluency following Aoki et al. (2018). Correctness evaluates how well the movement of the input
indices was correctly captured whereas fluency is based on naturalness as natural language. We allow the
evaluator to equally rank two or more sentences. For each instance, we displayed the reference sentence
(REF), the sentences generated by the baseline (BASE) and our model that achieves the best error rate on
the validation dataset (TOKEN).

For the evaluation in terms of correctness, we also showed graphs that represent the fluctuation of
each index. The evaluator checked both the generated sentences and various graphs and then ranked the
sentences. The evaluator removed the instances if the evaluator could not judge correctness by using
only the information from the graphs. For example, the generated sentence of Nikkei drops caused by
the mention from the Governor of the Bank of Japan could not be strictly judged in terms of correctness
because it included the writer’s subjective thoughts on the reason for the drop and we cannot know the
actual reason.

4 Results

In this section, we discuss the results of automatic and human evaluations.

4.1 Effectiveness of Contrastive Examples.
Table 3 shows the results of the automatic evaluation. The table is divided into six sections from the
top to bottom. The first section shows the scores of BASE, and the following sections are the scores
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WHOLE CRUCIAL

TOKEN vs. BASE 19-18 32-5
REF vs. TOKEN 37-7 18-2
REF vs. BASE 38-8 35-1

Table 4: The results of human evaluation in terms of correctness. WHOLE contains 100 and CRUCIAL
contains 40, respectively.

WHOLE CRUCIAL

TOKEN vs. BASE 0-0 0-1
REF vs. TOKEN 0-0 1-0
REF vs. BASE 0-0 0-0

Table 5: The results of human evaluation in terms of fluency. Scores of 0-0, 1-0 and 0-1 exist because
the compared methods were almost equally ranked in terms of fluency because most of them are fluent.
WHOLE contains 100 and CRUCIAL contains 40, respectively.

of our models. For each section of our models, we finetuned the hyperparameters based on different
target metrics, that is, BLEU, accuracy, recall, precision, or error rate on the validation dataset. We then
evaluated them on the test set. The scores in bold are better than those of BASE in terms of the target
criteria used for tuning hyperparameters.

Our models perform better in terms of all metrics except for the BLEU for UNLIKE and TOKEN.
These scores show that the use of contrastive examples improves the correct generation of crucial terms.
The improvements in Efluc show that errors that mistakenly select the crucial terms were effectively
suppressed. The reductions in the BLEU scores of UNLIKE (25.54) and TOKEN (25.90) from BASE
(26.01) are only 0.47 and 0.11, respectively. We did not observe any statistical difference between them.
These small reductions show that our models improve correctness without reducing BLEU.

4.2 Comparisons between losses

The choice of the loss function is an important factor because the performance of different metrics de-
pends on the types of loss functions. TOKEN achieved the best error rate (6.08) while SENT achieved the
best scores in terms of BLEU (26.56), precision (63.62) and recall (78.86). UNLIKE achieved the best in
terms of accuracy (93.02). Note that SENT is not stable because if we tuned the hyperparameter of SENT
to achieve the best in terms of recall (78.86), we have to compromise the performance in terms of preci-
sion (55.39) and error rate (8.69). Similar instability can be seen for other metrics of SENT. We found
that TOKEN and UNLIKE are more stable regardless of which criteria are used for tuning parameters.

Our models that use token-level supervision (UNLIKE and TOKEN) achieved better in terms of ac-
curacy, precision and error rate than SENT, which uses sentence-level signals. SENT achieved better
than UNLIKE and TOKEN in terms of BLEU, which we consider less important in this study since the
correlation between BLEU scores and scores given by human judges in terms of correctness is unclear.

4.3 Results of human evaluation.

Table 4 and Table 5 show the results of human evaluation in terms of correctness and fluency, respec-
tively. The numbers represent the counts that a method was judged better than the other. In terms of
correctness, we observed statistically significant gains on CRUCIAL, where TOKEN was judged better
than BASE 32 times, whereas BASE was judged better only 5 times. Furthermore, REF was judged
better than TOKEN 18 times, whereas REF was judged better than BASE 35 times. Thus, the sentences
generated by TOKEN are more similar to REF than those generated by BASE. These results show the
usefulness of contrastive examples. We did not observe the performance reduction on WHOLE (19 vs.
18), which implies that the use of contrastive examples helps models correctly generate crucial terms
without reducing the correctness of other parts.
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Efluc All Different type Same type
BASE 7.69 7.69 7.69
UNLIKE 6.16 7.22 5.99
SENT 7.15 7.14 6.95
TOKEN 6.08 7.77 5.37

Table 6: Effectiveness of types of rules on error rates.

count Gold Generated crucial terms
87 rebound (反発) continuous gain (続伸)
75 continuous drop (続落) turn down (反落)
60 continuous drop (続落) rebound (反発)
48 turn down (反落) continuous gain (続伸)
38 continuous gain (続伸) rebound (反発)
27 turn down (反落) rebound (反発)
24 continuous gain (続伸) turn down (反落)
16 rebound (反発) continuous drop (続落)
15 turn down (反落) continuous drop (続落)
13 continuous drop (続落) continuous gain (続伸)
12 rebound (反発) turn down (反落)
9 continuous gain (続伸) continuous drop (続落)
6 low (安) high (高)
4 high (高) low (安)
3 gain (上げ幅) reduction (下げ幅)

Table 7: The counts of errounous generations by BASE. The original Japanese terms are in brackets.

In terms of fluency, the results suggest that the use of contrastive examples did not reduce performance,
as the compared methods were almost equally ranked (0 vs. 0, 0 vs. 1 or 1 vs. 0 for all pairs). The
evaluator mentions that almost all sentences are fluent as natural language.

4.4 Effects of rules
We also analyze the effects of types of rules. We split the terms Table 1 into two: the terms that represent
the fluctuations 1) that eventually gain e.g., “continual rise” or “rebound”, and 2) that eventually drop
e.g., “continual fall” or “turn down”. Table 6 shows the error rates when we use only the rules that convert
between the same types of terms (e.g., continual rise ⇒ rebound) and the different types of terms (e.g.,
continual rise ⇒ continual fall). As a result, both types of rules reduce the error rates compared to those
of BASE except for TOKEN, which uses the rules of “Different type”. Furthermore, the latter type of
rules reduce the error rates better. This implies that the rules that convert terms to similar ones are more
effective.

To further explore this result, we analyzed the output of Aoki et al. (2018)’s base model. Their model
often mistakenly generates similar words to the correct ones. Table 7 shows the statistics of errors of their
model. In the table, the counts of the errors that generate similar words are in bold. Most of such errors
are ranked higher in this table. Their model also outputs the antonyms of the crucial term in the reference
sentence, but such cases are less frequent than the cases that generate similar words. Therefore, it is a
convincing result that the use of rules that replace similar words improves and the use of all rules further
improves the performance. In this study, we used naive heuristics to create rules because we prioritize
reducing labour costs, but it might be possible to make more effective contrastive examples based on
detailed error analysis of existing models on the validation dataset.

In other generation tasks e.g., machine translation, Arthur et al. (2016) exemplifies an error of neu-
ral network-based models that incorrectly generates a similar word Tunisia instead of the correct word
Nigeria. This error seems somewhat similar to those in our task, in which a model mistakenly generates
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Example 1
Ref Tokyo Stock Exchange closed its morning session with continual rise after continuous

repurchases accelerated by a sudden drop
Tosho (東証) zenbike(前引け), zokushin (続伸). Kyuraku(急落)-kara(から)-no(の)
kai(買い)-modoshi(戻し) tsuzuku(続く).

Base Nikkei rebounded, and the closing price of the morning session was 15,751 yen, which is
69 yen higher higher.
Nikkei(日経) heikin(平均), hanpatsu(反発), zenbike(前引け)-ha(は) 69 en(円)
-daka(高)-no(の) 15,751 en(円).

Ours Nikkei continually rose and the closing price of the morning session is 15,751 yen,
which is 69 yen higher.
Nikkei(日経) heikin(平均), zokushin(続伸). zenbike(前引け)-ha(は) 69
en(円)-daka(高)-no(の) 15,751 en(円).
Example 2

Ref Nikkei stock average starts with turn down, the price of 16100 yen which is 70 yen lower.
Nikkei (日経) heikin (平均)、 hanraku (反落) de (で) hajimaru (始まる), 70 en (円)
yasu (安) no (の) 16100 en (円)

Base Nikkei stock average starts with turn down, and profit-taking due to the low prices of the US
stock market was preceded in the market.
Nikkei (日経) heikin (平均)、 hanraku (反落) de (で) hajimaru (始まる),　
bei-kabuyasu (米株安) de (で) rieki (利益) kakutei (確定) uri (売り) ga (が) senkou (先行)

Ours Nikkei stock average starts with turn down, and profit-taking is seen in the market due to the
low prices of the US stock market.
Nikkei (日経) heikin (平均)、 hanraku (反落) de (で) hajimaru (始まる)　
beikabuyasu (米株安) de (で) rieki (利益) kakutei (確定) uri (売り)

Table 8: Examples of generated sentences and its translations into English. The parts that do not correctly
represent the fluctuation of the input indices are in bold.

similar incorrect crucial terms. Thus, we are interested in whether the use of contrastive examples works
well for other generation tasks to improve correctness. We leave this for future work.

4.5 Example of generated sentences and error analysis

We show some generated sentences in Table 8.
In the first example, the main difference between the sentences generated by BASE and TOKEN is

the lexical choice between rebound by BASE and continualy rise by TOKEN. This is a representative
example to show that TOKEN generated crucial terms correctly.

In the second example, the both our model and the baseline generated the correct crucial terms (turn
down (反落)), however, these generated wrong mentions on the US stock market (low prices of the US
stock market (米株安)) although the US stock market actually gained. Nikkei starts after the US stock
market closes and the decisions of investors for Nikkei are affected by the US stock market. Thus, Nikkei
and the US stock market correlate each other for most cases. Although the base model and our models
take into account both Nikkei and the US stock market in the encoder, BASE and TOKEN struggle to
generate sentences that correctly express the less frequent phenomenon, that is, Nikkei turned down but
the US stock gained.

A market comment often can be split into two parts where the first part describes the major fluctuation
of the market (e.g., Nikkei gained this morning) and the second part provides supplementary information
such as reason or detailed prices (e.g., due to high prices in the US market.). In this study, we focus
on crucial terms, which are mostly observed in the first part. Thus, we observed errors in the second
part of our generated sentences. In future work, it will be useful if we can develop effective contrastive
examples that improve the latter half.
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5 Related Work

Neural data-to-text generation has been studied in wide range of domains such as biography (Lebret et
al., 2016; Liu et al., 2018), sports recap (Wiseman et al., 2017; Puduppully et al., 2019a; Puduppully et
al., 2019b; Iso et al., 2019; Gong et al., 2019), and market comments (Murakami et al., 2017; Aoki et al.,
2018; Aoki et al., 2019). Murakami et al. (2017) and Aoki et al. (2018) deal with sentence-level market
comments generation tasks, whereas Aoki et al. (2019) generate document-level market comments that
can be controlled by hand-crafted rules. We follow the most basic setup, that is, sentence-level market
comments generation.

Although each domain of data-to-text tasks has its own difficulty, these studies showed that neural end-
to-end approaches such as encoder-decoders can generate fluent text. However, the sentences generated
by existing models are often problematic in terms of correctness. Significant developments have been
made to capture input data correctly, for example, encoders with content selection (Puduppully et al.,
2019a; Gong et al., 2019), decoders with entity modeling (Iso et al., 2019; Puduppully et al., 2019b). The
problem in terms of correctness is also well knwon in other generation tasks such as machine translation
tasks (Sennrich, 2017; Arthur et al., 2016) or summarization (See et al., 2017). The use of an alignment
dictionary (Arthur et al., 2016) or copy mechanisms (See et al., 2017) are common strategies to reduce
such errors, but these are difficult to adopt for data-to-text tasks.

In this study, our models use various loss functions that take into account contrastive samples. This
approach relates to recent studies that propose loss functions that use negative samples for language
modeling. Huang et al. (2018) introduced a margin loss that estimates the quality of each beam-searched
candidate by comparing it with the reference sentence. More recently, Noji and Takamura (2020) showed
negative examples help to improve the syntactic ability of neural language models. They created negative
instances from original instances by injecting a grammatical error and used them to calculate a margin
loss that will be added to the cross-entropy loss. For generation, Welleck et al. (2020) proposed a model
with an unlikelihood loss to alleviate the repetition problem. Although their study targets neural language
models or the different problems in generation other than improving correctness, we focus on improving
the generated sentences in data-to-text tasks in terms of correctness.

6 Conclusion

We presented learning methods with several losses that exploited contrastive examples for data-to-text.
The results showed our methods improved the performances in terms of correctness. Human evaluation
also supported the improvements for the crucial parts that our model attempted to reduce errors. Because
our methods have wide applicability, we will examine their effectiveness against other models and tasks.
The applicability will be wider if effective contrastive examples can be generated automatically.
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